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Abstract

For a certain family of ordinary differential equations, Nevanlinna theory is used

to find all solutions in a special class. A differential equation is said to possess the

(strong) Painlevé property if all solutions have only poles as movable singularities.

The solutions of such equations are particularly well behaved and the Painlevé prop-

erty is closely associated with integrability. In this thesis, we extend the idea of using

singularity structure to find all special solutions with good singularity structure, even

when the general solution is badly behaved. We begin by finding solutions that are

meromorphic in the complex plane and more complicated than the coefficients in the

equation in a sense made precise by Nevanlinna theory. Such meromorphic solutions

are called admissible and include all non-rational meromorphic solutions of an equa-

tion with rational coefficients. The use of Nevanlinna theory in the entire complex

plane does not allow the solutions to be branched at fixed singularities, which seems

more natural from the perspective of the Painlevé property. Motivated by this, we

consider an extension of Nevanlinna theory to a large sector-like region with a deleted

disc to allow for such branching and apply this theory to differential equations.

This thesis was completed under the supervision of Professor Rod Halburd.
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Chapter 1

Introduction

When one encounters a particular differential equation, it is natural to ask whether

it has any explicit solutions. There are some ad hoc methods that work for very spe-

cific equations, such as looking for solutions of a very special form, however, there are

only two widely-used general methods for identifying equations that can be solved in

some sense explicitly. The first is Lie’s symmetry method. Effectively, if an ordinary

differential equation has a sufficiently rich group of symmetries, then it can be solved

by quadrature. The second method uses the singularity structure of solutions in the

complex domain as an indicator of whether the equation is integrable. The work

reported in this thesis is an extension of the second approach.

Kowalevskaya [21] was the first to use singularity structure to identify a new

integrable class of equations. The equations of motion for a spinning top contain a

number of parameters. Kowalevskaya noticed that for each of the previously known

choices of parameters for which the equations could be solved, the general solution

was meromorphic, so she went on to determine which choices of parameters led to a

meromorphic general solution. She found one new case which she subsequently solved

using theta functions. This is the last case of these equations to be solved in 128

years. Subsequently Picard posed the problem of classifying all differential equations

7



Chapter 1. Introduction 8

of a certain form such that the solution is single-valued about all singularities apart

from certain singularities that are fixed by the form of the equation. Such equations

are now said to possess the Painlevé property. Painlevé and his colleagues [35]

classified all equations with the Painlevé property of the form y′′ = R(z, y, y′), where

R is rational in y and y′ and analytic in z on some open set. Six new equations,

the Painlevé equations, were found. All other equations in the class could either

be solved in terms of previously known functions or in terms of solutions of the

Painlevé equations. The solutions of the Painlevé equations are now considered to

be important functions of mathematical physics in their own right and have many

remarkable properties.

For the purposes of this thesis, we will refer to a slightly stronger version of the

property. An ordinary differential equation is said to possess the (strong) Painlevé

property if all movable singularities are poles. A movable singularity is one that

occurs at a value of the independent variable for which the equation is not singular

in some sense for generic values of the dependent variable. Such singularities are

called movable because their locations change as we vary the initial conditions.

The standard so called Painlevé test, which is actually closer to the procedure

originally used by Kowalevskaya rather than that used by Painlevé, involves the

substitution into the equation of a formal Laurent series expansion of a solution

about a movable singularity. In order to have a sufficiently rich class of such solutions

one demands that a sufficiently large number of the coefficients in the expansion are

arbitrary. This results in a number of resonance conditions that relate the values

of various coefficients in the equation to their derivatives evaluated at the movable

singularity. We want these conditions to hold at all movable singularities of all

solutions, so these conditions ultimately become differential equations that are solved

to determine the final form of the equation.

The main idea behind the present thesis is to extend the idea of using the sin-
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gularity structure of solutions to find differential equations that are integrable, i.e.,

equations for which we can in some sense nicely characterise the general solution, to

the use of singularity structure to find well behaved solutions, regardless of whether

the general solution is well behaved. To this extent a natural problem would be to

find all solutions of a given equation such that the only movable singularities of the

solution are poles. At the moment this problem is too difficult. In particular, we are

not able to prove that we have found all such solutions. However, if we know that

in some sense we have enough movable singularities then we can still use series type

methods such as those used in Painlevé analysis to answer the question. This leads

us to Nevanlinna’s theory on the value distribution of meromorphic functions.

In this thesis, Nevanlinna theory will be used to show that we have sufficiently

many movable singularities to be able to use series methods. These methods go

well beyond ideas in Painlevé analysis as in many cases we do not have resonance

conditions at all or we do not know if we have resonance conditions (without doing

a lot more analysis). Nevertheless, in order to use Nevanlinna theory we add two

assumptions to the original statement of our problem. First, we require the solutions

to be meromorphic. This means that not only are the movable singularities poles,

but the fixed ones are as well. This is somewhat artificial from the point of view of

the Painlevé property. Also, in order to extract information about the coefficients we

assume that they are simpler than the solution we are considering in a sense made

precise by Nevanlinna theory. In particular, if the coefficients are rational functions,

we can only perform our analysis on non-rational meromorphic solutions. In the

case of more general meromorphic coefficients, we talk about admissible solutions,

a concept that often arises in the application of Nevanlinna theory to differential

equations.

Chapter 2 contains a brief introduction to classical Nevanlinna theory, which de-

scribes the complexity and value distribution of a function meromorphic on the entire
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complex plane in terms of the growth of several real-valued functions. The chapter

also contains an overview of the Painlevé property, fixed and movable singularities

and a standard example of Painlevé analysis.

Chapter 3 discusses some applications of Nevanlinna theory to differential equa-

tions. The study of differential equations in the complex domain, with the aid of

Nevanlinna theory, is an active field of research. The first such application was due to

the Japanese mathematician Yosida [52] who used Nevanlinna theory to present an

alternative proof of Malmquist’s theorem: if R is a rational function of its arguments,

and y′ = R(z, y) is a differential equation which has a transcendental meromorphic

solution, then R must be a polynomial in y of degree at most 2. If R has degree 1

then the equation is linear and solvable by quadrature. If the degree of R is two then

the differential equation is called a Riccati equation. It is well know that any Riccati

equation can be solved in terms of an appropriate second-order linear differential

equation. This theorem shows that if a solution has simple singularity structure (i.e.

that the solution be meromorphic) then it can be expressed in terms of solutions of

a linear differential equation and is in some sense integrable.

Many studies still attempt to generalise Malmquist’s theorem to characterising

the forms of equations of higher order. Otherwise, many studies in the field of

complex differential equations, which use Nevanlinna theory, have focussed on the

rates of growth of meromorphic solutions of linear or non-linear differential equations

(see [24, and references therein]).

Apart from the previous studies cited, there is still a lack of research that inves-

tigates the impact of Nevanlinna theory on the existence of meromorphic solutions

to differential equations. So far, however, a few studies have discussed this problem

(see [5], [12], [42], [43] and [44]). Halburd and Wang [12] used local series analysis

with the aid of Nevanlinna theory to obtain all admissible meromorphic solutions of

an ordinary differential equation, even when the general solution is not meromorphic.
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These methods are extended in chapter 3 to give an explicit characterisation of all

admissible meromorphic solutions of equations of the form

w′′ =
N∑
j=1

κj
(w′)2

w − aj
+ α(z),

where α is a non-zero meromorphic function and a1, . . . , aN are distinct constants. All

such solutions are shown to be either polynomials, elliptic functions, or expressible

in terms of solutions of the first or second Painlevé equations. This is the main result

of this thesis and is to be published in [3]. A fundamental difference between this

work and that of Halburd and Wang is that we must consider an arbitrary number

of different types of movable singularities for which w(z0) = aj for some j as well as

the fact that some solutions can have poles.

As was the case in the work of Halburd and Wang, as part of our proof we find

a number of explicit “well behaved” solutions that we must discard because they

do not satisfy either the assumption that the solution is meromorphic or that it is

admissible. In the cases where a solution fails to be meromorphic it is because it is

branched at one or more fixed singularities. This underlines the fact that demanding

that the solutions be meromorphic at fixed singularities is artificial.

Chapter 4 contains an initial attempt to address the problem of the possible

branching of solutions at fixed singularities by extending Nevanlinna theory to a

large sector-like region outside a disc centred at the origin. This is based directly

on Tsuji’s version of Nevanlinna theory for functions meromorphic on the half-plane.

This chapter contains a self-contained introduction to the Tsuji characteristic. We

follow standard derivations but we use the right half-plane instead of the upper

half-plane as the formulas are more symmetrical when we transform to sectors. This

derivation is merely a rewriting of the standard derivation included for completeness.

The standard formulas can be recovered by a rotation in the complex plane by π/2.
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After some well-known introduction of Tsuji theory, we establish analogous tools of

Nevanlinna theory for meromorphic functions in a sectorial domain type using Tsuji’s

theory to the extent that we will need it for applications to differential equations.

This allows us to extend various results about meromorphic solutions of differential

equations to solutions whose only movable singularities are poles. However, in this

context admissibility becomes more problematic.



Chapter 2

Preliminaries

This chapter contains some essential background material on Nevanlinna theory

as well as a brief introduction to the Painlevé property and the Painlevé equations.

A key idea in Nevanlinna theory is to consider certain quantities of a meromorphic

function on a disc of radius r, such as the number of poles, and then study the

asymptotic behaviour of these quantities, which are real-valued functions of r, as

r tends to infinity. These real-valued functions will be introduced in section 2.1

together with a number of useful inequalities. Beyond these inequalities, the main

tools from Nevanlinna theory that we will use in this thesis are the first main theorem

and the lemma on the logarithmic derivative. We will introduce the Painlevé property

in section 2.2 and give a standard example of a series-based procedure, known as the

Painlevé test, for checking necessary conditions for an equation to have this property.

The distinction between fixed and movable singularities plays an essential role here

and will be referred to repeatedly throughout the thesis.

13



Chapter 2. Preliminaries 14

2.1 Nevanlinna theory

Nevanlinna theory was created to provide a quantitative measure of the value

distribution of a meromorphic function. This theory originated over ninety years ago

[14]. It has many applications in different areas of mathematics, such as differential

equations [6, 9, 17, 24], difference equations [38, 49] and number theory [37, 47]. The

literature on Nevanlinna theory is very large. Comprehensive surveys of Nevanlinna

theory can be found in [13] and [25]. There are also good accounts on the development

of the theory in [4, 8, 14,24].

The origins of the value distribution theory of entire functions cover many classical

theorems, for instance the fundamental theorem of algebra and Picard’s theorem. In

the late nineteenth and early twenteth centuries, the theory of the value distribution

of entire functions was developed by various French mathematical schools such as

those of Hadamard, Borel and Valiron. Studies therein characterised the order of

entire functions by

ρ(f) = lim
r→∞

log logM(r, f)

log r
, (2.1)

where M(r, f) = max|z|=r|f(z)|. However, this does not work for meromorphic func-

tions. Since a meromorphic function can have a pole on the circle |z|= r, where the

maximum modulus M(r, f) would be infinite, the growth of the function f cannot

be defined using M(r, f). Studies related to the behaviour of a meromorphic func-

tion with regard to the distribution of its zeros and poles was built in the 1920s by

the Finnish mathematician Rolf Nevanlinna, partly in collaboration with his brother

Frithiof, through a series of publications in 1919-1980 [14, and references therein].

These publications provided an insight into the value distribution of meromorphic

functions.

Nevanlinna used three auxiliary real valued functions related to a meromorphic
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function f which are defined on [0,∞), and he investigated how these functions

characterise the growth and the behaviour of the function f . In the following, precise

definitions [8, 13, 24] of these functions will be given.

For any meromorphic function f in the complex plane C, the proximity function

m(r, f) is defined as the integral

m(r, f) =
1

2π

ˆ 2π

0

log+|f(reiθ)| dθ,

where log+ x = max(0, log x) for all x > 0. The proximity function measures how

close f is, on average, to infinity on the circle of radius r centred at the origin. In

addition, the growth of the function m(r, a) = m(r, a, f) = m(r, 1/(f − a)) relates

to the closeness of the values of f(z) to the point a ∈ C: the closer the values of f

are to the point a on average on the circle |z|= r, the larger the function m(r, a) is.

The counting function N(r, f) is defined by

N(r, f) =

ˆ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r,

where n(t, f) denotes the number of poles of f(z) inside the closed disc of radius t

centred at the origin, each pole counted with its multiplicity. In particular, n(0, f)

is the order of the pole of the function f at z = 0. In addition, consider the number

of a-points, i.e. the number of roots of the equation f(z) = a, counting multiplicity

in |z|≤ t which is denoted by n(r, a), then the counting function N(r, 1/(f − a))

counts the number of a-points of f(z) in the closed disc |z|≤ r. For brevity we write

N(r, 1/(f − a)) = N(r, a).

The Nevanlinna characteristic function of f(z) is defined by

T (r, f) = m(r, f) +N(r, f).
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The function T (r, f) plays a significant role in the growth of meromorphic func-

tions. Nevanlinna presented [34] a natural approach to determining the order of a

meromorphic function f as

ρ(f) = lim
r→∞

log T (r, f)

log r
.

It is noted that the order ρ(f) is defined by replacing logM(r, f) in (2.1) by T (r, f).

One of the most important results in Nevanlinna theory is the first main theorem

[13]. Nevanlinna derived this theorem from Jensen’s formula, namely

log|f(0)|= 1

2π

ˆ 2π

0

log|f(reiθ)| dθ +
∑
|ai|<r

log
|ai|
r
−
∑
|bj |<r

log
|bj|
r
, (2.2)

where f is a meromorphic function such that f(0) 6= 0 or∞, and a1, a2, ... ( b1, b2, ...)

denote its zeros (poles, respectively), each taken into account according to its multi-

plicity. With the above notation, Jensen’s formula (2.2) becomes

log|f(0)|= m(r, f)−m
(
r,

1

f

)
+N(r, f)−N

(
r,

1

f

)
.

On applying this result to f(z)− a instead of f(z), we see that N(r, f) is unchanged

and m(r, f) differs by at most log+|a|+ log 2. Hence we have

m(r, a) +N(r, a) = m(r, f) +N(r, f) + log|f(0)− a|−ε(a),

where |ε(a)|≤ log+|a|+ log 2, and f(a) 6= 0 or ∞. If r varies, then for every value a,

finite or infinite, the first main theorem can be written simply as follows.

Theorem 2.1.1 Let f be a meromorphic function and let a ∈ Ĉ. Then

T (r, a) = m(r, f) +N(r, f) +O(1). (2.3)
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From relation (2.3), it can be observed that T (r, f) has almost the same sum of terms

m(r, a) and N(r, a) for any value a ∈ Ĉ, except for a bounded term independent of

r. In loose terms, the first fundamental theorem implies that if a function f takes

on a certain point a relatively fewer times than the point b, then the values of f(z)

are ‘closer’ to the point a on a large part of the complex plane.

Let us now consider the following example where f(z) = ez to illustrate the above

point.

Example 2.1.1

For the function ez, we have

m(r, 0) =
1

2π

ˆ 2π

0

log+|e−reiθ | dθ =
1

2π

ˆ 2π

0

log+ e−rcos θdθ = − 1

2π

ˆ 3
2
π

1
2
π

rcos θdθ =
r

π
.

Furthermore, N(r, 0) = 0 since the function ez never assumes the value 0. Likewise,

m(r, f) = r/π and N(r, f) = 0. On the other hand, if a 6= 0 or ∞ and z0 is a root of

the equation ez0 = a, then it can be seen that all other roots are of the form z0+2kπi,

for all k ∈ Z. This means that the function ez attains the value a regularly. A more

delicate analysis will show that if a 6= 0 or ∞, then

m(r, a) = O(1), and N(r, a) =
r

π
+O(1).

In this instance, the first fundamental theorem says that the values of the function ez

are close to 0 or ∞ on large part of the circle |z|= r while the values of the function

ez approach to the value a 6= 0 or ∞ on a very small arc of each large circle.

We now give some elementary properties for the functions m(r, f), N(r, f) and

T (r, f), which can be found in [13] and [24].
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Proposition 2.1.2 Let f1, f2, . . . , fn be meromorphic functions on C. Then

N

(
r,

n∑
i=1

fi

)
≤

n∑
i=1

N(r, fi),

N

(
r,

n∏
i=1

fi

)
≤

n∑
i=1

N(r, fi),

m

(
r,

n∑
i=1

fi

)
≤

n∑
i=1

m(r, fi) + log n,

m

(
r,

n∏
i=1

fi

)
≤

n∑
i=1

m(r, fi),

T

(
r,

n∑
i=1

fi

)
≤

n∑
i=1

T (r, fi) + log n,

T

(
r,

n∏
i=1

fi

)
≤

n∑
i=1

T (r, fi),

T (r, fm) =mT (r, f), m ∈ N.

In Nevanlinna theory we often deal with quantities that grow slower than the

Nevanlinna characteristic of a meromorphic function f at the rate o(T (r, f)) as r

tends to infinity outside of a possible exceptional set E of real values satisfying

´
E
dt <∞, i.e. E has finite linear measure.

Definition 2.1.1 Let f and g be meromorphic functions. Then it is said that g is

small compared to f if

T (r, g) = o(T (r, f)), r →∞,

possibly outside of an exceptional set of r-values with finite measure, and we use the

notation

T (r, g) = S(r, f).

There is a significant property in Nevanlinna theory which is an estimate of the

proximity function of the logarithmic derivative, which we give below.
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Lemma 2.1.3 Let f be a meromorphic function and k ≥ 1 be an integer. If f is of

infinite order of growth then

m

(
r,
f (k)

f

)
= S(r, f) (2.4)

and if f is of finite order of growth, then

m

(
r,
f (k)

f

)
= O(log r). (2.5)

For k = 1, this lemma is called the lemma of the logarithmic derivative. Using this

lemma and the properties of m above, it is straightforward [24] to show that

m(r, f (k)) ≤ m(r, f) + S(r, f). (2.6)

Furthermore, if a meromorphic function f has a pole of order s at a point z0, say,

then the function f (k) has a pole of order s+ k ≤ (k + 1)s at z0, and hence

N(r, f (k)) ≤ (k + 1)N(r, f). (2.7)

The following result for the rational function R(z, f) is due to Valiron [46] and

generalised by Mohon’ko [31] which has many applications in the analytic theory of

differential and difference equations [11].

Theorem 2.1.4 Let f be a meromorphic function and R(z, f) be an irreducible ra-

tional function of f with meromorphic coefficients aλ(z) such that T (r, aλ) = S(r, f),

for all λ. Then

T (r, R(z, f)) = degf (R(z, f))T (r, f) + S(r, f),
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where degf the degree of R(z, f) as a rational function in f .

The second fundamental theorem is widely regarded as the most significant result

of the value distribution theory of meromorphic functions. In particular, it implies

Picard’s Theorem.

Theorem 2.1.5 (Second Main Theorem) Let f be a non-constant meromorphic func-

tion in |z|≤ r, and a1, a2, ..., aq ∈ C be distinct points, where q ≥ 2. Then

m(r, f) +

q∑
i=1

m(r, ai) ≤ 2T (r, f)−N1(r, f) + S(r, f), (2.8)

where N1(r, f) = 2N(r, f)−N(r, f ′) +N(r, 1/f ′).

The quantity N1(r, f) is a non-negative quantity measuring the total number of a-

points of the function f in the disc of radius r and centred at the origin, where an

a-point of order n is counted n− 1 times.

Adding N(r, f) +
∑q

i=1 N(r, ai) to both side of inequality (2.8) we obtain

q∑
i=1

T (r, ai) ≤ N(r, f) +

q∑
i=1

N

(
r,

1

f − ai

)
+ T (r, f)−N1(r, f) + S(r, f).

Using the first fundamental Theorem 2.1.1 we have T (r, ai) = T (r, f) + O(1), and

hence the above equation becomes

(q − 1)T (r, f) ≤ N(r, f) +

q∑
i=1

N

(
r,

1

f − ai

)
−N1(r, f) + S(r, f), (2.9)

which gives another version of the second fundamental Theorem 2.1.5. It can be

noted that the expression (2.8) of the second fundamental theorem shows that in

general the term m(r, a) is small compared with T (r, f) and so N(r, a) comes close

to T (r, f).

In summary, Nevanlinna’s first fundamental theorem implies that the equality
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(2.3) is satisfied for each value a, so the sum m(r, a) + N(r, a) does not depend

heavily on the value a. On the other hand, the second fundamental theorem shows

that the contribution to this sum from each of the terms m(r, a) and N(r, a) may

depend explicity on the value a, and for the ‘majority’ of the values of a, the term

N(r, a) is dominant.

In order to determine the deviation from regular value distribution more precisely,

Nevanlinna defined the deficiency of the value a as

δ(a) = δ(a, f) = lim
r→∞

m(r, a)

T (r, f)
= 1− lim

r→∞

N(r, a)

T (r, f)
.

It is clear that 0 ≤ δ(a) ≤ 1 for all a ∈ Ĉ, and the value a is called a deficient value

of the function f if δ(a) > 0. The quantity δ(a) is positive only if there are relatively

few a-points.

Nevanlinna also defined the ramification index

θ(a) = θ(a, f) = lim
r→∞

N(t, a)−N(t, a)

T (r, f)
,

where N(r, a) is the integrated counting function for the a-points of f(z), ignoring

multiplicities which is given as

N(r, a) = N

(
r,

1

f(z)− a

)
=

ˆ r

0

n(t, a)− n(0, a)

r
dt+ n(0, a) log r,

and every a-point in n(t, a) is counted only once independently of the multiplicity.

The point a ∈ C is called a ramified value of the function f if the quantity θ(a) is

positive. Clearly, θ(a) > 0 if there are relatively many multiple roots at the point a.

From the second fundamental theorem, we have the following result of Nevanlinna

on deficient values [13]. For any meromorphic function f the set of the value a such
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that δ(a, f) > 0 or θ(a, f) > 0 is countable, and moreover

∑
a∈Ĉ

(δ(a, f) + θ(a, f)) ≤ 2.

The point a ∈ C is a totally ramified value of f if all a-points of f have multiplicity

two or higher. Relation (2.9) implies that a non-constant meromorphic function f

admits at most four completely ramified values.

2.2 The Painlevé property

Singularities of a differential equation are of two kinds: fixed and movable. The

term ‘fixed’ refers to the independence of their location on the differential equation’s

initial conditions, while a singularity of a solution to a differential equation is mov-

able if its position depends on the initial conditions. Extensive discussions on these

kind of singularities can be found in [1], [2] and [17]. To provide a more precise

mathematically rigorous definition involves the introduction of a lot of mathematical

machinery that is not needed for the examples that we consider but can be found

in [20] and [32]. Essentially, fixed singularities are singularities of a solution that

occur at a point where the equation is in some sense singular.

The first-order nonlinear differential equation

dw

dz
= −1

z
w2, (2.10)

has a singular point at z = 0. The general solution to (2.10),

w =
1

log(z/c)
,

has both fixed and movable singularities. z = 0 is a fixed logarithmic branch point
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and z = c is a movable pole since its position depends on c, where c is a constant of

integration, which depends on the initial condition.

The second-order nonlinear differential equation

ww′′ − w′ + 1 = 0 (2.11)

has general solution

w = (z − a) log(z − a) + b(z − a),

which has a logarithmic branch point at z = a; the location of this point varies with

the initial conditions, so it is a movable singularity.

The work in this thesis is motivated by the following property.

Definition 2.2.1 A differential equation is said to possess the (strong) Painlevé

property if all movable singularities of all solutions are poles.

This is slightly stronger than the now more standard definition which only requires

that all solutions are single-valued around all movable singularities. The stronger

definition does not permit movable essential singularities.

The Painlevé test is one of two procedures which are widely used to determine

whether a differential equation possesses the Painlevé property based on the singu-

larity structure of the general solutions of the equation. A more detailed explanation

can be found in [1], [2] and [22].

Consider the second order differential equation

d2w

dz2
= F

(
w,
dw

dz
, z

)
, (2.12)

where F is rational in w and dw/dz and its coefficients are locally analytic. Painlevé

and his coworkers identified equations of the form (2.12) possessing the Painlevé
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property. They found that each such equation could be transformed to one of fifty

canonical forms [18]. There are six equations known as Painlevé equations. The first

two are

PI y′′ = 6y2 + z, (2.13)

PII y′′ = 2y3 + zy + γ, (2.14)

where γ is a constant. The remaining forty-four equations can be either solved in

terms of previously known functions or solutions of second-order linear equations or

reducible to one of the six Painlevé equations.

The Painlevé test is a method that provides necessary conditions for the Painlevé

property to hold. However, it is well known that this does not imply that the equation

possesses the Painlevé property. Here we present an illustrative example to describe

this technique.

Example 2.2.1

Consider the differential equation

y′′ = 6y2 + f(z), (2.15)

where f(z) is an analytic function.

Since the right hand side of (2.15) will be well behaved, analytic, at the initial con-

dition when y and y′ are finite, then Cauchy’s theorem guarantees the existence of a

unique solution of (2.15), i.e. analytic in a neighbourhood of the initial point. Hence

checking the existence of local series expansions will only provide information regard-

ing expansions about the pole. Therefore, we look for a Laurent series expansion of

a solution of equation (2.15) about a movable singularity z0:

y(z) = a0(z − z0)p +O((z − z0)p+1), (2.16)
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where a0 6= 0 and p < 0. Substituting (2.16) into (2.15), we have

p(p− 1)a0(z − z0)p−2 +O((z − z0)p−1) = 6a2
0(z − z0)2p +O((z − z0)2p+1). (2.17)

Equation (2.17) is balanced if p = −2 and hence a0 = 1, for which the series expansion

of the solution is necessarily of the form

y(z) =
∞∑
k=0

ak(z − z0)k−2, a0 = 1. (2.18)

Substituting equation (2.18) in the differential equation (2.15) and equating the

coefficients shows that a1 = a2 = a3 = 0, and the recurrence relation is

(k + 1)(k − 6)ak = 6
k−1∑
m=1

amak−m +
1

(k − 4)!
f (k−4)(z0). (2.19)

If k = 6 in the above equation, then the right side of this equation must vanish, which

is a nontrivial constraint on f . This implies that a6 is an arbitrary coefficient. The

index of the free coefficient, a6, is called a resonance. Thus k = 6 is the resonance.

Therefore, from equation (2.19), we have f ′′(z0) = 0. Since z0 is arbitrary, we get

the resonance condition f ′′ ≡ 0. Hence the function f must be linear and equation

(2.15) has the form

y′′ = 6y2 + az + b, (2.20)

where a and b are constants. The general solution of equation (2.20) can be written

in terms of the Weierstrass elliptic function or its degenerations, provided a = 0.

Otherwise, a rescaling of y and z along with a translation in z shows that the general

solution of equation (2.20) is given in terms of solutions of the first Painlevé equation

(2.13).

The Painlevé test provides very strong constraints on an equation. In practice
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these are often enough to reduce the equation to one of Painlevé type. However, as

in the previous example, if the equation cannot be solved explicitly it then requires

another argument to show that it does indeed have the Painlevé property. The

Painlevé test is based on the fact that if the resonance condition is not satisfied then

the Laurent series expansion can be modified to include logarithmic terms and one

has found a solution with a movable branch point. Initially, the resonance condition

holds at just one point, z0, but then one argues, as above, that in order to avoid a

movable branch point in any solution, the resonance condition must hold for all z0.

In this thesis, we will be looking for special solutions with movable poles. In this

case we cannot use the fact that there may be other solutions with movable branch

points in order to discard an equation. Instead we argue that a given, sufficiently

nontrivial (e.g. admissible meromorphic) solution must have sufficiently many mov-

able singularities that the resonance condition must hold everywhere. In the example

above, it would be sufficient if we restrict f to be a rational function and if we know

that y has an infinite number of poles. It is in concluding the latter statement that

Nevanlinna theory proves to be a very power tool.
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Application of Nevanlinna theory

to differential equations

We present a brief survey of some applications of Nevanlinna theory to differential

equations in section 3.1. Then we introduce a certain class of non-linear second-order

ordinary differential equations in section 3.2. Initially, we shall find all complicated

meromorphic solutions of this class by considering the singularity structure with the

aid of Nevanlinna theory. We show all solutions can be found in terms of classical

special functions such as elliptic functions and two remaining cases are transformed

to the first and second Painlevé equations. The results of section 3.2 will appear

in [3].

3.1 Nevanlinna theory and differential equa-

tions

A considerable amount of literature has described the properties of solutions

of complex differential equations using Nevanlinna theory. On the other hand, a

27
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limited amount of literature has been concerned with the existence of solutions of a

differential equation with the aid of Nevanlinna theory. This theory provides many

of the concepts to deal with meromorphic functions. We proceed by presenting an

overview of some applications of Nevanlinna theory to meromorphic solutions of

differential equations.

The first important application was made by Yosida [52]. In 1933, he [52] gave an

alternative proof of Malmquist’s theorem via Nevanlinna theory. Indeed, Malmquist’s

theorem was published in 1913 [30] and is presented here (Theorem 3.1.1) for com-

pleteness.

Theorem 3.1.1 Let R(z, y) be a rational function in y with coefficients aλ(z) which

are rational functions in z. If the equation

y′ = R(z, y) (3.1)

admits a non-rational meromorphic solution y(z), then equation (3.1) has the form

y′ = c0(z) + c1(z)y + c2(z)y2 (3.2)

with rational coefficients.

If c2 = 0 equation (3.2) is a linear equation. If c2 6= 0 the general solution can be

given in terms of the general solution of a second order linear equation. We will refer

to equations of the form (3.2) as Riccati equations, even when c2 = 0.

Proof. Let R(z, y) be an irreducible rational function, then equation (3.1), can be

written as

y′ = R(z, y) =
P (z, y)

Q(z, y)
, (3.3)

where P (z, y) and Q(z, y) are polynomials in y with rational coefficients. Then by
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Theorem 2.1.4, we have

T (r, y′) = degy(R(z, y))T (r, y) + S(r, y). (3.4)

Applying the lemma of logarithmic derivative (2.4) and using inequality (2.7), we

obtain

T (r, y′) = N(r, y′) +m(r, y′)

≤ N(r, y′) +m(r, y) +m(r,
y′

y
)

≤ N(r, y′) +m(r, y) + S(r, y)

≤ 2N(r, y) +m(r, y) + S(r, y)

≤ 2T (r, y) + S(r, y). (3.5)

Therefore by combining (3.4) and (3.5), we have

degy(R(z, y)) ≤ 2.

Hence both of the polynomials P (z, y) and Q(z, y) have degree less than or equal to

two. Therefore, these polynomials can be written as

P (z, y) = a0(z) + a1(z)y(z) + a2(z)y2(z),

Q(z, y) = b0(z) + b1(z)y(z) + b2(z)y2(z).

Without loss of generality, we assume that a0(z) 6= 0. Now the function ỹ = 1/y is

a solution of the equation

ỹ′ = −
ỹ2
(
a0(z)ỹ2 + a1(z)ỹ + a2(z)

)
b0(z)ỹ2 + b1(z)ỹ + b2(z)

= R̃(z, ỹ) =
P̃ (z, ỹ)

Q̃(z, ỹ)
, (3.6)
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where P̃ (z, ỹ) = −ỹ2
(
a0(z)ỹ2+a1(z)ỹ+a2(z)

)
= −ỹ4P (z, 1

ỹ
), and Q̃(z, ỹ) = b0(z)ỹ2+

b1(z)ỹ + b2(z) = ỹ2Q(z, 1
ỹ
). Using the first fundamental theorem in equation (2.3),

we have T (r, ai) = T (r, bi) = S(r, ỹ). Likewise, equation (3.6) has the same general

form as equation (3.3), and so degỹ(R̃(z, ỹ)) ≤ 2. Since degỹ(P̃ (z, ỹ)) = 4 and

degỹ(Q̃(z, ỹ)) = 2, then Q̃ must divide P̃ . Since P and Q are co-prime, it follows

that P̃ (z, ỹ) = −ỹ4P (z, 1/ỹ) and Q̃(z, ỹ) = ỹ2Q(z, 1/ỹ) are also co-prime. Therefore

Q(z, ỹ) must divide ỹ2, which is only possible if b1 = b2 = 0. �

Malmquist’s theorem has been extended to the case of rational functions R(z, y)

with meromorphic coefficients, and several forms of non-linear algebraic differential

equations of the first order (see [17, 24, and references therein], and [6]). Steinmetz

[42] identified, in his thesis, all birational cases of

(y′)n = R(z, y) (3.7)

that admit transcendental meromorphic solutions. A number of papers due to Laine

[23], Rieth [36] and Yuzan and Laine [16] were published, which generalised the case

(3.7) to meromorphic coefficients (see also Laine [24]).

Theorem 3.1.2 [24] (Malmquist-Yosida) Let R(z, y) be a rational function in y

with coefficients aλ(z) which are meromorphic functions in z. If the equation (3.7)

admits a transcendental meromorphic solution y(z) such that T (r, aλ) = S(r, y) for

all λ, then R(z, y) reduces to a polynomial in y of degree at most 2n.

On the other hand, many systematic studies used Nevanlinna theory to reduce

second order algebraic differential equations which have a class of transcendental

meromorphic solutions to standard forms of differential equations. Actually Laine

[24, p. 251] conjectured that if there exists a transcendental meromorphic solution



Chapter 3. Application of Nevanlinna theory to differential equations 31

for a differential equation

y′′ = R(z, y, y′), (3.8)

where R is rational in z, y and y′ then (3.8) has the form

y′′ = L(z, y) (y′)2 +M(z, y) y′ +N(z, y), (3.9)

where L, M , and N are birational functions.

Several studies have determined necessary conditions for some classes of equa-

tions of the form (3.9) to admit transcendental meromorphic solutions (see [24, and

references therein], [19,28,29,43]). For example, Steinmetz [43] considered the equa-

tion

y′′ = M(z, y) y′ +N(z, y), (3.10)

where M , and N are polynomials in y with rational coefficients. He showed that if

y is a transcendental meromorphic solution of (3.10), then

1. either y satisfies a Riccati differential equation with rational coefficients or,

2. degy(M(z, y)) ≤ 1, and degy(N(z, y)) ≤ 3.

In the second case, equation (3.10) reduces to

y′′ = p0(z) + p1(z)y + p2(z)y2 + p3(z)y3 + q0(z)y′ + q1(z)y y′,

with rational coefficients. Steinmetz also [44] considered all second-order differential

equations

y′′ = L(z, y) (y′)2, (3.11)

where L is rational in all its arguments. If y is a transcendental meromorphic solution

of equation (3.11), then either y satisfies a Riccati differential equation with rational
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coefficients, or a differential equation of the form (y′)m = R(y) where R is rational

and m ∈ {2, 3, 4, 6}.

In fact, Laine’s expectation was proved if the transcendental meromorphic solu-

tions of (3.9) have infinite order, by Liao et al. [29].

Theorem 3.1.3 If the algebraic differential equation (3.8) admits a meromorphic

solution y of infinite order, then y satisfies a second order algebraic differential equa-

tion of the form (3.9), where L, M , and N are rational coefficients.

However, this expectation is not true if the meromorphic solution has a finite order,

for example, y = 1/(z − z0) is a solution of the equation

y′′ + 2yy′ = (y′ + y2)3.

Another direction is taken by many studies on Nevanlinna theory that have fo-

cused on whether the solutions of particular non-linear differential equations have

finite or infinite order (see [24] and references therein). On the other hand, few

attempts have been made to find explicit meromorphic solutions of a differential

equation (see e.g. [5, 12]).

Hayman [15] considered the differential equation

ff ′′ − f ′2 = k0 + k1f + k2f
′ + k3f

′′ (3.12)

and conjectured that all entire solutions of (3.12) have a finite order where the kj

are rational functions. Chiang and Halburd [5] considered the constant coefficients

case and used the transformation f = w + k3 with (3.12) which gives

ww′′ − w′2 = αw + βw′ + γ, (3.13)
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where α = k1, β = k2, and γ = k0 + k1k3 are constants. Chiang and Halburd found

all meromorphic solutions of equation (3.13) and showed that they are either poly-

nomials or linear combinations of exponential functions and constants. Moreover,

they proved that Hayman’s conjecture is indeed correct in the constant coefficients

case.

An interesting method was used by Halburd and Wang [12] to find all admissible

meromorphic solutions, via Nevanlinna theory, of the Hayman’s differential equation

(3.13), where α, β, and γ are meromorphic functions. Intuitively, a meromorphic

solution is admissible [12] if it is more complicated than the coefficients that appear

in the equation. In particular, if the coefficients are constants, then any non-constant

meromorphic solution is admissible. If the coefficients are rational functions, then

any transcendental (i.e. non-rational) meromorphic solution is admissible. More

precisely, w is an admissible meromorphic solution of (3.13) if it satisfies

T (r, α) + T (r, β) + T (r, γ) = S(r, w).

Halburd and Wang used local series analysis with Nevanlinna tools to obtain all ad-

missible meromorphic solutions of (3.13), regardless of whether the general solution

is meromorphic. In summary, a series expansion of the solution w of the equation

(3.13) is considered on a region Ω which does not contain the zeros and poles of the

coefficients α, β, and γ. Next, they use the first two terms of the series expansion

to construct a meromorphic function, f , in terms of w, w′, the coefficients and their

derivatives that is analytic on Ω and satisfies T (r, f) = S(r, w). Then differentiating

f and using equation (3.13) to eliminate the derivative w′′, the function f is calcu-

lated. In this way, w is shown to be an admissible solution of a first order differential

equation. This method will be used and discussed in more detail for a certain class

of differential equations in the next section.
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3.2 Admissible meromorphic solutions of

a differential equation in the complex

plane

The main purpose of this section is to find or at least identify all admissible

meromorphic solutions of the differential equation

w′′ −
N∑
j=1

κj
w − aj

w′
2

= α(z), (3.14)

where the constants κj are non-zero, the constants aj are distinct and α is a non-zero

meromorphic function satisfying

T (r, α) = S(r, w). (3.15)

The method to derive all these solutions of equation (3.14) is two-fold. We first use an

approach based on the first few terms of the series expansion of the solution combined

with Nevanlinna theory to construct a small function (in sense of Nevanlinna) in

terms of w and w′ with small coefficients. In so doing, we show that the solution w is

an admissible meromorphic solution of a first-order polynomial differential equation.

This approach was used by Halburd and Wang in [12] in their work on equation

(3.13), however the situation is more complicated in our case. The only movable

singularities of (3.13) are zeros of w. However, equation (3.14) is singular when

w = ai for i = 1, . . . , N and may also have movable poles. Ultimately we show that

each such solution can be expressed in terms of an admissible solution of either a

Riccati equation or an equation of the form

(u′)2 = P (u), (3.16)



Chapter 3. Application of Nevanlinna theory to differential equations 35

possibly after a change of independent variable, where P is a polynomial of degree

at most four with constant coefficients. If P has degree zero or one then u is a

polynomial. If P has degree two then u is an exponential or trigonometric function.

If P has degree three or four then u is an elliptic function or one of their degenerations

(trigonometric, exponential or rational). We do not explicitly write down the forms

of u in our theorems as there are many subclasses depending on the structure of P

but it is elementary to do so in any given case.

The second step is to use resonance conditions (as in Painlevé analysis) for the

remaining cases of (3.14) to identify admissible meromorphic solutions by obtaining

necessary conditions on the coefficient α. We subsequently show that these remaining

cases can be transformed to either the first or the second Painlevé equations, however

the question of whether these solutions are ultimately admissible meromorphic is left

open. The Painlevé transcendents (the solutions of the Painlevé equations) are now

generally considered to be “special functions” (indeed they appear in the Digital

Library of Mathematical Functions) and it is with this in mind that we claim to

have found a list containing all admissible meromorphic solutions.

The case α ≡ 0 in (3.14) is a special case of the equation (3.11), where L(z, w) =∑N
j=1 κj/(w − aj), which was studied by Steinmetz [44].

The main result of this section is the following.

Theorem 3.2.1 Let w(z) be a meromorphic solution of (3.14), where
∑N

i=1 κi 6= 2

for N > 1 and the meromorphic coefficient α satisfies (3.15). Then κi 6= 1/2 for all

i = {1, . . . , N} and one of the following statements is true. In the following, α0 6= 0

and d1 are constants.

(i) N = 1, α = α0 and

(w′)2 +
2α0

2κ1 − 1
(w − a1) = 0. (3.17)
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(ii) N = 1, κ1 = 1, α = α0 and

(w′)2 = d1(w − a1)2 − 2α0(w − a1). (3.18)

(iii) N = 1, κ1 = 5/4, α = α0 and w = a1 − d1/u
2, where u satisfies

(u′)2 =
α0

3d1

u4 − d1

4
u.

(iv) N = 1, κ1 = 3/4, α = α0 and w = a1 + u2, where u satisfies

(u′)2 = d1u− α0.

(v) N = 1, κ1 = 3/2 and

112α′
4 − 192αα′

2
α′′ + 36α2α′′

2
+ 54α2α′α(3) − 9α3α(4) = 0. (3.19)

(vi) N = 1, κ1 = 2 and

d

dz

{
β2 d

dz
(β3
(

2(β4β′′)′′ − β3(β′′)2)
)}

= 0, (3.20)

where α = 6/β5.

(vii) N = 2, κ1 + κ2 = 1, α = α0 and

(w′)2 +
2α0(w − a1)(w − a2)

(1− 2κ1)(a2 − a1)
= 0. (3.21)

(viii) N = 2, κ1 = κ2 = 3/4, α = α0 and either
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1- w is a solution of

w′
2

=
2α0

(a2 − a1)2 (w − a1)(w − a2)(2w − (a1 + a2)),

or

2- w = (a2 − a1u
2)/(1− u2) and u is a solution of

4u′
2

= (a2 − a1) (1− u2)
[
d1 u+

2α0

(a2 − a1)2

(
1 + u2

) ]
,

where d1 6= 0.

(ix) N = 2, κ1 + κ2 = 3/2, α = α0 and

(w′)2+
2α0

2κ1 − 1

(
(w − a1)− 2κ2

(2κ2 − 1)ã2

(w − a1)2 +
1

(2κ2 − 1)ã2

(w − a1)3

)
= 0,

where ã2 = a2 − a1.

(x) N = 2, κ1 = 7/4, κ2 = −1/4, α = α0 and w = a1− d1/u
2, where d1 6= 0 and u

is a solution of

4(u′)2 =
4α0

5d1

u4 +
4α0

15(a2 − a1)
u2 − d1u−

8d1α0

15(a2 − a1)2
.

(xi) N = 3, κ1 + κ2 + κ3 = 3/2, (2κ2− 1)(a2− a1) + (2κ3− 1)(a3− a1) = 0, α = α0

and

(w′)2 +
2α0

(2κ− 1)(a2 − a1)(a3 − a1)
(w − a1)(w − a2)(w − a3) = 0.

(xii) w−ai = −δ1/(δ2−u2) where δ1 6= 0 and δ2 are meromorphic functions satisfying

T (r, δk) = S(r, w) for k = 1, 2 and u is an admissible solution of a Riccati

equation.
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The case κ = 1 was solved as a special case of the equation considered by Halburd

and Wang in [12]. Before we present the proof of main result, we put forth required

definitions and lemmas for completeness.

Let Φ be the set of all zeros and poles of the function α and Ω = C \Φ. Any

singularity of w in Φ will be fixed and any singularity of w in Ω will be movable.

The counting functions which count the poles of any meromorphic function f in

the set Φ are denoted by NΦ(r, f) and NΦ(r, f), with and without multiplicities, re-

spectively. In particular, if w is analytic on Ω then N(r, w) = NΦ(r, w). Furthermore,

for any meromorphic function f , NΦ(r, f) ≤ NΦ(r, α) +NΦ(r, 1/α) = S(r, w). Also,

if α is a rational function, then Φ is a finite set, and hence NΦ(r, w) = S(r, w). We

denote by NΩ(r, f) the counting function of the poles of f in Ω with multiplicities.

Equation (3.14) is singular when w = ai for some i ∈ {1, . . . , N} or w = ∞.

Suppose that w(z0) = ai for some z0 ∈ Ω and some i ∈ {1, . . . , N}. Then w has a

Taylor series expansion of the form

w(z) = ai +
∞∑
m=0

cmζ
m+q, (3.22)

where ζ = z − z0, q is a positive integer and c0 6= 0. Substituting (3.22) in (3.14)

gives

q([1− κi]q − 1)c0ζ
q−2 + · · · = α(z0) + · · · . (3.23)

If [1−κi]q−1 = 0 then the leading order term on the left side of (3.23) is proportional

to ζq−2+ν where ν is a positive integer. This must balance the leading order term

α(z0) (which is non-zero since z0 ∈ Ω) on the right side, giving q = 2 − ν. Since

q and ν are both positive integers we must have q = 1. However, this contradicts

the assumption [1 − κi]q − 1 = 0 since κi 6= 0. Therefore [1 − κi]q − 1 6= 0 and the

leading order term on the left side is proportional to ζq−2. Equating this term with

α(z0) gives q = 2, κi 6= 1/2 and c0 = α(z0)/[2(1 − 2κi)]. So all ai-points of w in Ω
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are double.

So around any ai-point z0 ∈ Ω, we have

w = ai + c0ζ
2 + · · ·+ cmζ

m+2 + · · · .

It follows that

w′ = 2c0ζ + · · ·+ (m+ 2)cmζ
m+1 + · · ·

and hence

w′
2

= 4c2
0ζ

2 + · · ·+ [4(m+ 2)c0cm + pm(c0, . . . , cm−1)]ζm+2 + · · · ,

where pm is a polynomial in its arguments. Also

(w − ai)−1 = c−1
0 ζ−2

(
1 +

c1

c0

ζ + · · ·+ cm
c0

ζm−2 + . . .
)−1

= c−1
0 ζ−2

(
1 + · · ·+

[
− cm
c0

+ qm(c0, . . . , cm−1)
]
ζm−2 + . . .

)
= c−1

0 ζ−2 + · · ·+ [−c−2
0 cm + rm(c0, . . . , cm−1)]ζm−2 + · · · ,

where qm and rm are polynomials in their arguments divided by a power of c0.

Therefore

w′2

w − ai
= 4c0 + · · ·+ [4(m+ 1)cm + gm(c0, . . . , cm−1)]ζm + · · · ,

and similarly for j 6= i

w′2

w − aj
=

4c0
2

(ai − aj)
ζ2 + · · ·+ hm(c0, . . . , cm−1)ζm + · · · ,

where gm and hm are polynomials in their arguments divided by a power of c0. We
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also have the Taylor series

α(z) = α(z0) + · · ·+ α(z0)(m)

m!
ζm + · · · .

Substituting these expressions in equation (3.14) and equating the coefficients of ζm

gives

(m+1)(m+2)cm = κi[4(m+1)cm+gm(c0, . . . , cm−1)]+
∑
j 6=i

κjhm(c0, . . . , cm−1)+
α(m)(z0)

m!
,

which can be rearranged to give the recurrence relation

(m+ 1)(m+ 2− 4κi)cm = Gm(c0, . . . , cm−1) +
α(m)(z0)

m!
,

where Gm = κigm +
∑

j 6=i κjhm. In particular, for m = 1 we have

2(3− 4κi)c1 = α′(z0).

Therefore, if κi = 3/4 then α′(z0) = 0. Otherwise if κi 6= 3/4 then c1 = α′(z0)/(2(3−

4ki)). More generally, if for some positive integer M , κi 6= (m+ 2)/4 for all m ∈

{0, . . . ,M}, then the coefficients c0, . . . , cM are uniquely determined. If κi = (m+ 2)/4

then the resonance condition Gm(c0, . . . , cm−1) + α(m)(z0)
m!

= 0 must be satisfied.

We have proved the following two lemmas.

Lemma 3.2.2 Let w be a solution of equation (3.14) analytic in a neighbourhood of

z0 ∈ Ω such that w(z0) = ai for some i ∈ {1, . . . , N}. Then

1. κi 6= 1/2.

2. If κi = 3/4 then α′(z0) = 0.
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Lemma 3.2.3 Let M ≥ 0 and N > 0 be integers and suppose that for some i ∈

{1, . . . , N}, κi 6= m+2
4

for all m ∈ {0, . . . ,M}. Then there are unique functions

cm(z) := Cm(α(z), . . . , α(m)(z)),

where each Cm is a polynomial in its arguments divided by a power of α(z), such

that if w is a solution of equation (3.14) analytic in a neighbourhood of z0 ∈ Ω where

w(z0) = ai then

w(z) = ai + c0(z0)(z − z0)2 + · · ·+ cM(z0)(z − z0)M+2 +O
(
(z − z0)M+3

)
. (3.24)

In particular,

c0(z) =
α(z)

2(1− 2κi)
and if κi 6= 3/4 then c1(z) =

α′(z)

2(3− 4κi)
. (3.25)

The main idea behind the proof of Theorem 3.2.1 is to show that, in all but a

small number of cases, we can use the first few terms in the series expansions around

singularities to prove that w necessarily satisfies a first-order equation. In this way

we avoid the explicit consideration of cases in which the resonances occur for large

positive integers. Resonance conditions are used to characterise solutions of the few

remaining equations.

We begin with a lemma that guarantees that there are a lot of ai-points in Ω.

Lemma 3.2.4 Let w be a meromorphic solution of equation (3.14) satisfying T (r, α) =

S(r, w). Then

1. m (r, (w − aj)−1) = S(r, w) for all j ∈ {1, . . . , N}.

2. NΦ(r, (w − aj)−1) = S(r, w) for all j ∈ {1, . . . , N}.
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3. κj 6= 1/2 for all j ∈ {1, . . . , N}.

Proof.

1. Choose i ∈ {1, . . . , N}. Equation (3.14) can be written as

1

w − ai
=

1

α(z)

{(
w′

w − ai

)′
+

(
w′

w − ai

)2

−
N∑
j=1

κj
w − aj

w′2

w − ai

}
. (3.26)

Taking the proximity function of both sides and then employing relations (2.6),

(3.15) and using elementary properties as well as the lemma on the logarithmic

derivative yields

m
(
r,

1

w − ai

)
≤ m

(
r,

1

α

)
+m

(
r,

w′

w − ai

)
+m

(
r,

(
w′

w − ai

)′)
+m

(
r,

N∑
j=1

κj
w − aj

w′2

w − ai

)
+ S(r, w)

≤ m
(
r,

1

α

)
+ 3m

(
r,

w′

w − ai

)
+m

(
r,

N∑
j=1

κj
w − aj

w′2

w − ai

)
+ S(r, w)

≤ 3m
(
r,

w′

w − ai

)
+

N∑
j=1

m
(
r,

κj
w − aj

w′2

w − ai

)
+ S(r, w)

≤ 3m
(
r,

w′

w − ai

)
+

N∑
j=1

{
m
(
r,

w′

w − aj

)
+m

(
r,

w′

w − ai

)}
+ S(r, w)

= S(r, w).

2. Taking the counting function of both sides of (3.26) and using elementary

properties with relations (2.7), (3.15) we get
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NΦ

(
r,

1

w − ai

)
≤ NΦ

(
r,

1

α

)
+ 4NΦ

(
r,

w′

w − ai

)
+NΦ

(
r,

N∑
j=1

κj
w − aj

w′2

w − ai

)
≤ 4NΦ

(
r,

w′

w − ai

)
+

N∑
j=1

NΦ

(
r,

κj
w − aj

w′2

w − ai

)
+ S(r, w)

≤ 4NΦ

(
r,

w′

w − ai

)
+

N∑
j=1

{
NΦ

(
r,

w′

w − aj

)
+NΦ

(
r,

w′

w − ai

)}
+ S(r, w)

≤ (4 +N)NΦ

(
r,

w′

w − ai

)
+

N∑
j=1

NΦ

(
r,

w′

w − aj

)
+ S(r, w)

≤ (4 +N)
{
NΦ(r, w − ai) +NΦ

(
r,

1

w − ai

)}
+

N∑
j=1

{
NΦ(r, w − aj) +NΦ

(
r,

1

w − aj

)}
+ S(r, w)

≤ 2(5 +N){NΦ(r, α) +NΦ(r, 1/α)}+ S(r, w)

≤ 4(5 +N)T (r, α) + S(r, w)

= S(r, w).

3. It follows that N(r, (w − aj)−1) 6= NΦ(r, (w − aj)−1), since otherwise

T
(
r,

1

w − aj

)
= m

(
r,

1

w − aj

)
+N

(
r,

1

w − aj

)
= m

(
r,

1

w − aj

)
+NΦ

(
r,

1

w − aj

)
= S(r, w), (3.27)

which is impossible, so there exists z0 ∈ Ω such that w(z0) = aj. It follows

from Lemma 3.2.2 that κj 6= 1/2. 2

The main idea in showing that, in most cases, w is an admissible solution of a

first-order polynomial differential equation is to find a rational function of w and w′
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with small coefficients (in the sense of Nevanlinna) that is itself small. To this end

we begin by constructing a meromorphic function Fi satisfying m(r, Fi) = S(r, w)

that is analytic in Ω apart from at poles of w. For any i ∈ {1, . . . , N}, we know that

m (r, w′/(w − ai)) = S(r, w) and m (r, 1/(w − ai)) = S(r, w). Furthermore apart

from at poles of w, the functions w′/(w − ai) and 1/(w − ai) only have poles at

z0 ∈ Ω if w(z0) = ai, in which case w′/(w − ai) has a simple pole and 1/(w − ai)

has a double pole. From Lemma 3.2.4 we have seen that κi 6= 1/2. If furthermore

κi 6= 3/4 then we have

w(z)− ai = c0(z0)ζ2 + c1(z0)ζ3 +O
(
ζ4
)
,

where c0 and c1 are given by (3.25). This means that we can calculate the principal

parts of the Laurent expansions of 1/(w − a) and (w′)2/(w − a)2, so we can find a

linear combination such that the double poles cancel, leaving at most a simple pole

of known residue, which we can remove by subtracting a multiple of w′/(w−ai). We

have

1

w(z)− ai
=

1

c0(z0)
ζ−2 − c1(z0)

c0(z0)2
ζ−1 +O(1)

=
2(1− 2κi)

α(z0)
ζ−2 − 2(1− 2κi)

2

3− 4κi

α′(z0)

α(z0)2
ζ−1 +O(1),

w′(z)

w(z)− ai
= 2ζ−1 +

c1(z0)

c0(z0)
+O(ζ)

= 2ζ−1 +
1− 2κi
3− 4κi

α′(z0)

α(z0)
+O(ζ)

and (
w′(z)

w(z)− ai

)2

= 4ζ−2 +
4(1− 2κi)

3− 4κi

α′(z0)

α(z0)
ζ−1 +O(1).
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Hence

(
w′(z)

w(z)− ai

)2

− 2α(z)

1− 2κi

1

w(z)− ai
= − 4

3− 4κi

α′(z0)

α(z0)
ζ−1 +O(1).

Which leads us to the following.

Lemma 3.2.5 Let

Fi(z) :=

(
w′

w − ai

)2

+
2

3− 4κi

α′

α

w′

w − ai
− 2α

1− 2κi

1

w − ai
, (3.28)

where w is a meromorphic solution of equation (3.14) satisfying T (r, α) = S(r, w)

and κi 6= 3/4 for some i ∈ {1, . . . , N}. Then

1. m(r, Fi) = S(r, w).

2. If Fi has a pole at some z0 ∈ Ω then it is a double pole and w also has a pole

at z0.

3. NΦ(r, Fi) = S(r, w).

Proof.

1. Taking the proximity function of (3.28) and using relation (3.15) with Lemmas

2.1.3 and 3.2.4 , we obtain

m(r, Fi) = 3m

(
r,

w′

w − ai

)
+m

(
r,

1

w − ai

)
+m

(
r,
α′

α

)
+m (r, α) +O(1)

= S(r, w).

2. It follows from the definition (3.28) that Fi can only have a pole at z0 ∈ Ω

if z0 is either a pole or an ai-point of w. However, the calculation before the
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statement of the lemma shows that, by construction, Fi is regular at the ai-

points of w in Ω. Furthermore, if w has a pole at z0 ∈ Ω then w′/(w − ai) has

a simple pole and 1/(w − ai) has a zero at z0.

3. Taking the counting function of both sides of (3.28) we obtain

NΦ(r, Fi) ≤ 3NΦ

(
r,

w′

w − ai

)
+NΦ

(
r,
α′

α

)
+NΦ (r, α) +NΦ

(
r,

1

w − ai

)
≤ 3NΦ

(
r,

w′

w − ai

)
+ S(r, w)

≤ 3
{
NΦ(r, w − aj) +NΦ

(
r,

1

w − aj

)}
+ S(r, w)

where we have used (3.15) and Lemma 3.2.4. Hence

NΦ(r, Fi) ≤ 6
{
NΦ(r, α) +NΦ

(
r, 1/α

)}
+ S(r, w)

≤ 12T (r, α) + S(r, w)

= S(r, w).

The proof of Lemma 3.2.5 is completed. 2

Lemma 3.2.6 Let w be a solution of equation (3.14) with a pole of order n at z0 ∈ Ω.

Then

κ∞ :=
N∑
j=1

κj =
n+ 1

n
.

Proof. Substituting w(z) =
∑∞

m=0 bmζ
m−n, where ζ = z − z0, b0 6= 0 and n > 0, in

(3.14) gives

n(1 + [1− κ∞]n)b0ζ
−(n+2) + · · · = α0(z0) + · · ·

Now ζ−(n+2) cannot be the leading order term on the left side as it cannot balance

with the leading order on the right side, so 1 + [1− κ∞]n = 0. 2



Chapter 3. Application of Nevanlinna theory to differential equations 47

In what follow we will show that if there is a small function g compared to the

solution of equation (3.14) (in the sense of Nevanlinna) and it is equal to zero at

ai-points, then the function g vanishes identically.

Lemma 3.2.7 Let w be a meromorphic solution of equation (3.14) satisfying T (r, α) =

S(r, w). Then if there is a meromorphic function g such that T (r, g) = S(r, w) and

that at every point z0 ∈ Ω such that w(z0) = ai, we have g(z0) = 0, then g(z) ≡ 0.

Proof. Assume that there is a non-zero meromorphic function g such that T (r, g) =

S(r, w) and that at every point z0 ∈ Ω such that w(z0) = ai, we have g(z0) = 0.

Applying the first fundamental theorem (2.3) and Lemma 3.2.4 (1) and (2), we obtain

T (r, w) = T
(
r,

1

w − ai

)
+O(1)

= m
(
r,

1

w − ai

)
+N

(
r,

1

w − ai

)
+O(1)

= N
(
r,

1

w − ai

)
+ S(r, w)

= NΩ

(
r,

1

w − ai

)
+NΦ

(
r,

1

w − ai

)
+ S(r, w)

= NΩ

(
r,

1

w − ai

)
+ S(r, w)

= 2NΩ

(
r,

1

w − ai

)
+ S(r, w)

≤ 2NΩ

(
r,

1

g

)
+ S(r, w)

≤ 2NΩ

(
r,

1

g

)
+ S(r, w)

≤ 2T
(
r,

1

g

)
+ S(r, w)

= 2T (r, g) + S(r, w)

= S(r, w),

which is a contradiction. Therefore, g(z) ≡ 0. 2

In the following lemma, we use the function Fi defined by (3.28) to construct
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small meromorphic functions of z that are rational functions of w and w′ with small

coefficients. We can calculate the small coefficient functions explicitly from the series

expansion (3.24) of w at ai-points however this is not necessary as we only require

the general forms of the equations at this stage. It is sufficient to keep track of

the restrictions on κi to ensure that we have enough terms in the series expansion

(3.24) that are uniquely determined by the evaluation at z0 of some functions of

c1(z), . . . , cn(z), α(z) and their derivatives.

Lemma 3.2.8 Let w be a meromorphic solution of equation (3.14) satisfying T (r, α) =

S(r, w) and let Fi be given by equation (3.28).

(i) If κ∞ 6= (n + 1)/n, for all positive integer n and κi 6= 3/4 for some i ∈

{1, . . . , N}, or if κ∞ = (n+ 1)/n for some integer n ≥ 5 and κi 6∈ {3/4, 1} for

some i ∈ {1, . . . , N}, then T (r, Fi) = S(r, w).

(ii) If κ∞ = 5/4 and κi 6∈ {3/4, 1} for some i ∈ {1, . . . , N} then there exist mero-

morphic functions β1 and β2 satisfying T (r, βk) = S(r, w) for k = 1, 2, such

that

(Fi(z)− β1(z))2 = β2(z) (w(z)− ai) . (3.29)

(iii) If κ∞ = 4/3 or κ∞ = 3/2 and furthermore κi 6∈ {3/4, 1, 5/4, 3/2} for some i ∈

{1, . . . , N} then either there exist meromorphic functions β1 and β2 satisfying

T (r, βk) = S(r, w) for k = 1, 2, such that

Fi(z)− β1(z) = β2(z)(w(z)− ai) (3.30)

or there exist meromorphic functions γ1, . . . , γ4 satisfying T (r, γk) = S(r, w)

for k = 1, . . . , 4, with γ3 6= 0, such that

(
Fi(z)− γ1(z)

w(z)− ai

)2

+ γ2(z)

(
Fi(z)− γ1(z)

w(z)− ai

)
+

γ3(z)

w(z)− ai
+ γ4(z) = 0. (3.31)
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Proof.

(i) If κ∞ 6= (n + 1)/n for all positive integer n then it follows from Lemma 3.2.6

that w is analytic on Ω and therefore by Lemma 3.2.5, Fi is analytic on Ω, so

NΩ(r, Fi) = 0. Therefore, from Lemma 3.2.5,

T (r, Fi) = m(r, Fi) +NΦ(r, Fi) +NΩ(r, Fi)

= S(r, w).

Now suppose that κi 6∈ {3/4, 1} for some i ∈ {1, . . . , N}. Then from Lemma

3.2.3 there are functions c0, c1 and c2 such T (r, cj) = S(r, w), j = 0, 1, 2, c0 6≡ 0

and that at every point z0 ∈ Ω such that w(z0) = ai, we have

w(z) = ai + c0(z0)ζ2 + c1(z0)ζ3 + c2(z0)ζ4 +O
(
ζ5
)
,

where ζ = z − z0. We saw in the calculation preceding Lemma 3.2.5 that

knowledge of c0 and c1 alone was enough to show that Fi(z) = O(ζ) as z →

z0 (i.e. as ζ → 0). Therefore, since we know w to the next order in its

series expansion, we see that there is a meromorphic function β1(z) that is a

polynomial in c0, c1 and c2 divided by a power of c0, which in turn means

that β1(z) is a polynomial in α, α′ and α′′ divided by a power of α, such that

Fi(z) = β1(z0)+O(ζ) at all ai-points of w in Ω. It follows that β1(z) is analytic

on Ω and T (r, β1) = S(r, w). If κ∞ = (n + 1)/n for some integer n ≥ 5 then

if Fi has a pole at z0 ∈ Ω then by Lemmas 3.2.5 and 3.2.6 it must be of order

2 and w must have a pole of order n at z0, respectively. Now consider the

function

g1(z) =
(Fi(z)− β1(z))5

(w − ai)2
.

From Lemmas 3.2.4 and 3.2.5, we see that m(r, g1) = S(r, w) and NΦ(r, g1) =
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S(r, w). The only possible ways in which g1 can have a pole at z0 ∈ Ω is if either

w(z0) = ai or w has a pole (of order n) at z0. If w(z0) = ai then (Fi(z)−β1(z))5

has a zero of order at least five while (w(z) − ai)2 has a zero of order exactly

four. Therefore g1(z0) = 0 at all ai-points of w. If w has a pole at z0 ∈ Ω, then

Fi has a pole of order exactly two at z0, so (Fi(z)− β1(z))5 has a pole of order

10, on the other hand, (w(z)− ai)2 will have a pole of order 2n ≥ 10 at z0, so

g1 will be analytic there. Therefore NΩ(r, g1) = 0 and so T (r, g1) = S(r, w).

However, g1 vanishes at all the ai-points of w in Ω, so by Lemma 3.2.7 g1 ≡ 0,

giving Fi(z) = β1(z), which in turn shows that T (r, Fi) = T (r, β1) = S(r, w).

(ii) Suppose that κ∞ = 5/4, κi 6∈ {3/4, 1} for some i ∈ {1, . . . , N} and let β1 be

defined as above. Consider the function

g2(z) =
(Fi(z)− β1(z))2

w − ai
.

Clearly m(r, g2) = S(r, w) and NΦ(r, g2) = S(r, w). The only possible poles of

g2 in Ω must occur at either ai-points or poles of w. However, if z0 ∈ Ω is an

ai-point of w then w − ai has a double zero and (Fi(z) − β1(z))2 has a zero

of multiplicity at least two at z0, so z0 is a regular point of g2. On the other

hand, if z0 ∈ Ω is a pole of w then from Lemma 3.2.6 it is a pole of order 4

(since κ∞ = (n + 1)/n, where n = 4). Therefore w − ai and (Fi(z) − β1(z))2

both have poles of order 4. It follows g2 is analytic on Ω, so T (r, g2) = S(r, w).

Writing β2 = g2 gives the desired result.

(iii) Since κi 6∈ {3/4, 1, 5/4, 3/2} for some i ∈ {1, . . . , N}, we know two more func-

tions c3(z) and c4(z) such that near any ai-point z0 ∈ Ω of w, we have

w(z) = ai + c0(z0)ζ2 + c1(z0)ζ3 + c2(z0)ζ4 + c3(z0)ζ5 + c4(z0)ζ6 +O
(
ζ7
)
.
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The fact that c3 is a fixed function satisfying T (r, c3) = S(r, w) means that

there is a meromorphic function g3, which is a polynomial in α, α′, α′′ and α′′′

divided by a power of α, such that

Fi(z)− β1(z) = g3(z0)(z − z0) +O
(
(z − z0)2

)
.

Again we have that g3 is analytic on Ω and T (r, g3) = S(r, w).

Let

g4(z) =
Fi(z)− β1(z)

w − ai
.

Now if g3 ≡ 0 then at any ai-point of w in Ω, the function Fi(z)− β1(z) has a

zero of multiplicity at least two and w − ai has a zero of multiplicity exactly

two, so g4 is analytic there. If κ∞ = 4/3 or κ∞ = 3/2 then any pole of w in Ω

has order three or two respectively, while Fi has a double pole. Therefore we

see that g4 is analytic on Ω and so T (r, g4) = S(r, w). Setting β2 = g4 gives

equation (3.30).

Now suppose that g3 6≡ 0. It follows that

g4(z) =
Fi(z)− β1(z)

w − ai
=
g3(z0)

c0(z0)
(z − z0)−1 +O(1).

Once again it is clear that m(r, g4) = S(r, w). Recall that the coefficients in

the expansion of w(z) at an ai-point z0 ∈ Ω are fixed up to c4(z0), which is the

coefficient of (z − z0)6. This means that we can determine the next term in

the expansion of g4 at z0. So there is a meromorphic function g5(z) satisfying

T (r, g5) = S(r, w) and analytic on Ω such that

g4(z) =
Fi(z)− β1(z)

w − ai
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=
g3(z0)

c0(z0)
(z − z0)−1 + g5(z0) +O ((z − z0)) .

It follows that

g4(z)2 − g3(z)2

c0(z)

1

w(z)− ai
=
g6(z0)

z − z0

+O(1),

where the meromorphic function g6 is analytic on Ω and satisfies T (r, g6) =

S(r, w). Let

g7(z) = g4(z)2 − g3(z)2

c0(z)

1

w(z)− ai
− g6(z)c0(z)

g3(z)
g4(z). (3.32)

Then m(r, g7) = S(r, w) and NΩ(r, g7) = 0, so T (r, g7) = S(r, w). Equation

(3.32) is an equation of the form (3.31). 2

Lemma 3.2.9 If w is a meromorphic solution of equation (3.14) satisfying T (r, α) =

S(r, w) then one of the following is true.

(i) For some i ∈ {1, . . . , N}, the function W = w − ai satisfies an equation of the

form

(W ′)2 + µ(z)WW ′ + ν(z)W + ρ(z)W 2 + σ(z)W 3 = 0, (3.33)

where

µ(z) =
2

3− 4κi

α′

α
, ν(z) = − 2α

1− 2κi
, T (r, ρ) = S(r,W ) (3.34)

and T (r, σ) = S(r,W ).

(ii) For some i ∈ {1, . . . , N}, the function w satisfies (3.31) which corresponds

to an equation of the form (3.33) where µ, ν and ρ satisfy (3.34), σ(z) =
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γ2(z)/2− u(z) and u is a meromorphic function such that

W =
γ3

γ5 − u2
, (3.35)

where γ3 6≡ 0, T (r, γ2) = S(r,W ), T (r, γ3) = S(r,W ) and T (r, γ5) = S(r,W ).

(iii) α = α0 is a a non-zero constant and either

1- N = 1, κ1 = 3/4 and W = w − a1 satisfies

{W ′2 + 4α0W}2W−3 = d2, (3.36)

where d is a constant or

2- N = 2, κ1 = κ2 = 3/4 and w satisfies

{
(w′)2

(w − a1)(w − a2)
− 4α0

(a1 − a2)2

(
w − a1 + a2

2

)}2

= d2
1(w−a1)(w−a2),

(3.37)

where d1 is a constant

(iv) N=1 and W = w − a1 satisfies

W ′′ =
3

2

(W ′)2

W
+ α(z). (3.38)

(v) κ∞ = 2.

Proof. The conclusion of each part of Lemma 3.2.8 is that w satisfies a first-order

differential equation. We will show that each of these equations is a special case of

the equations listed in parts (i) and (ii) of Lemma 3.2.9. We will then consider the

equations that do not satisfy the assumptions of any of the parts of Lemma 3.2.8 and

show that such equations either have no admissible meromorphic solutions or that w
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still satisfies an equation of the form (3.33) or that one of the remaining conclusions

(iii)–(v) of Lemma 3.2.9 holds.

Referring to Lemma 3.2.8, we note that the conclusion in part (i) and the first

conclusion of part (iii) (i.e., equation (3.30)) is that W = w−ai satisfies an equation

of the form (3.33), where µ, ν and ρ satisfy (3.34) and T (r, σ) = S(r, w). Next we

consider equation (3.29) in part (ii) of Lemma 3.2.8. If β2 = 0 then the conclusion is

the same as that of part (i) of Lemma 3.2.8, which we have just discussed. If β2 6= 0

then equation (3.29) is a special case of (3.31) in part (iii) corresponding to γ1 = β1,

γ3 = −β2 and γ2 = 0 = γ4. So it only remains to analyse equation (3.31), which can

be written as (
Fi(z)− γ1(z)

w(z)− ai
+
γ2

2

)2

= γ5(z)− γ3(z)

w(z)− ai
, (3.39)

where γ5 = (γ2/2)2 − γ4. Let the meromorphic function u be defined by

u =
Fi(z)− γ1(z)

w(z)− ai
+
γ2

2
. (3.40)

Then equation (3.39) becomes (3.35) and so (3.40) becomes (3.33) where µ and ν

are given by (3.34) and ρ = −γ1 and σ = (γ2/2)− u.

Next we consider all equations of the form (3.14) that are not considered in

the assumptions of Lemma 3.2.8. None of the cases in which κj = 3/4 for all

j ∈ {1, . . . , N} are considered in Lemma 3.2.8. It follows by Lemma 3.2.2 that

α′(z0) = 0 at all ai-points of w in Ω, and then from Lemma 3.2.7 it follows that

α = α0, a non-zero constant and Ω = C. Each aj-point of w is totally ramified. A

meromorphic function can have at most four totally ramified points, so N ≤ 4. For

N = 3 and N = 4 we have κ∞ = 9/4 and κ∞ = 3 respectively. Since neither of these

values is of the form (n + 1)/n for some positive integer n it follows from Lemma

3.2.6 that any meromorphic solution is in fact entire and can therefore have at most
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two totally ramified values, which is a contradiction. So we are left with the equation

w′′ =
3

4

N∑
j=1

(w′)2

w − aj
+ α0, (3.41)

with N = 1 or N = 2. For N = 1, W satisfies

W ′′ =
3

4

W ′2

W
+ α0

where W = w − a1. The above equation can be written as

2(W ′W−3/4)(W ′W−3/4)′ = 2α0(W ′W−3/2)

and the first integral of the above equation yields

(W ′W−3/4)2 = −4α0W
−1/2 + d.

which is equivalent to equation (3.36).

For N = 2, we have κ1 = κ2 = 3/4 and equation (3.41) can be written as

(
w′

2∏
j=1

(w − aj)−(3/4)

)′
= α0

2∏
j=1

(w − aj)−3/4,

and the first integral is

(
w′

2∏
j=1

(w − aj)−3/4

)2

= 2α0

ˆ 2∏
j=1

(w − aj)−3/2 w′ dz.

Therefore, integrating the right side of the above equation gives the first-order equa-

tion (3.37).

The other case to consider from parts (i) and (ii) of Lemma 3.2.8 is when κ∞ =

(n + 1)/n for some integer n ≥ 4 and for all j ∈ {1, . . . , N}, κj = 3/4 or κj = 1.
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Clearly N 6= 1. If N > 1 then κ∞ = (n + 1)/n ≤ 5/4 < 3/2 = 3/4 + 3/4 for all

n ≥ 4. So there are no cases to consider here.

If κ∞ = (n + 1)/n for some positive integer n < 4 then κ∞ = 4/3, κ∞ = 3/2

or κ∞ = 2. If κ∞ = 4/3 or κ∞ = 3/2 and for all j ∈ {1, . . . , N} we have κj ∈

{3/4, 1, 5/4, 3/2}, then either N = 1 and κ1 = 3/2, which corresponds to equation

(3.38), or N = 2 and κ1 = κ2 = 3/4, which corresponds to equation (3.37) with

N = 2. Otherwise, if κ∞ = 4/3 or κ∞ = 3/2, then w solves an equation of the form

(3.31) which corresponds to the part (ii) of Lemma 3.2.9. 2

The following lemma shows that if a solution (not necessary admissible) of a

second-order differential equation satisfies a differential equation of first-order and

second degree, then again it satisfies a first-order linear differential equation.

Lemma 3.2.10 Let w be a solution of the second-order equation

w′′ = L(z, w)(w′)2 +M(z, w)w′ +N(z, w) (3.42)

and also the first-order equation

(w′)2 + A(z, w)w′ +B(z, w) = 0, (3.43)

where L, M , N , A and B are meromorphic functions of there arguments. Then

G(z, w)w′ +H(z, w) = 0, (3.44)

where

G(z, w) = 2N + {LA−M − Aw}A+ Az − 2LB +Bw
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and

H(z, w) = NA+ {LA− 2M − Aw}B +Bz.

Proof. Let w be a solution of equations (3.42) and (3.43). Differentiating (3.43)

and then using the derivative of equation (3.42) to eliminate the second derivative

term w′′ we obtain

2Lw′
3

+ (2M + AL+ Aw)w′
2

+ (2N + AM + Az +Bw)w′ + AN +Bz = 0.

Using (3.43) again to eliminate powers of w′ greater than one leads to equation (3.44).

2

Proof of Theorem 3.2.1. Let W be a (not necessarily admissible) solution of

(3.33) such that w = ai+W solves (3.14). From Lemma 3.2.10, then W also satisfies

equation (3.44), where

G(z,X) = (2α + ν) + (µ′ − µ2 + 2ρ)X + 3σX2

−X(2ν + [2ρ− µ2]X + 2σX2)
∑N

j=1
κj

X−ãj (3.45)

and

H(z,X) = (ν ′ + [α− ν]µ)X + (ρ′ − µρ)X2 + (σ′ − µσ)X3

+µX2(ν + ρX + σX2)
∑N

j=1
κj

X−ãj , (3.46)

where ãj = aj − ai.

(I) Equation (3.33)

Consider the case, described in part (i) of Lemma 3.2.9, in which W is an

admissible solution of equation (3.33). Now either G(z,W ) = 0 = H(z,W ) or
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W is an admissible solution of the first-order first-degree differential equa-

tion W ′ = −H(z,W )/G(z,W ). Now if W is an admissible solution of a

first-order first-degree equation, then by the Malmquist-Yosida Theorem 3.1.2,

W ′ = P (z) +Q(z)W +R(z)W 2, where P , Q and R are small compared to W .

Furthermore, if R 6≡ 0 then m(r,W ) = S(r,W ). But in this case any pole of

W in Ω must be simple, which according to Lemma 3.2.6 means that κ∞ = 2.

So if κ∞ 6= 2 then R ≡ 0 and hence W ′ = P (z) + Q(z)W . However, a simple

calculation shows that w = ai +W cannot simultaneously be be an admissible

solution of (3.14) and W ′ = P (z) +Q(z)W .

We will now study the cases in which G(z,W (z)) and H(z,W (z)) vanish iden-

tically. Now G and H are rational functions of W with coefficients that are

S(r,W ). So if G(z,W (z)) and H(z,W (z)) vanish identically, then G(z,X) and

H(z,X) vanish identically as functions of the two independent variables z and

X.

Lemma 3.2.11 Let G and H be defined by (3.45–3.46), where κj 6= 1/2 for

all j ∈ {1, . . . , N}. Furthermore, suppose that if N = 1 then κ∞ 6= 3/2. Then

both G(z,X) and H(z,X) vanish identically as rational functions of X if and

only if one of the following holds:

(i) N = 1, σ = 0 , α0 and z∞ are constants, ν(z) = 2α(z)/(2κ − 1) where

κ = κ1 = κ∞ and

(a) κ = 1, α = α0 exp(−µ0z/2), µ = µ0, ρ = ρ0, where µ0 and ρ0 are

constants.

(b) κ 6= 1, α = α0, µ = 0, ρ = 0.

(c) κ 6= 1, α = α0(z − z∞)−(4κ−3)/(2[κ−1]), µ = 1
κ−1

1
z−z∞ , ρ = 0.

(d) κ 6= 1, α = α0([z − z∞]2 − d2)−(4κ−3)/(2[κ−1]), µ = 1
κ−1

2(z−z∞)
(z−z∞)2−d2 ,

ρ = 1
(κ−1)2

1
(z−z∞)2−d2 .
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(ii) N > 1. Without loss of generality we take i = 1. Then α = α0 is a

constant, µ = 0, ν = 2α0/(2κ1 − 1) and

(a) N = 2, κ∞ = 1, ρ = −ν/ã2, σ = 0.

(b) N = 2, κ∞ = 3/2, ρ = − 2κ2ν
(2κ2−1)ã2

, σ = ν
(2κ2−1)ã22

.

(c) N = 3, κ∞ = 3/2, ρ = − (ã2+ã3)
ã2ã3

ν, σ = ν/(ã2ã3) and

(2κ2 − 1)ã2 + (2κ3 − 1)ã3 = 0.

Note that N = 1, κ = 3/2 corresponds to part (iv) of Lemma 3.2.9.

Proof.

The case N = 1. Now

G(z,X) = (2α + [1− 2κ]ν) + (µ′ + [2ρ− µ2][1− κ])X + σ(3− 2κ)X2

and

H(z,X) = (ν ′ + µ(α+ [κ− 1]ν)X + (ρ′ − (1− κ)µρ)X2 + (σ′ − [1− κ]µσ)X3.

Setting the coefficient of X0 in G and the coefficient of X1 in H to zero, we

recover (3.34). The remaining equations are

σ(3− 2κ) = 0, (3.47)

σ′ − [1− κ]µσ = 0, (3.48)

µ′ + [2ρ− µ2][1− κ] = 0, (3.49)

ρ′ − (1− κ)µρ = 0. (3.50)

Recall that κ 6= 3/2 so (3.47) shows that σ = 0 and (3.48) is satisfied identically.
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• If κ = 1 then by (3.49) and (3.50) we obtain µ′ = 0 and ρ′ = 0, respec-

tively. Hence, µ = µ0 and ρ = ρ0 are constants. Therefore equation (3.34)

gives −2(α′/α) = µ0 and hence α = α0 exp(−µ0z/2).

• If κ 6= 1 and ρ = 0 then by (3.49) either µ = 0 or µ 6= 0. In the case µ 6= 0,

equation (3.49) gives µ′/µ2 = (1− κ) and hence µ = [(κ− 1)(z − z∞)]−1,

where z∞ is a constant. Therefore, by equation (3.34) either

α′ = 0 or
2

3− 4κ

α′

α
=

1

(κ− 1)(z − z∞)
.

Solving the above equations we obtain α = α0 when µ = 0 which corre-

sponds to the part (i-b) of Lemma 3.2.11 and α = α0(z−z∞)−(4κ−3)/(2[κ−1])

when µ 6= 0 which corresponds to the part (i-c) of Lemma 3.2.11.

• If κ 6= 1 and ρ 6= 0 then (3.50) gives

µ = (1− κ)−1(ρ′/ρ) (3.51)

and (3.49) becomes (ρ−2ρ′)′+2(κ−1)2 = 0, which yields ρ = (κ−1)−2[(z−

z∞)2− d2]−1. Using (3.51) and the function ρ we obtain µ corresponds to

the part (i-d). Finally equation (3.34) and the function µ imply that

α′

α
= − 4κ− 3

2(κ− 1)

2(z − z∞)

(z − z∞)2 − d2
.

Hence solving the above differential equation gives α in part (i-d) of

Lemma 3.2.11.

The case N > 1. Note that ãj = 0 if and only if j = i. Setting the residues of

the (apparent) simple poles of G and H, viewed as rational functions of X, to

zero shows that for all j ∈ {1, . . . , N}, j 6= i, we have µ(ν+ρãj +σã2
j) = 0 and
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2(ν+ ρãj +σã2
j) = µ2ãj. It follows that µ ≡ 0 (so α is a nonzero constant) and

ν + ρãj + σã2
j = 0. (3.52)

Since the ãjs are distinct, we see that N ≤ 3. Using (3.52), the expressions for

G and H simplify to

G(z,X) = 2

(
[1− κ∞]ρ− σ

∑
j 6=i

κj ãj

)
X + (3− 2κ∞)σX2

and

H(z,X) = ρ′X2 + σ′X3,

where we have used the definition of ν. From H we see that ρ and σ are

constants (as are µ and α). From G we see that either σ = 0 or κ∞ = 3/2.

• If σ = 0. then we see from (3.52) that ρ 6= 0, N = 2 and ν = −ãjρ.

The final constraint comes from setting the coefficient of X in G to zero,

which yields κ∞ = 1.

• If σ 6= 0 then κ∞ = 3/2. Setting the coefficient of X in G to zero gives

ρ = −2σ0

∑
j 6=i

κj ãj. (3.53)

If N = 2 then ρ = −2κ2ã2σ0. So (3.52) gives (2κ2 − 1)ã2
2σ0 = ν. If

N = 3 then ã2 and ã3 are distinct roots of (3.52), so ρ = −(ã2 + ã3)σ and

ν = ã2ã3σ. Equation (3.53) becomes 2(κ2ã2 + κ3ã3) = ã2 + ã3. 2

We now consider the first-order equations (3.33) corresponding to each of the

cases in Lemma 3.2.11.

(a) N = 1
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In all of the following cases we have σ = 0.

i. κ = 1, α = α0 exp(−µ0z/2), µ = µ0, ρ = ρ0 and W satisfies

(W ′)2 + µ0WW ′ + 2 α(z)W + ρ0W
2 = 0.

Letting W = exp(−µ0z/2)v(z), then the above equation becomes

(v′)2 =

(
µ2

0

4
− ρ0

)
v2 − 2α0v. (3.54)

ii. κ 6= 1, α = α0, µ = 0, ρ = 0 and W satisfies

(W ′)2 +
2α0

2κ− 1
W = 0. (3.55)

iii. κ 6= 1, α = α0(z − z∞)−(4κ−3)/(2[κ−1]), µ = 1
κ−1

1
z−z∞ , ρ = 0 and W

satisfies

(W ′)2 + µ(z)WW ′ +
2α(z)

2κ− 1
W = 0.

Letting W = (z − z∞)−1/(2[κ−1])v, then the above equation becomes

(v′)2 + (z − z∞)−2

(
2α0

2κ− 1
v − 1

4(κ− 1)2
v2

)
= 0. (3.56)

iv. κ 6= 1, α = α0([z − z∞]2 − d2)−(4κ−3)/(2[κ−1]), µ = 1
κ−1

2(z−z∞)
(z−z∞)2−d2 ,

ρ = 1
(κ−1)2

1
(z−z∞)2−d2 and W satisfies

(W ′)2 + µ(z)WW ′ +
2α(z)

2κ− 1
W + ρ(z)W 2 = 0.

Letting W = {(z − z∞)2 − d2}−1/(2[κ−1])
v , then the above equation
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becomes

(v′)2 +
{

(z − z∞)2 − d2
}−2

(
2α0

2κ− 1
v − d2

(κ− 1)2
v2

)
= 0. (3.57)

(b) N > 1.

In all of the following cases we have α = α0 is a constant, µ = 0 and

ν = 2α0/(2ki − 1).

i. N = 2, κ∞ = 1, ρ = −ν/ãj, σ = 0. Setting κ = κi and ã = ãj 6= 0,

j 6= i, we see that non-constant solutions of the equation

(W ′)2 +
2α0

(1− 2κ)ã

(
W 2 − ãW

)
= 0, (3.58)

are also solutions of the equation

W ′′ =

(
κ

W
+

1− κ
W − ã

)
(W ′)2 + α0.

ii. If N = 2, κ∞ = 3/2, ρ = − 2κ2ν
(2κ2−1)ã2

, σ = ν
(2κ2−1)ã22

, we see that any

non-constant solution of the equation

(W ′)2 +
2α0

2κ1 − 1

(
W − 2κ2

(2κ2 − 1)ã2

W 2 +
1

(2κ2 − 1)ã2

W 3

)
= 0,

(3.59)

where κ1 + κ2 = 3/2, is a also a solution of

W ′′ =

(
κ1

W
+

κ2

W − ã2

)
(W ′)2 + α0.

iii. If N = 3, κ∞ = 3/2, ρ = −(ã2 + ã3)ν, σ = ã2ã3ν we see that all

non-constant solutions of the equation

(W ′)2 +
2α0

(2κ− 1)ã2ã3

W (W − ã2)(W − ã3) = 0, (3.60)
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where (2κ2−1)ã2 +(2κ3−1)ã3 = 0, are also solutions of the equation

W ′′ =

(
κ

W
+

κ2

W − ã2

+
κ3

W − ã3

)
(W ′)2 + α0.

(II) Equation (3.31)

Now we consider the conclusion of part (ii) of Lemma 3.2.9, which corresponds

to the case in which w is an admissible meromorphic solution of an equation

of the form (3.31). Note that in this case, W is a meromorphic solution of the

equation (3.33), which has meromorphic coefficients, but it is not an admissible

solution because the u-dependence of σ implies that T (r, σ) = (1/2)T (r,W ) +

S(r,W ).

Nevertheless, we still have that G(z,W )W ′ + H(z,W ) = 0, where G and H

are given by (3.45) and (3.46). Rewriting this to make the u-dependence more

explicit, we have

(G0(z,W ) + uG1(z,W ))u′ + (H0(z,W ) + uH1(z,W )) = 0, (3.61)

where G0, G1, H0 and H1 are rational functions in W (with small coefficients)

given by

G0 = W 3

{
2

(
1− γ5

γ3

W

)(
(3− 2κ∞) +

N∑
j=1

2κj ãj
W − ãj

)
− 1

}
,

G1 =
2W 2

γ3

{
(2α + ν) + (µ′ − µ2 − 2γ1)W +

3

2
γ2W

2

−W
(
2ν − (2γ1 + µ2)W + γ2W

2
) N∑
j=1

κj
W − ãj

}
,

H0 = (ν ′ + µ(α− ν))W + (µγ1 − γ′1)W 2 +
1

2
(γ′2 − µγ2)W 3

+µW 2
(
ν − γ1W +

γ2

2
W 2
) N∑
j=1

κj
W − ãj

+
1

2W
(γ′3 − γ′5W )G1,
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H1 = W 3

{
γ′5W − γ′3

γ3

(
3− 2

N∑
j=1

κjW

W − ãj

)
+ µ

(
1−

N∑
j=1

κjW

W − ãj

)}
.

Now the condition that G1 ≡ 0 ≡ H0 is exactly the same as the condition that

G ≡ 0 ≡ H using equations (3.45) and (3.46) with ρ = −γ1 and σ = γ2/2.

The case N = 1. In this case

G0 = W 3

{
2

(
1− γ5

γ3

W

)
(3− 2κ∞)− 1

}

and again we assume that κ∞ 6= 3/2. Setting G0 = 0 we see that if γ5 6= 0,

then W = (γ3/γ5)(1 − 1/(6 − 4κ∞)) and hence we have T (r,W ) = T (r, γ3) +

T (r, γ5) + S(r,W ) = S(r,W ), which is a contradiction. It follows that γ5 = 0

and κ∞ = 5/4. Therefore

H1 = −W
3

4

(
2
γ′3
γ3

+ µ

)
.

Setting H1 = 0 gives

γ′3 +
µ

2
γ3 = 0. (3.62)

Substituting W = −γ3/u
2 in (3.40) and using (3.62) shows that u satisfies

4(u′)2 =
ν

γ3

u4 +

(
γ1 +

µ2

4

)
u2 − γ3u+

γ2γ3

2
. (3.63)

Setting G1 and H0 to zero and using Lemma 3.2.11 as described above, we see

that there are three possibilities corresponding to κ = 5/4, namely

• α = α0, µ = 0, ν = 4α0/3, γ1 = 0, γ2 = 0. Equation (3.62) shows that γ3

is a nonzero constant. Then W = −γ3/u
2, where u satisfies

(u′)2 =
α0

3γ3

u4 − γ3

4
u. (3.64)
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• α = α0(z − z∞)−4, µ = 4(z − z∞)−1, ν = (4α0/3)(z − z∞)−4, γ1 = 0,

γ2 = 0. γ3 = C(z − z∞)−2 6= 0. Then

W = −C/{(z − z∞)u(z)}2,

where u satisfies

4(u′)2 = (z − z∞)−2

(
4α0

3C
u4 + 4u2 − Cu

)
. (3.65)

• α = α0([z − z∞]2 − d2)−4, µ = 8(z−z∞)
(z−z∞)2−d2 , ν = (4α0/3)([z − z∞]2 − d2)−4,

γ1 = − 16
(z−z∞)2−d2 , γ2 = 0. γ3 = C{(z − z∞)2 − d2}−2 6= 0. Then

W = −C/{[(z − z∞)2 − d2]u(z)}2,

where u satisfies

4(u′)2 = ([z − z∞]2 − d2)−2

(
4α0

3C
u4 + 16d2u2 − Cu

)
. (3.66)

The case N > 1. On setting G0 = 0 and considering the residue of the apparent

pole at W = ã2 we see that N = 2 and γ3 = ã2γ5. G0 then takes the form

G0 = W 3
{

2
(
1− ã−1

2 W
)

(3− 2κ∞)− (4κ2 + 1)
}
,

giving κ∞ = 3/2, κ2 = −1/4 and therefore κ1 = 7/4. It follows from Lemma

3.2.11 that µ = 0 and therefore

H1 =
−2κ2ã2

γ3

(γ′5W − γ′3)W 3

W − ã2

,

so γ3 and γ5 are non-zero constants. From Lemma 3.2.11 with N = 2 and



Chapter 3. Application of Nevanlinna theory to differential equations 67

κ∞ = 3/2 we see that ν = 4α0/5, γ1 = 4α0/(15ã2) and γ2 = −16α0/(15ã2
2).

Hence the conclusion in this case is that W = γ3/u
2, where γ3 is a non-zero

constant and u is a solution of

4(u′)2 =
4α0

5γ3

u4 +
4α0

15ã2

u2 − γ3u−
8γ3α0

15ã2
2

. (3.67)

Now if G0(z,W ) + uG1(z,W ) 6= 0, then (3.61) becomes

u′ =
H0(z,W ) + uH1(z,W )

G0(z,W ) + uG1(z,W )
.

Using (3.35) we can rewrite the above equation as u′ = R(z, u), where R(z, u)

is a rational function in u and the coefficients are small compared to u since

T (r, u) = (1/2)T (r, w) + S(r, w). If u is an admissible solution of the above

equation then by Malmquist-Yosida Theorem 3.1.2 u must be a solution of a

Riccati differential equation

u′ = p0(z) + p1(z)u+ p2(z)u2,

where T (r, pi) = S(r, w) for i = 1, 2, 3. Setting δ1 = γ3, δ2 = γ5 and W = δ1
δ2−u2 ,

then the conclusion in this case corresponds to the part (xii) of Theorem

3.2.1.

(III) The case κj = 3/4 for all j = 1, . . . , N and N = 1 or 2

This case is the conclusion of part (iii) of Lemma 3.2.9, which corresponds to

the case in which α = α0 is a constant and w is an admissible meromorphic

solution of the equations of the form (3.36) for N = 1 and (3.37) for N = 2.

For N = 2, setting W = w− a1, ã = a2− a1, β = 2α0/ã
2 and γ = d1, equation
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(3.37) becomes

{
(W ′)2

W (W − ã)
− β (2W − ã)

}2

= γ2W (W − ã),

which is equivalent to

{(W ′

W

)2 1

(W − ã)
− β

(
2− ã

W

)}2

= γ2 (W − ã)

W
, (3.68)

If γ = 0, then W satisfies

W ′2 = βW (W − ã) (2W − ã) . (3.69)

If γ 6= 0, then let

γ u =
(W ′

W

)2 1

(W − ã)
− β

(
2− ã

W

)
. (3.70)

Then equation (3.68) becomes u2 = (W − ã)/W and hence

W =
ã

1− u2
, 2uu′ = ã

W ′

W 2
. (3.71)

Equation (3.71) implies that

W ′

W
=

2uu′

1− u2
. (3.72)

Furthermore, using equations (3.70) and (3.71) we obtain

(W ′

W

)2

=
(W − ã)

W

[
γ u W + β (2W − ã)

]
=

ã u2

1− u2

[
γ u+ β

(
1 + u2

) ]
. (3.73)
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Therefore, using equations (3.72) and (3.73) we get

4u′
2

= ã (1− u2)
[
γ u+ β

(
1 + u2

) ]
. (3.74)

(IV) Admissible meromorphic solution

In all cases covered by parts (I), (II) and (III) the conclusion is that the solu-

tions of equation (3.14) can be written in terms of an admissible meromorphic

solution of either a Riccati equation or a first-order differential equation of the

form u′2 = Q(z, u), where Q is a polynomial of degree at most four and the

coefficients are not necessarily constants. In what follows we will determine

whether the solutions so obtained really are meromorphic and admissible.

We first consider the first-order differential equations (3.54-3.60) corresponding

to each of the cases in part (I).

The case N = 1

Looking back at the equation (3.54), we see that if (µ2
0/4)− ρ0 = 0, this gives

(v′)2 = −2α0v, so the solution v is a polynomial of degree 2. If (µ2
0/4)−ρ0 6= 0,

then the solution v of (3.54) is a trigonometric function. When µ0 6= 0, we

have

α = α0 exp(−µ0z/2)

and T (r,W ) = T (r, α) + S(r,W ) = S(r,W ), which is a contradiction. There-

fore, µ0 = 0, so α = α0 is a constant and W = v is admissible meromorphic

solution of (3.54), which corresponds to part (ii) of Theorem 3.2.1. This

case was solved by Halburd and Wang [12].

For the equation (3.55) the solution W is a polynomial of degree 2. Since

α = α0 is a constant, this gives W = w − a1 is an admissible meromorphic



Chapter 3. Application of Nevanlinna theory to differential equations 70

solution of (3.55), which corresponds to part(i) of Theorem 3.2.1.

For the equation (3.56), we have α = α0(z−z∞)−(4κ−3)/(2[κ−1]). In this instance

equation (3.56) can be written as

dv√(
(Av −B)2 −B2

) = (z − z∞)−1dz,

where A = 1/(2(κ−1)) and B = (2(k−1)α0)/(2k−1). Therefore, the solution

of the above equation is given by

v =
4(κ− 1)2α0

2κ− 1
{ cosh log [d1(z − z∞)1/(2[κ−1])] + 1},

=
4(κ− 1)2α0

2κ− 1

{(d1(z − z∞)1/(2[κ−1])) + (d1(z − z∞)1/(2[κ−1]))−1

2
+ 1
}
,

=
2(κ− 1)2α0

d1(2κ− 1)
(z − z∞)−1/(2[κ−1])(d1(z − z∞)1/(2[κ−1]) + 1)2,

where d1 6= 0 is an arbitrary constant. Furthermore, the function α(z) is

meromorphic only if κ = (n + 1)/n and |n| is an even number excluding the

values n = −4 or n = −2 since κ 6= 3/4 or 1/2, respectively. Hence, the

solution w is given by

w = a1 + (z − z∞)−1/(2[κ−1])v

= a1 +
2(κ− 1)2α0

d1(2κ− 1)
(z − z∞)−1/([κ−1])(d1(z − z∞)1/(2[κ−1]) + 1)2

= a1 +
2α0

n(n+ 2)d1

(z − z∞)−n(d1(z − z∞)(n/2) + 1)2, (3.75)

which is a meromorphic function but it is not admissible since T (r, w) =

O(T (r, α)).

Recall that in equation (3.57) we have α(z) = α0([z− z∞]2− d2)−(4κ−3)/(2[κ−1]).

In a similar manner to the previous case the solution of equation (3.57) is given
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by

v =
α0(κ− 1)2

d2(1− 2κ)

{
1 + cosh log e1

(
[z − z∞]2 − d2

[z − z∞]2 + d2

)1/(2[κ−1])}

=
α0(κ− 1)2

2e2(1− 2κ)

(
[z − z∞]2 − d2

[z − z∞]2 + d2

)−1/(2[κ−1])(
e1

(
[z − z∞]2 − d2

[z − z∞]2 + d2

)1/(2[κ−1])

+ 1

)2

where e2 = d2e1 and e1 is a constant. Furthermore, α is meromorphic function

only if κ = (n + 1)/n and |n| is an even number excluding the values n = −4

or n = −2. Therefore, the solution w is given by

w = a1 +
{

(z − z∞)2 − d2
}−1/(2[κ−1])

v

= a1 −
α0

2e2n(n+ 2)

(
[z − z∞]2 + d2

)(n/2)

(
[z − z∞]2 − d2

)n
(
e1

(
[z − z∞]2 − d2

[z − z∞]2 + d2

)(n/2)

+ 1

)2

,

which is not admissible solution.

The case N > 1

In this case we have the first-order differential equations (3.58-3.60) with con-

stant coefficients and α = α0 is a constant. Since the degree of W is two in

equation (3.58), then this equation can be solved in terms of an exponential or

trigonometric function, so the solution W is admissible. This gives part(vii)

of Theorem 3.2.1. As for the equations (3.59) and (3.60), they can be solved

in terms of elliptic functions or one of their degenerations, so the solution W

is admissible, which corresponds to parts (ix) and (xi) of Theorem 3.2.1,

respectively.

Next we consider the first-order equations (3.64-3.66) for N = 1 and (3.67) for

N > 1 corresponding to each of the cases in part (II).

The case N = 1
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Notice that equations (3.64), (3.65) and (3.66) can all be solved in terms of

elliptic functions or their degenerations. In the case of equation (3.64) the

coefficients are constant and α = α0 is a constant, so that w = a1−d1/u
2, where

d1 = γ3 is an admissible meromorphic solution which corresponds to part(iii)

of Theorem 3.2.1. In the case of equations (3.65) and (3.66) however, a

change of independent variable is required first to make the equation constant

coefficient. In the case of equation (3.65) a suitable new independent variable

is Z = log(z − z∞), in terms of which (3.65) can be written as

4
( du

dZ

)2

=
4α0

3C
u(Z)4 + 4u(Z)2 − Cu(Z).

For equation (3.66) a suitable variable is Z = (1/2d) log ([z−z∞]/d)−1
([z−z∞]/d+1)

if d 6= 0

and Z = 1/(z − z∞) if d = 0 imply that (3.66) can be written as

4
( du

dZ

)2

=
4α0

3C
u4 + 16d2u2 − Cu.

The solution of the above equation is an elliptic function or one of their degen-

erations. Unfortunately in these cases w fails to be a meromorphic function

because of the transformations, so these solutions do not appear in the final

theorem. It is important to observe however that these solutions fail to be

meromorphic only at fixed singularities of the solutions (because of the forms

of α).

The case N > 1

In this case N = 2 and we have the first-order differential equation (3.67) with

constant coefficients and α = α0 is a constant. This equation can be solved

in terms of elliptic functions or their degenerations, so w = a1 + d1/u
2, where

d1 = γ3 is a non-zero constant, is an admissible meromorphic solution, which

corresponds to part(x) of Theorem 3.2.1.
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Recall that in part (III) we have for N = 1 the first-order differential equation

(3.36) and α = α0 is a constant. Taking u = W 1/2, then this equation becomes

u′
2

= d1u− α0. (3.76)

where d1 = −d/(4) is a constant. If d1 = 0, then u′2 = −α0. If d1 6= 0, then

integrating the above equation we obtain

u = − 1

d1

(d2
1α0

4
(z + d2)2 + 1

)
.

In both cases w = a1 + u2 is a polynomial which is an admissible solution

of equation (3.76), which corresponds to the part (iv) of Theorem 3.2.1.

Furthermore, when N = 2 we have the equations (3.69) if γ = 0 and (3.74) if

γ 6= 0, which can be solved in terms of elliptic functions or their degenerations.

Since α = α0 and the coefficients of (3.69) and (3.74) are constants, then w

is admissible meromorphic solution, which corresponds to the part (viii) of

Theorem 3.2.1.

(V) The case N = 1 and κ = 3/2 or κ = 2

Now, we consider the cases κ = 3/2 or 2 for N = 1, described in part (iv) and

part (v) of Lemma 3.2.9, in which W is an admissible solution of equation

WW ′′ − κW ′2 = α(z)W (3.77)

where W = w − a1. In these cases we use the resonance conditions (as in

Painlevé analysis) to obtain necessary conditions on the form of equation (3.77).

Let z0 ∈ Ω be a double zero of an admissible non-zero meromorphic solution
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W of the equation (3.77) which has series expansion of the form

W (z) = a0 ζ
2 + · · ·+ aj ζ

j+2 + . . . , ζ = z − z0. (3.78)

Substituting the expansion (3.78) into (3.77) we obtain a0 = α(z0)
2(1−2κ)

and a

recurrence relation of the form

(j + 1)(j + 2− 4κ)a0aj = Pj(a0, a1, . . . , aj−1, α
(j)),

where Pj is rational function in its arguments. The left side of the above

equation vanishes when j = −1 or j = 4κ − 2. When κ = 3/2 there is a

positive integer resonance at j = 4 and when κ = 2 there is a positive integer

resonance at j = 6.

For the values κ = 3/2 or 2, we proceed by obtaining the resonance conditions

which are in terms of the coefficient α and its derivatives to identify admissible

meromorphic solutions of the equation (3.77).

Lemma 3.2.12 Let w be a meromorphic solution of equation (3.77) satisfy-

ing (3.15) for the values κ = 3/2 or 2. Then the coefficient α satisfies the

differential equations (3.19) or (3.20), respectively.

Proof. Consider the case κ = 3/2. Then the resonance at j = 4 implies

that the coefficient a4 is free, provided the resonance condition is satisfied.

Substituting the expansion (3.78) into (3.77), and then equating coefficients of

like powers of ζ, we get a0 = −α(z0)
4

, a1 = −α′(z0)
6

, a2 = −α′2(z0)+3α(z0)α′′(z0)
36α(z0)

,

a3 = −4α′3(z0)−6α(z0)α′(z0)α′′(z0)+3α2(z0)α(3)(z0)
72α2(z0)

and

0× a4 =
3

2

a4
1

a3
0

+
15a2

1a2

2a2
0

− 6a2
2

a0(z0)
− 1

24
α(4)(z0)

= −14α′4(z0)

27α3(z0)
− 8α′2(z0)α′′(z0)

9α2(z0)
+
α′′2(z0)

6α(z0)
+
α′(z0)α(3)(z0)

4α(z0)
− 1

24
α(4)(z0)
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Since the right hand side of the above equation vanishes at all the ai-points

of w in Ω and T (r, α) = S(r, w), so by Lemma 3.2.7 the condition (3.19) is

verified. Similarly, we obtain the conditions (3.20) for κ = 2. �

The results of the parts (v) and (vi) of Theorem 3.2.1 follow immediately

from Lemma 3.2.12.

The proof of Theorem 3.2.1 is completed. 2

In what follow we will show that in the cases κ = 3/2 or 2, the existence of

an admissible meromorphic solution implies that equation (3.14) with N = 1 can

be transformed to a special case of the second or first Painlevé equation or their

autonomous version, respectively, by using the conditions (3.19) or (3.20).

Theorem 3.2.13 Equation (3.77) with κ = 3/2 can be transformed to the second

Painlevé equation if the coefficient α satisfies the condition (3.19).

Proof. Define a function Z(z) by the equation

dZ

dz
= V (Z)2,

where α(z) = −4V (Z)6. Note that Z and V are not necessarily meromorphic. The

condition (3.19) becomes (
VZZ
V

)
ZZ

= 0,

which is equivalent to

VZZ = (aZ + b)V, (3.79)

where a and b are arbitrary constants. Now define U(Z) such thatW (z) = V (Z)2/U(Z)2.

Then W solves equation (3.77), κ = 3/2 subject to (3.19) if and only if U satisfies

UZZ = 2U3 + (aZ + b)U. (3.80)
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Note that if a 6= 0 then by rescaling variables equation (3.79) and equation (3.80)

can be transformed to the Airy equation VZZ = ZV and a special case of the second

Painlevé equation UZZ = 2U3 + ZU . If a = 0 then equation (3.79) is a constant

coefficient equation solved by exponentials or an affine function of Z and equation

(3.80) is solved by elliptic functions. If a = b = 0, then solving the equation (3.79)

gives V = c1Z + c2 and equation (3.80) can be solved in terms of elliptic functions.

Remark 3.2.14 Notice that from the proof of Theorem 3.2.13, if a = b = 0 then

from equation (3.80) we have UZZ = 2U3, so either U = ±1/(z − C) for some

constant C or U is an elliptic function and α(z) = −4(c1Z + c2)6. Furthermore, we

have

dZ

dz
= (c1Z + c2)2.

If c1 = 0, then α = α0 is a constant while if c1 6= 0, then solving the above equation

gives Z = (1 + c1c2z)/(c2
1z), so α(z) is a rational function. Therefore, in the case

α = α0 and U is an elliptic function the solution w = a1 + V (Z)2/U(Z)2 is an

admissible meromorphic solution of (3.77).

Theorem 3.2.15 Equation (3.77) with κ = 2 can be transformed to the first Painlevé

equation (2.13) if the coefficient α satisfies the condition (3.20).

Proof. In this case equation (3.77) with κ = 2 can be written as

(W ′

W 2

)′
=

α

W 2
. (3.81)

Let u = 1/W , then the above equation becomes

u′′ = −αu2. (3.82)

The above equation has been considered previously by Wyman [51] and Halburd [10].
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Since the coefficient α satisfies condition (3.20), then the general solution u is given

in terms of solutions of the first Painlevé equation or its autonomous versions. �

Remark 3.2.16 If α = α0 is a non-zero constant, then equation (3.82) can be

integrated to

u′
2

= −2

3
α0u

3 + c1,

which has elliptic function solutions if c1 6= 0. Therefore, w = a1 + 1/u is an

admissible meromorphic solution of (3.77).

The results obtained in this section were proved by using singularity structure

with the concepts of Nevanlinna theory. We extended the approach of Halburd and

Wang [12] to characterise all admissible meromorphic solutions of equation (3.14).

However, we discarded many nice solutions because these solutions grow like the

coefficients e.g. the solution (3.75) or they are not meromorphic e.g. (3.65). Indeed,

many solutions of the Hayman equation (3.13) have the form
´
q(z)ezdz, where q(z)

is a rational function, were also discarded in [12] since they are branched at fixed

singularities when q(z) is not polynomial.

Motivated by this, in the next chapter these techniques will be extended to allow

solutions to be branched around fixed singularities.



Chapter 4

Application of Nevanlinna theory

in a sectorial domain to differential

equations

In section 4.1 we present a brief introduction of Tsuji’s approach to the value

distribution theory of meromorphic functions in the half-plane [8]. We introduce

Levin’s formula which is used to derive analogues of the counting, proximity and

characteristic functions in the half plane. Some of their properties are presented as

well as some analogous results of Nevanlinna theory for the half plane, e.g. the first

main theorem and the lemma on the logarithmic derivative. In section 4.2 we define

the characteristic function of a sectorial domain by the use of value distribution

theory in the half-plane as well as analogous results of these in the half plane to

the extent that we will need it for applications to complex differential equations in

section 4.3. We also present a proof of Malmquist-Yosida and Wittich’s theorems

in the sectorial domain and employ the technique presented in the previous chapter

to find all solutions of a differential equation for which all movable singularities are

poles, i.e. the solutions can be branched at fixed singularities.

78
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4.1 Nevanlinna theory in the half-plane

Nevanlinna theory in the half-plane has two independent origins due to Nevan-

linna [33] and Tsuji [45]. In this section we will follow the second approach since the

central result: the lemma on the logarithmic derivative, is not true in general in the

first approach. In fact, Nevanlinna [33] stated a conjecture regarding this lemma in

the context of the first approach but Goldberg [7] later disproved it by a counterex-

ample. A concrete treatment and development of Tsuji’s approach has been offered

by Levin, Ostrovskii and Goldberg (see, e.g., [8], [26], and [27]). The basic definitions

and relevant proof of the results presented in this section can be found in [8]. For

convenience, we follow Tsuji’s approach to study meromorphic functions in the right

half-plane instead of the upper half-plane which was presented in [8].

Nevanlinna theory in the right half-plane is based on Levin’s formula [48], given

in Theorem 4.1.1 below.

Theorem 4.1.1 Let f be a meromorphic function in the closed half plane Re z ≥ 0.

Then for 0 < R0 < R, we have

∑
m

(cosαm
rm

− 1

R

)
−
∑
n

(cos βn
ρn

− 1

R

)
=

1

2π

ˆ arccos(R0R−1)

− arccos(R0R−1)

log|f(R cos θeiθ)| dθ

R cos2 θ
+O(1), (4.1)

where rme
iαm are zeros and ρne

iβn are poles of the function f(z) in the domain

D = {|z − R
2
|< R

2
, |z|> R0}, listed according to multiplicity.

Remark 4.1.2 Levin’s formula was first proved by Levin [26] (see also [8]) and an

alternative, stronger proof was given by Wang [48]. Indeed, Wang assumes that f is

meromorphic in the half plane Re z > 0, while Levin requires f(z) to be meromorphic

in the disc {|z|< R0} as well as the half plane since his proof is based on Green’s
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formula. Wang’s proof on the other hand relies on Cauchy’s integral formula applied

to the function log f(z)/z2 on the contour

C = {z : |z−R
2
|= R

2
, |z|≥ R0}∪

{
z : |z|= R0, − arccos

(R0

R

)
< arg z < arccos

(R0

R

)}
,

where f is meromorphic in the half plane Re z > 0. He proved that the integral along

the arc {
z : |z|= R0, − arccos

(R0

R

)
< arg z < arccos

(R0

R

)}
is bounded but this is not necessarily true if we have an accumulation point on the

imaginary line Re z = 0. However, we shall assume that f is meromorphic in the

closed half plane Re z ≥ 0.

Let f(z) be a non-constant meromorphic function in the closed half-plane H =

{z : Re z ≥ 0}. We introduce several real-valued functions which characterise the

behaviour of f(z) in H. The number of poles of f(z) in D = {|z − r
2
|≤ r

2
, |z|> 1}

will be denoted by n(r, f) where each pole is counted according to its multiplicity.

The counting function in the right half-plane is defined by

N(r, f) =

ˆ r

1

n(t, f)

t2
dt, 1 < r <∞.

Let zn = ρne
iθn denote the poles of the function f(z) in H. It is to be noted that

the function n(t, f) is a step function with steps at the points t = ρn/cos θn and the

values of the jumps are equal to the number of poles of f(z) lying on the circular arc

{∣∣∣z − t

2

∣∣∣ =
t

2
, |z|> 1

}
.
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Thus, we have

N(r, f) =

ˆ r

1

n(t, f)

t2
dt

=

ˆ ρ1/cos θ1

1

0

t2
dt+

ˆ ρ2/cos θ2

ρ1/cos θ1

1

t2
dt+

ˆ ρ3/cos θ3

ρ2/cos θ2

2

t2
dt+ · · ·+

ˆ r

ρn/cos θn

n

t2
dt

=
∑

1<ρn<r cos θ

(cos θn
ρn

− 1

r

)
.

Hence, Levin’s formula given by (4.1) can be written in the form

N
(
r,

1

f

)
−N(r, f) =

1

2π

ˆ κ(r)

−κ(r)

log|f(r cos θeiθ)| dθ

r cos2 θ
+O(1), (4.2)

where R0 = 1 and κ(r) = arccos(1/r).

The analogue of the proximity function is given by

m(r, f) =
1

2π

ˆ κ(r)

−κ(r)

log+|f(r cos θeiθ)| dθ

r cos2 θ
,

and the Tsuji characteristic function is defined by

T(r, f) = m(r, f) + N(r, f).

For any point a ∈ C, the functions m(r, 1/(f − a)), n(r, 1/(f − a)), N(r, 1/(f − a))

and T(r, 1/(f − a)) will be denoted by m(r, a), n(r, a), N(r, a) and T(r, a), respec-

tively.

The analogue of the first main theorem follows from equation (4.2).

Theorem 4.1.3 Let f(z) be a non-constant meromorphic function in the right half-

plane, H. Then for a 6=∞

T(r, a) = T(r, f) +O(1), 1 < r <∞. (4.3)
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Proof. Applying Levin’s formula in the form (4.2) to f(z)− a, we get

N
(
r,

1

f − a
)
−N(r, f − a) =

1

2π

ˆ κ(r)

−κ(r)

log|f(r cos θeiθ)− a| dθ

r cos2 θ
+O(1). (4.4)

Using the equality log|x|= log+|x|− log+|1/x| yields

1

2π

ˆ κ(r)

−κ(r)

log|f(r cos θeiθ)| dθ

r cos2 θ
= m(r, f − a)−m

(
r,

1

f − a
)

and hence relation (4.4) can be rewritten in the form

m
(
r,

1

f − a
)

+N
(
r,

1

f − a
)

= m(r, f)+N(r, f)+m(r, f−a)−m(r, f)+O(1). (4.5)

Using the inequality [8, p. 14]

|log+|x1|− log+|x2||≤ log+|x1 − x2|+ log 2,

we obtain

|m(r, f − a)−m(r, f)|≤ (log+|a|+ log 2)

2π

ˆ κ(r)

−κ(r)

dθ

r cos2 θ
= (log+|a|+ log 2)

√
r2 − 1

πr
.

(4.6)

Hence, using equations (4.5) and (4.6) we get (4.3) with

|m(r, f − a)−m(r, f)|≤ (log+|a|+ log 2)

π
= O(1)

as r →∞. �

We proceed with some basic, elementary relations.

Proposition 4.1.4 Let f1, f2, . . . , fq be meromorphic functions in the half-plane
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H. Then

N

(
r,

q∏
i=1

fi

)
≤

q∑
i=1

N(r, fi),

N

(
r,

q∑
i=1

fi

)
≤

q∑
i=1

N(r, fi),

m

(
r,

q∏
i=1

fi

)
≤

q∑
i=1

m(r, fi),

m

(
r,

q∑
i=1

fi

)
≤

q∑
i=1

m(r, fi) +O(1),

T

(
r,

q∏
i=1

fi

)
≤

q∑
i=1

T(r, fi),

T

(
r,

q∑
i=1

fi

)
≤

n∑
i=1

T(r, fi) +O(1),

T(r, fm) =mT(r, f), m ∈ N.

Remark 4.1.5 Goldberg and Ostrovskii [8] proved that there exists a continuous

non-decreasing function T̊(r, f) such that

T(r, f) = T̊(r, f) +O(1), (4.7)

where

T̊(r, f) =
1

π

ˆ ˆ
|z− r

2
|≤ r

2
, |z|≥1

(cos θ

t
− 1

r

)( |f ′(teiθ)|
1 + |f(teiθ|2)

)2

t dt dθ.

This function plays a pivotal role in the proof of the lemma on the logarithmic deriva-

tive.

Definition 4.1.1 Let f be a meromorphic function in H. The order of function f

is given by

L(f) = lim
r→∞

log T̊(r, f)

log r
.
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Definition 4.1.2 If f and g are meromorphic functions in H, then we say g is small

compared to f if

T̊(r, g) = o(T̊(r, f)) as r →∞,

outside of a possible exceptional set of finite linear measure, and we use the notation

T̊(r, g) = Q(r, f).

We get the following analogue of the Valiron Mohon’ko theorem.

Theorem 4.1.6 If R(z, f) is a rational function in f and of degree d with meromor-

phic coefficients ai(z) in H such that T(r, ai) = Q(r, f), and if f is a meromorphic

function in H, then the characteristic function of R(z, f) satisfies

T(r, R(z, f)) = dT(r, f) + Q(r, f).

The proof of Theorem 4.1.6 can be deduced by similar arguments to those used in

the proof of the Valiron Mohon’ko theorem in the complex plane in [24, p. 29].

We now turn to analogues of the lemma on the logarithmic derivative for mero-

morphic functions in H.

Theorem 4.1.7 Let f be a meromorphic function in H. Then

m
(
r,
f ′

f

)
= O(log r)

if f is of finite order and

m
(
r,
f ′

f

)
= Q(r, f) (4.8)

if f is of infinite order.

We need the following lemmas to prove Theorem 4.1.7.
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Lemma 4.1.8 [8, p. 7] Let f(z) be a non-identically zero meromorphic function in

the disc {|z|≤ R}. Then

f ′(z)

f(z)
=

ˆ 2π

0

2Reiθ

(Reiθ − z)2
log|f(Reiθ)| dθ

2π

+
∑
|am|<R

(
ām

R2 − āmz
+

1

z − am

)
−
∑
|bn|<R

(
b̄n

R2 − b̄nz
+

1

z − bn

)
,

(4.9)

where a1, . . . , am the zeros of f(z) and b1, . . . , bm are the poles.

Lemma 4.1.9 [8, p. 87] Let f(x) and g(x) be non-negative measurable functions

on [a, b], and let

A =

ˆ b

a

g(x)dx > 0.

Then

1

A

ˆ b

a

{log+ f(x)} g(x) dx ≤ log+

{
1

A

ˆ b

a

f(x)g(x)dx

}
+ log 2.

Lemma 4.1.10 [8, p. 90] Let u(r) be a continuous, non-decreasing function on

[r0,∞], tending to +∞ as r →∞. Let ψ(u) be a continuous positive non-increasing

function on [u0,∞), u0 = u(r0), having zero limit as u→∞ and satisfying

ˆ ∞
u0

ψ(u)du <∞.

Then for all r ≥ r0 except, possibly, a set of finite measure,

u{r + ψ(u(r)} < u(r) + 1.

Proof of Theorem 4.1.7 First we use Lemma 4.1.8 for any z in the disc |z|< s
2
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and the function f(z + s/2), and then setting ζ = z + s/2 we get

f ′(ζ)

f(ζ)
=

1

2π

ˆ 2π

0

log
∣∣∣f(s

2
eiϕ +

s

2

)∣∣∣ s eiϕ(
s
2
eiϕ − ζ + s

2

)2 dϕ

+
∑

|am− s2 |<
s
2

s2

4
− |am − s

2
|2(

s2

4
− [am − s

2
][ζ − s

2
]
)

(ζ − an)

−
∑

|bn− s2 |<
s
2

s2

4
− |bn − s

2
|2(

s2

4
− [bn − s

2
][ζ − s

2
]
)

(ζ − bn)
,

∣∣∣ζ − s

2

∣∣∣ < s

2
,

(4.10)

where am are the zeros of f(z) and bn are its poles. In what follows, let ζ = r cos θeiθ,

−κ(r) ≤ θ ≤ κ(r), κ(r) = arccos 1
r

and s = 1
2
(R + r) where 2 ≤ r < R < ∞. These

assumptions imply that

r2 cos2 θ
(

1− s

r

)
<
(

1− s

r

)
,

and hence, we get the inequality

∣∣∣ζ − s

2

∣∣∣ ≤ ∣∣∣r cosκ(r)eiκ(r) − s

2

∣∣∣ =
∣∣∣eiκ(r) − s

2

∣∣∣ =

√
1− s

r
+
s2

4
.

Thus we have

s

2
−
∣∣∣ζ − s

2

∣∣∣ > s

2
−
√

1− s

r
+
s2

4
>

(s− r)
sr

. (4.11)
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Writing {cq} = {am} ∪ {bn}, then inequality (4.11) implies

∣∣∣∣∣ 1

2π

ˆ 2π

0

log
∣∣∣f(s

2
eiϕ +

s

2

)∣∣∣ s eiϕ(
s
2
eiϕ − ζ + s

2

)2 dϕ

∣∣∣∣∣
≤ 1

2π

ˆ 2π

0

∣∣∣∣∣ log
∣∣∣f(s

2
eiϕ +

s

2

)∣∣∣∣∣∣∣∣
∣∣∣∣∣ s eiϕ(

s
2
eiϕ − ζ + s

2

)2

∣∣∣∣∣ dϕ
≤ 1

2π

ˆ 2π

0

∣∣∣∣∣ log
∣∣∣f(s

2
eiϕ +

s

2

)∣∣∣∣∣∣∣∣ s(
s
2
−
∣∣∣ζ − s

2

∣∣∣)2 dϕ

≤ s3 r2

(s− r)2

1

2π

ˆ 2π

0

∣∣∣ log|f(
s

2
eiϕ +

s

2
)|
∣∣∣dϕ

=: Φ1(ζ)

(4.12)

and

∣∣∣∣∣ ∑
|cm− s2 |<

s
2

s2

4
− |cm − s

2
|2(

s2

4
− [cm − s

2
][ζ − s

2
]
)

(ζ − cn)

∣∣∣∣∣
≤

∑
|cm− s2 |<

s
2

s2/4∣∣∣∣∣( s24 − [cm − s
2
][ζ − s

2
]
)

(ζ − cn)

∣∣∣∣∣
≤

∑
|cm− s2 |<

s
2

s2/4(
s2

4
− |cm − s

2
||ζ − s

2
|
)
|ζ − cn|

≤
∑

|cm− s2 |<
s
2

s2/4

s
2

(
s
2
− |ζ − s

2
|
)

(ζ − cn)

≤ s2r

s− r
∑

|cq− s2 |<
s
2

1

|ζ − cq|

=: Φ2(ζ).

(4.13)

Using (4.12) and (4.13), then (4.10) implies

∣∣∣f ′(ζ)

f(ζ)

∣∣∣ =
∣∣∣f ′(r cos θeiθ)

f(r cos θeiθ)

∣∣∣ ≤ Φ1(ζ) + Φ2(ζ). (4.14)
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Therefore

m
(
r,
f ′

f

)
≤ 1

2π

ˆ κ(r)

−κ(r)

log+[Φ1(ζ) + Φ2(ζ)]
dθ

r cos2 θ

≤ 1

2π

ˆ κ(r)

−κ(r)

log+ Φ1(ζ)
dθ

r cos2 θ
+

1

2π

ˆ κ(r)

−κ(r)

log+ Φ2(ζ)
dθ

r cos2 θ

+
log 2

2π

ˆ κ(r)

−κ(r)

dθ

r cos2 θ

= I1 + I2 +
log 2

πr
tanκ(r)

= I1 + I2 +
log 2

π

√
1− 1

r2
,

where

I1 =
1

2π

ˆ κ(r)

−κ(r)

log+ Φ1(ζ)
dθ

r cos2 θ
,

and

I2 =
1

2π

ˆ κ(r)

−κ(r)

log+ Φ2(ζ)
dθ

r cos2 θ
.

Now we estimate the integrals I1 and I2 in the above inequality. By K we denote

positive constants independent of r and R. For Φ1 we take [−π, π] as the interval of

integration instead of [0, 2π] and let ϕ = 2τ . Thus we have

Φ1(ζ) =
s3 r2

(s− r)2

1

π

ˆ π
2

−π
2

∣∣∣ log|f(
s

2
ei2τ +

s

2
)|
∣∣∣dτ

=
s3 r2

(s− r)2

1

π

ˆ π
2

−π
2

∣∣∣ log|f(s(cos2 τ + i cos τ sin τ))|
∣∣∣dτ

=
s3 r2

(s− r)2

1

π

ˆ π
2

−π
2

∣∣∣ log|f(s cos τeiτ )|
∣∣∣dτ

=
s3 r2

(s− r)2

{
1

π

ˆ κ(s)

−κ(s)

s cos2 τ
∣∣∣ log|f(s cos τeiτ )|

∣∣∣ dτ

s cos2 τ

+
1

π

[ˆ −κ(s)

−π
2

+

ˆ π
2

κ(s)

]∣∣∣ log|f(s cos τeiτ )|
∣∣∣dτ}

≤ s3 r2

(s− r)2

{[
2 s
(
m(s, 0) + m(s,∞)

)]
+K

}
.
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Using Theorem 4.1.3 and relation (4.7), we obtain

Φ1(ζ) ≤ K
R6

(R− r)2
[ T̊(R, f) + 1 ],

and thus we have

I1 ≤ K
{

log+ T̊(R, f) + log+ 1

R− r + logR + 1
}
. (4.15)

Following a similar procedure for I2 we have

I2 =
1

2π

ˆ κ(r)

−κ(r)

log+ Φ2(ζ)
dθ

r cos2 θ

=
1

2π

ˆ κ(r)

−κ(r)

log+

(
s2r

s− r
∑

|cq− s2 |<
s
2

1

|ζ − cq|

)
dθ

r cos2 θ

≤ 1

2π

ˆ κ(r)

−κ(r)

log+

(
R3

R− r
∑

|cq− s2 |<
s
2

1

|ζ − cq|

)
dθ

r cos2 θ

≤ Ī2 +K
(

log+ 1

R− r + logR
)
, (4.16)

where

Ī2 =
1

2π

ˆ κ(r)

−κ(r)

log+

( ∑
|cq− s2 |<

s
2

1

|ζ − cq|

)
dθ

r cos2 θ

≤ 2

π

ˆ κ(r)

−κ(r)

log+

( ∑
|cq− s2 |<

s
2

1

|ζ − cq|
1
4

)
dθ

r cos2 θ
.

Applying Lemma 4.1.9 for the non-negative function f(θ) =
∑

|cq− s2 |<
s
2

1

|ζ−cq |
1
4

and

g(θ) = 2
πr cos2 θ

on [−κ(r), κ(r)] with A =
´ κ(r)

−κ(r)
g(θ)dθ = 4 tanκ(r)

πr
, we obtain

Ī2 ≤
4 tanκ

πr

ˆ κ(r)

−κ(r)

πr

2 tanκ(r)
log+

( ∑
|cq− s2 |<

s
2

1

|ζ − cq|
1
4

)
1

πr cos2 θ
dθ
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≤ 4 tanκ

πr

{
log+

[
r

2 tanκ(r)

ˆ κ(r)

−κ(r)

( ∑
|cq− s2 |<

s
2

1

|ζ − cq|
1
4

)
dθ

r cos2 θ

]
+ log 2

}

≤ 4 tanκ

πr

{
log+

[ˆ κ(r)

−κ(r)

( ∑
|cq− s2 |<

s
2

1

|ζ − cq|
1
4

)
dθ

r cos2 θ

]
+ log+ r

2 tanκ(r)
+ log 2

}

≤ K

{
log+

[ ˆ κ(r)

−κ(r)

( ∑
|cq− s2 |<

s
2

1

|ζ − cq|
1
4

)
dθ

r cos2 θ

]
+ 1

}

≤ K

{
log+

[
r
∑

|cq− s2 |<
s
2

ˆ κ(r)

−κ(r)

1

|ζ − cq|
1
4

dθ

]
+ 1

}

≤ K

{
log r + log+

[ ∑
|cq− s2 |<

s
2

ˆ κ(r)

−κ(r)

1

|ζ − cq|
1
4

dθ

]
+ 1

}
.

We now estimate the integral in the square bracket above. If ψq = arg cq, then

ˆ κ(r)

−κ(r)

1

|ζ − cq|
1
4

dθ =

ˆ κ(r)

−κ(r)

1∣∣∣r cos θei(θ−ψq) − |cq|
∣∣∣ 14 dθ

≤
ˆ κ(r)

−κ(r)

1∣∣∣r cos θ sin (θ − ψq)
∣∣∣ 14 dθ

≤
ˆ π

2

−π
2

1∣∣∣r cos θ sin (θ − ψq)
∣∣∣ 14 dθ

≤
(ˆ π

2

−π
2

1∣∣∣ cos θ
∣∣∣ 12 dθ

ˆ π
2

−π
2

1∣∣∣ sin (θ − ψq)
∣∣∣ 12 dθ

)1/2

≤
ˆ π

2

−π
2

dθ

(cos θ)
1
2

.

Using the above we have

Ī2 ≤ K

{
log r + log+

∑
|cq− s2 |<

s
2

ˆ π
2

−π
2

dθ

(cos θ)
1
2

+ 1

}

≤ K

{
log r + log+

∑
|cq− s2 |<

s
2

1 + 1

}

= K

{
log r + log+

(
n(s, 0) + n(s, f)

)
+ 1

}
. (4.17)
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Since s < R, then

N(R, a) =

ˆ R

1

n(t, a)

t2
dt

=

ˆ s

1

n(t, a)

t2
dt+

ˆ R

s

n(t, a)

t2
dt

≥
ˆ R

s

n(t, a)

t2
dt

≥ n(s, a)

ˆ R

s

1

t2
dt

=
R− s
R2

n(s, a).

Thus

n(s, a) ≤ R2

R− sN(R, a). (4.18)

In view of the first main theorem and relations (4.7) and (4.18), we have

n(s, 0) + n(s, f) ≤ R2

R− s
{
N(R, 0) + N(R, f)

}
≤ R2

R− s
(

2 T(R, f) +O(1)
)

=
R2

R− s
(

2 T̊(R, f) +O(1)
)

≤ K
R2

R− r
(

2 T̊(R, f) +O(1)
)
.

From relations (4.16) and (4.17) with the above , we have

I2 ≤ K
{

log+ T̊(R, f) + log+ 1

R− r + logR + 1
}
. (4.19)

Now, (4.15) and (4.19) yield

m
(
r,
f ′

f

)
≤ K

(
log+ T̊(R, f) + log+ 1

R− r + logR + 1
)
. (4.20)

To complete the proof we distinguish two cases.
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Case (i). If T̊(r, f) is of finite order, then log T̊(r, f) = O(log r) and taking R = 2r

in (4.20) we obtain

m
(
r,
f ′

f

)
≤ K

(
log 2r + log+ 1

r
+ log 2r + 1

)
= O(log r).

Case (ii). If T̊(r, f) is of infinite order, then taking R = r + {T̊(r, f)}−2 ≤ 2r in

(4.20), we get, by Lemma 4.1.10, that the inequality

T̊(R, f) = T̊(r + {T̊(r, f)}−2, f) < T̊(r, f) + 1

holds everywhere except, possibly, a set of finite measure. From (4.20) and the above

inequality, (4.21) is satisfied. �

Theorem 4.1.7 and the elementary properties of the proximity function lead im-

mediately to the following corollary.

Corollary 4.1.11 Let f(z) be a meromorphic function in H and let k ≥ 1 be an

integer. Then

m
(
r,
f (k)

f

)
= O(log r)

if f is of finite order and

m
(
r,
f (k)

f

)
= Q(r, f) (4.21)

if f is of infinite order.

Many analogous results of Nevanlinna theory, e.g. Clunie’s theorem [39] is valid

also for the version of this theory in the half plane (see also [8], and [53]). Tsuji’s

approach has been modified for sectors by [39], [40], [41] and [48].
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4.2 Characteristic function of a sectorial

domain

In this section, we will set up an analogous machinery of Nevanlinna tools in a

sectorial domain. We are essentially motivated by properties of a differential equa-

tion, extending the technique that was used in section 3.2 to allow solutions to be

branched at fixed singularities, i.e. we want to develop similar tools as introduced in

Nevanlinna theory when we have a solution which is branched at a finite number of

values. The main idea here is to take all these values inside a disc, D, of fixed radius,

and then investigate solutions in a domain outside D which can be branched in this

domain. Hence, this domain would be modified to the universal cover, which leads

us to consider a sectorial domain Ω∗ outside the disc D on the universal covering of

C\{0} (see Figure 4.1a). Thereafter we use a transformation which maps Ω∗ to a

domain that contains the closed real half plane H (see Figure 4.1b). Then we use this

transformation along with Nevanlinna theory in the half plane to obtain analogous

tools of Nevanlinna theory in a sectorial domain contained in Ω∗. In that instance,

we will apply a similar method that we used in section 3.2 with some modification

so as to allow for branching at fixed singularities.

For given real numbers µ > 0 and 0 < ρ < 1, let f(z) be a meromorphic function

in the sector

Ω∗(µ, ρ) = {z : |arg z|< µ, |z|≥ ρ}

on the universal covering of C\{0}, which is the image of a domain containing the

closed real half plane H under the conformal mapping z = (ζ+ρλ)
1
λ , where λ = π/2µ

and we take a suitable branch cut in the left half-plane. Under this transformation
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(a)

−ρ 0

(b)

Figure 4.1

we also consider the image of {ζ : Re ζ ≥ 0, |ζ|> 1} as

Ω(λ, ρ) = {z : z = (ζ + ρλ)
1
λ , Re ζ ≥ 0, |ζ|> 1}

on the universal covering of C\{0}. Note that for each ε > 0, there exists a number

ρε > 1 satisfying

{z : |arg z|< µ− ε, |z|> ρε} ⊂ Ω(λ, ρ) ⊂ {z : |arg z|< µ, |z|≥ ρ}.

Let f(z) be a meromorphic function in Ω∗(µ, ρ). Then let Fλ(ζ) = f((ζ + ρλ)
1
λ )

represents f(z) in Ω(λ, ρ). Note that since the function Fλ(ζ) is meromorphic in H,

then it is sufficient to define the Tsuji functions for meromorphic functions in Ω(λ, ρ)

by employing value distribution theory in the half plane. Furthermore, since the

function Fλ is meromorphic at ζ = 0, then the lemma on the logarithmic derivative

can be deduced for any meromorphic function f in Ω(λ, ρ) by way of the transformed

function Fλ. Broadly speaking, we can derive (by means of this transformation) a

version of Nevanlinna theory for functions meromorphic in Ω(λ, ρ).

We are motivated by the wish to study solutions of a differential equation that are
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branched at fixed singularities. Thus we take all these singularities in a disc of radius

ρ centred at the origin, and then the solutions whose only movable singularities are

poles will be meromorphic in Ω(λ, ρ). One could use a shifted version of the half

plane to be away from the disc but for our purposes that is not good enough. For

example, if the solution is an exponential function, then the characteristic function of

the solution does not grow fast enough to get a useful estimate for the lemma on the

logarithmic derivative. Indeed, the proximity function of the logarithmic derivative

of the exponential function has the same order of as the growth of the function itself

in the half plane. Note that the sectorial domain Ω(λ, ρ) has the advantage that

there is no restriction imposed on the opening angle µ which implies that we can

have an extra growth for functions as the exponential function at least.

Consider the domain

Ω(λ, ρ, r) = {z : z = (ζ + ρλ)
1
λ , |ζ − rλ

2
|≤ rλ

2
, |ζ|> 1},

which is the image of {|ζ − rλ/2|≤ rλ/2, |ζ|> 1} under the transformation z =

(ζ+ρλ)
1
λ and contained in Ω(λ, ρ). Taking these facts into consideration we introduce,

for r > 1, the sectorial counting function in Ω(λ, ρ) given by

Nλ(r, f) = N(rλ, Fλ) =

ˆ rλ

1

n(t, Fλ)

t2
dt = λ

ˆ r

1

nλ(t, f)

t1+λ
dt,

where nλ(t, f) denotes the number of poles of f(z) in Ω(λ, ρ, t), each counted accord-

ing to its multiplicity. Furthermore, we define the sectorial proximity function

mλ(r, f) = m(rλ, Fλ)

=
1

2π

ˆ κ(rλ)

−κ(rλ)

log+|Fλ(rλ cos θeiθ)| dθ

rλ cos2 θ

=
1

2π

ˆ κ(rλ)

−κ(rλ)

log+
f((rλ cos θeiθ + ρλ)

1
λ

) dθ

rλ cos2 θ
,
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and the sectorial characteristic function

Tλ(r, f) = T(rλ, Fλ) = mλ(r, f) + Nλ(r, f).

Remark 4.2.1 Shimomura defined a sectorial domain type in [39]. Indeed, our

domain Ω(λ, ρ) is similar to that of Shimomura since there is no restriction imposed

on the opening angle of these sectorial domains.

Proposition 4.2.2 Let f1, f2, . . . , fq be meromorphic functions in Ω(λ, ρ). Then

D

(
r,

q∑
i=1

fi

)
≤

q∑
i=1

D(r, fi) +O(1),

D

(
r,

q∏
i=1

fi

)
≤

q∑
i=1

D(r, fi),

D(r, fm) =mD(r, f), m ∈ N,

where D(r, f) represents the sectorial functions mλ(r, f), Nλ(r, f) and Tλ(r, f).

Similarly, by (4.7) and the function Fλ(z), the sectorial Tsuji characteristic

Tλ(r, f) differs from a non-decreasing continuous function T̊λ(r, f) by a bounded

additive term

Tλ(r, f) = T̊λ(r, f) +O(1).

With the customary convention for the meaning of the symbols mλ(t, a), Nλ(t, a),

Tλ(t, a), Lλ(f), and Qλ, the following results on the sectorial domain Ω(λ, ρ) can be

deduced from section 4.1.

For a non-constant meromorphic function f in Ω(λ, ρ) and any a 6= ∞ the first
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fundamental theorem is given by

Tλ(r, a) = Tλ(r, f) +O(1), 1 < r <∞. (4.22)

We can also obtain a Valiron Mohon’ko type result for the sectorial characteristic.

Theorem 4.2.3 Let f be a meromorphic function in Ω(λ, ρ) and R(z, f) be a ratio-

nal function in f of order d with meromorphic coefficients ai(z) such that Tλ(r, ai) =

Qλ(r, f). Then

Tλ(r, R(z, f)) = dTλ(r, f) + Qλ(r, f).

Example 4.2.1

For f(z) = zn, we have

mλ(r, z
n) =

1

2π

ˆ κ(rλ)

−κ(rλ)

log+|f(rλ cos θeiθ + ρλ)| dθ

rλ cos2 θ

=
1

2π

ˆ κ(rλ)

−κ(rλ)

log+|(rλ cos θeiθ + ρλ)
n
λ | dθ

rλ cos2 θ

=
1

2π

ˆ κ(rλ)

−κ(rλ)

log+

(
rn|cos θ|nλ

((
1 +

ρλ

rλ

)2

+
ρ2λ

r2λ
tan2 θ

) n
2λ

)
dθ

rλ cos2 θ
.

Setting η = (1 + ρλ

rλ
)− iρλ

rλ
tan θ and noting that since |θ|< κ(rλ), it follows that

|cos θ|> 1

rλ
, and |tan θ|< rλ

√
1− 1

r2λ
.

Thus

1 <
(

1 +
ρλ

rλ

)n
λ
< rn|cos θ|nλ |η|nλ < rn

((
1 +

ρλ

rλ

)2

+ ρ2λ
(

1− 1

r2λ

)) n
2λ

= rn
(

1 + 2
ρλ

rλ
+ ρ2λ

) n
2λ

< rn
(

1 + ρ2λ
) n

2λ
< rn, (4.23)
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whence

mλ(r, z
n) =

n

2π

ˆ κ(rλ)

−κ(rλ)

log

(
r|cos θ| 1λ

((
1 +

ρλ

rλ

)2

+
ρ2λ

r2λ
tan2 θ

) 1
2λ

)
dθ

rλ cos2 θ

and

0 <
n

πλ

√
1− 1

r2λ
log
(

1 +
ρλ

rλ

)
< mλ(r, z

n) <
n

π

√
1− 1

r2λ
log r.

Therefore, mλ(r, z
n) = O(log r). Since f has no poles in Ω(λ, ρ, r), then Tλ(r, f) =

O(log r). However, using (4.23) implies that 1/(rn|cos θ|nλ |η|nλ ) < 1, we have

mλ(r, 1/f) = 0. Thus, using (4.22) we obtain Nλ(r, 1/f) = Tλ(r, 1/f) = Tλ(r, f) +

O(1) = O(log r).

Based on Theorems 4.1.7 and 4.1.11 the lemma on logarithmic derivative for the

meromorphic functions in the sectorial domain is given as

Theorem 4.2.4 Suppose that f(z) is a meromorphic function in Ω(λ, ρ). If k ≥ 1

is an integer and f is of finite order, then

mλ

(
r,
f (k)

f

)
= O(log r),

and if f is of infinite order, then

mλ

(
r,
f (k)

f

)
= Qλ(r, f).

where function meromorphic in Ω(λ, ρ).

Example 4.2.2

In order to estimate Tλ(r, e
z), we will consider Tλ(r, f), where f(z) = 1/(ez − 1).

Note that the poles of f are all simple and occur at the points z = 2kπi, where k is

an integer. So nλ(t, f) is the number of integers k satisfying 2kπi = (ζ + ρλ)1/λ such
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that |ζ|> 1 and ∣∣∣∣ζ − tλ

2

∣∣∣∣ ≤ tλ

2
. (4.24)

We begin by considering the case k > 0. In this case we have

ζ = (2kπ)λeiλπ/2 − ρλ

and equation (4.24) becomes

(
2kπ

t

)λ
≤ cos

λπ

2
+ Ek(t), (4.25)

where

Ek(t) = ρλ
(

2 cos
λπ

2
−
( ρ

2kπ

)λ)
t−λ −

( ρ

2kπ

)λ
.

Let us estimate the number of integer values of k satisfying (4.25) such that k > tα

for some fixed α > 0. First, note that for k > tα,

|Ek(t)|≤ ρλ
(

2 cos
λπ

2
+
( ρ

2πtα

)λ)
t−λ +

( ρ

2πtα

)λ
= O

(
t−λ
)
.

Also, the number of integer k > 0 satisfying k ≤ tα is clearly at most tα, therefore,

the number of positive integers k satisfying (4.25) is

t

2π

(
cos

λπ

2
+O

(
t−λ
))1/λ

+O(tα) +O(1) =
t

2π

(
cos

λπ

2

)1/λ

+O(t1−λ) +O(tα).

Choosing λ < 1 and α ≤ 1− λ, this becomes

t

2π

(
cos

λπ

2

)1/λ

+O
(
t1−λ

)
.

There is only a finite number of k corresponding to the condition |ζ|> 1, so noting
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that nλ(t, f) counts negative as well as positive k, we have

nλ(t, f) =
t

π

(
cos

λπ

2

)1/λ

+O
(
t1−λ

)
.

So we have

Nλ(r, f) = λ

ˆ r

1

nλ(t, f)

tλ+1
dt = λ

ˆ r

1

{(
cos

λπ

2

) 1
λ

+ o(1)
}t−λ
π
dt =

λ

π(1− λ)
cos

λπ

2
r1−λ+o(r1−λ).

Also note that f ′/f = ez/(ez−1) = f+1, so by the sectorial lemma on the logarithmic

derivative we have

mλ(r, f) = mλ

(
r,
f ′

f
− 1

)
≤ mλ

(
r,
f ′

f

)
+O(1) = O(log r).

Therefore

Tλ(r, e
z) = Tλ(r, f) +O(1) =

λ

π(1− λ)
cos

λπ

2
r1−λ + o(r1−λ).

So when λ < 1 (i.e., when the sectorial region is wider than a half-plane), the

characteristic function of the exponential grows like a power of r and is therefore

large compared to the error term in the Lemma on the Logarithmic Derivative.

4.3 Applications of differential equations

in the sectorial domain Ω(λ, ρ)

The aim of this section is to present a number of applications of differential equa-

tions in the sectorial domain Ω(λ, ρ). We will prove Malmquist-Yosida and Wittich’s

theorems in Ω(λ, ρ). As noted earlier, we are interested in finding all solutions whose

movable singularities are poles. We will explain how we use the singularity structure
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and Ω(λ, ρ) to allow the solutions to be branched at fixed singularities.

For a differential equation in y we set the disc

Dρ = {z : |z|< ρ}, (4.26)

which contains the zeros and poles of all meromorphic coefficients aσ in Ω(λ, ρ)

satisfying Tλ(r, aσ) = O(log r) as r →∞. If ρ > 1, then rescaling z gives radius less

than one. For convenience, from now on we take ρ < 1. Consider also the domain

Ω(λ, ρ) that we defined in section 4.2. In this way, we take all fixed singularities of a

differential equation outside the domain Ω(λ, ρ). Indeed, it follows that Nλ(r, aσ) = 0

for all coefficients aσ, and hence Tλ(r, aσ) = mλ(r, aσ).

Suppose that a meromorphic function f in Ω(λ, ρ) has finite order. If f is a

rational function

f = K

∏n
i=0(z − ai)i∏m
j=0(z − bj)j

,

where ai and bj are constants, then mλ(r, f
′/f) is bounded because

f ′

f
=

n∑
i=0

1

z − ai
−

m∑
j=0

1

z − bj
→ 0

as z → ∞ for any rational function f . Note that by Theorem 4.2.3 and Example

4.2.1 we obtain

Tλ(r, f) = degf (f(z))Tλ(r, z) + Qλ(r, z) = O(log r).

Thus

mλ(r, f
′/f)

Tλ(r, f)
→ 0 as r →∞. (4.27)

On the other hand, if f is a non-rational function, then mλ(r, f
′/f) = O(log r) by

Theoreom 4.2.4 and the characteristic function of f could be close to log r, i.e the



Chapter 4. Application of Nevanlinna theory in a sectorial domain to dif-
ferential equations

102

growth of f is not big enough to obtain a useful estimate for mλ(r, f
′/f), which is

not sufficient in our applications to differential equation. However, if we assume that

log r

Tλ(r, f)
→ 0 as r →∞, (4.28)

then the relation (4.27) is satisfied by Theorem 4.2.4. Broadly speaking, suppose that

a meromorphic function f in Ω(λ, ρ) has finite or infinite order. If f is a rational or

non-rational function and satisfies (4.28), then mλ(r, f
′/f) = o(Tλ(r, f)), i.e.

mλ

(
r,
f ′

f

)
= Qλ(r, f). (4.29)

We will now proceed to present and prove an analogue of the Malmquist-Yosida

theorem in Ω(λ, ρ). The proof of this theorem is somewhat similar to classical case

in the complex plane [24] with some modifications.

Theorem 4.3.1 Let R(z, y) be a rational function in y with coefficients aσ which are

meromorphic in Ω(λ, ρ) and satisfy Tλ(r, aσ) = O(log r) as r →∞. If the differential

equation of the form

(y′)n = R(z, y) (4.30)

admits a meromorphic solution y in Ω(λ, ρ) such that log r/Tλ(r, y)→ 0 as r →∞,

then equation (4.30) reduces into

(y′)n =
2n∑
i=0

ci(z) yi, (4.31)

where at least one of the coefficients ci(z) does not vanish and Tλ(r, ci) = O(log r).

Proof. Let R(z, y) be an irreducible rational function of degree d in y, then equation
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(4.30), can be written as

(y′)n = R(z, y) =
P (z, y)

Q(z, y)
, (4.32)

where P (z, y) and Q(z, y) are polynomials in y with meromorphic coefficients in

Ω(λ, ρ). Since log r/Tλ(r, y)→ 0, and aσ is meromorphic function for all σ satisfying

Tλ(r, aσ) = O(log r), then Tλ(r, aσ) = Qλ(r, y). Taking the sectorial characteristic

function of both sides of equation (4.32) and then by Theorem 4.2.3 and the lemma

on the logarithmic derivative with (4.29) we have

dTλ(r, y) + Qλ(r, y) = Tλ(r, (y
′)n)

= n Tλ(r, y
′)

= n mλ(r, y
′) + n Nλ(r, y

′)

≤ n mλ

(
r,
y′

y

)
+ n mλ(r, y) + 2n Nλ(r, y)

≤ n mλ(r, y) + 2n Nλ(r, y) + Qλ(r, y)

≤ 2n Tλ(r, y) + Qλ(r, y).

Therefore , we have d ≤ 2n. Hence both of the polynomials P (z, y) and Q(z, y) have

degree less than or equal to 2n and these polynomials can be written as

P (z, y) =

p∑
i=0

ai(z) yi,

Q(z, y) =

q∑
j=0

bj(z) yj,
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where d = degy(R(z, y)) is at most 2n. Let η ∈ C such that


∑p

i=0 ai(z) ηi 6= 0,∑p
i=0 bi(z) ηi 6= 0.

(4.33)

Substituting ỹ = (y − η)−1 into (4.32), we have

(−1)n(ỹ′)n =
ỹ2n
∑p

i=0 ai(z) (η + 1/ỹ)i∑q
j=0 bj(z) (η + 1/ỹ)j

. (4.34)

Case 1: If p− 2n ≥ q, then the above equation can be written as

(−1)n(ỹ′)n =

∑p
i=0 ai(z) ỹp−i (ηỹ + 1)i∑q

j=0 bj(z) ỹp−2n−j (ηỹ + 1)j

=
P̃ (z, ỹ)

Q̃(z, ỹ)
, (4.35)

where P̃ (z, ỹ) and Q̃(z, ỹ) are polynomials in ỹ. Using the first fundamental theorem,

we have Tλ(r, ai) = Tλ(r, bi) = Qλ(r, ỹ). Likewise, equation (4.35) has the same

general form as equation (4.32), i.e. R̃(z, ỹ) = P̃ (z, ỹ)/Q̃(z, ỹ). By (4.33), we see that

the polynomials P̃ (z, ỹ) and Q̃(z, ỹ) are of degree p and p−2n in ỹ, respectively. The

rational function R̃(z, ỹ) is irreducible, since otherwise R(z, y) would be reducible.

Hence we get degỹ(R̃(z, ỹ)) ≤ 2n and

q + 2n ≤ p ≤ 2n,

hence q = 0.

Case 2: If p− 2n ≤ q, then (4.34) can be written as

(−1)n(ỹ′)n =

∑p
i=0 ai(z) ỹq+2n−i (ηỹ + 1)i∑q
j=0 bj(z) ỹq−j (ηỹ + 1)j
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and again we get q + 2n ≤ 2n, hence q = 0.

Thus both cases imply that Q is of degree zero and hence the rational function R(z, y)

must be a polynomial of the form (4.31). �

The following theorem is regarded as version in the sectorial domain Ω(λ, ρ) of

result due to Wittich for the whole complex plane [50].

Theorem 4.3.2 Let y be a meromorphic solution in Ω(λ, ρ) of equation

y′′ = 6y2 + f, (4.36)

such that log r/Tλ(r, y) → 0 as r → ∞ and the coefficient f is meromorphic in

Ω(λ, ρ) satisfying Tλ(r, f) = O(log r) as r → ∞. Then mλ(r, y) = Qλ(r, y) and

furthermore f = az + b, where a and b are constants.

Proof. Equation (4.36) can be written as

y2 =
1

6
(y′′ − f). (4.37)

Since log r/Tλ(r, y)→ 0 and f satisfies Tλ(r, f) = O(log r) as r →∞, then

Tλ(r, f) = Qλ(r, y).

Taking the sectorial proximity function of both sides of (4.37), and then using the

above equation, the lemma on the logarithmic derivative and (4.29) we find that

2mλ(r, y) = mλ(r, y
2) = mλ

(
r,

1

6
(y′′ − f)

)
≤ mλ

(
r, y

y′′

y

)
+ mλ(r, f) + Qλ(r, y)

≤ mλ(r, y) + mλ

(
r,
y′′

y

)
+ Qλ(r, y)
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= mλ(r, y) + Qλ(r, y),

so mλ(r, y) = Qλ(r, y). Now, suppose that the solution has a pole at z0 ∈ Ω(λ, ρ).

Thus a Laurent series expansion of the solution about the movable singularity z = z0

is necessarily of the form

y(z) =
∞∑
k=0

ak(z − z0)k−2, a0 = 1. (4.38)

Following the calculation in Example 2.2.1, we obtain the recurrence relation (2.19).

Therefore there is a resonance at k = 6 and the corresponding resonance condition

is f ′′(z0) = 0. Since Tλ(r, f) = Qλ(r, y) and f vanishes at all poles z0 of y in Ω(λ, ρ),

this implies f ′′ ≡ 0. That is, f = az + b, where a and b are constants. As we

illustrated in Example 2.2.1, if a = 0, then the solution of (4.36) can be written in

terms of the Weierstrass elliptic function or its degenerations. Otherwise, a rescaling

of y and z along with a translation in z shows that the solution of (4.36) is given in

terms of solutions of the first Painlevé equation (2.13). �

Having studied a certain class of second order differential equations in section 3.2

in the complex plane using Nevanlinna theory we now continue with some special

cases of this class in Ω(λ, ρ) under some considerations for which we show that the

solutions can be branched at fixed singularities.

If we look back at what we did before in section 3.2, we considered equation (3.14)

and used Nevanlinna theory to show that a certain rational function, defined in terms

of the solution and its first derivative, is small. Basically we used the lemma on the

logarithmic derivative and some elementary properties. In the sectorial domain those

arguments run essentially the same with some modifications. In addition to Nevan-

linna tools, we use series expansion of the solutions around movable singularities,



Chapter 4. Application of Nevanlinna theory in a sectorial domain to dif-
ferential equations

107

which is exactly the same as before.

Firstly, we explain how we can apply this method in Ω(λ, ρ) without repeating

all steps for the differential equation

WW ′′ − κW ′2 = α(z)W, (4.39)

for the case κ 6= 3/4, 1 such that W = w − a1 is a meromorphic solution in Ω(λ, ρ)

satisfying

log r/Tλ(r,W )→ 0 as r →∞ (4.40)

and the coefficient α is meromorphic in Ω(λ, ρ) satisfying

Tλ(r, α) = O(log r) as r →∞. (4.41)

Consider the series expansion of the solution W in (3.22) with q = 2. Since κ 6= 3/4

we construct the function F = Fi in (3.28) as follows

F (z) :=

(
W ′

W

)2

+
2

3− 4κ

α′

α

W ′

W
− 2α

1− 2κ

1

W
.

Furthermore, κ 6= (n+ 1)/n implies that F is analytic in Ω(λ, ρ), and hence, Nλ(r, f) =

0. Using our assumptions on W in (4.40) with Theorem 4.2.4 and α in (4.41) we

obtain mλ(r,W
′/W ) = Qλ(r,W ) and Tλ(r, α) = Qλ(r,W ), respectively. Now taking

the sectorial proximity function of both sides of the above equation and then using

(3.26) with N = 1 we get

mλ(r, F ) ≤ 3mλ

(
r,
W ′

W

)
+ mλ(r,

α′

α
) + mλ(r, α) + mλ(r,

1

W
) +O(1)

≤ 5mλ

(
r,
W ′

W

)
+ mλ

(
r,
(W ′

W

)′)
+ mλ

(
r,

1

α

)
+ Qλ(r,W )

≤ 6mλ

(
r,
W ′

W

)
+ Qλ(r,W )
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= Qλ(r,W ).

Therefore Tλ(r, F ) = Qλ(r,W ). Hence, in this case W satisfies the first order differ-

ential equation

(W ′)2 + µ(z)WW ′ + ν(z)W + ρ(z)W 2 = 0, (4.42)

where

µ(z) =
2

3− 4κ

α′

α
, ν(z) = − 2α

1− 2κ
, Tλ(r, ρ) = Qλ(r,W ).

In a similar manner of the proof of Theorem 3.2.1 we will analyse equation (4.42).

Hence we now consider the first-order equations (4.42) corresponding to each of the

cases in Lemma 3.2.11 for N = 1, κ 6= 1.

(1) α = α0 is a constant, µ = 0, ρ = 0 and W satisfies (3.55) where the solution

W is a polynomial of degree two which is admissible in Ω(λ, ρ).

(2) α = α0(z − z∞)−(4κ−3)/(2[κ−1]) is meromorphic in Ω(λ, ρ), µ = 1
κ−1

1
z−z∞ , ρ = 0

and W = (z − z∞)−1/(2[κ−1])v satisfies (3.56) where the solution w is given by

w = a1 +
2(κ− 1)2α0

d1(2κ− 1)
(z − z∞)−1/([κ−1])(d1(z − z∞)1/(2[κ−1]) + 1)2, (4.43)

which is meromorphic function in Ω(λ, ρ) but it is not admissible since T (r, w) =

O(T (r, α)).

(3) α = α0([z−z∞]2−d2)(4κ−3)/(2[κ−1]) is meromorphic in Ω(λ, ρ), µ = 1
κ−1

2(z−z∞)
(z−z∞)2−d2 ,

ρ = 1
(κ−1)2

1
(z−z∞)2−d2 and W = {(z − z∞)2 − d2}−1/(2[κ−1])

v satisfies (3.57)

where the solution w is given by

w = a1+
α0(κ− 1)2

2e2(1− 2κ)

(
[z − z∞]2 − d2

)−1/([κ−1])

(
[z − z∞]2 + d2

)−1/(2[κ−1])

(
e1

(
[z − z∞]2 − d2

[z − z∞]2 + d2

)1/(2[κ−1])

+1

)2

,
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which is again meromorphic solution in Ω(λ, ρ) but it is not admissible.

So the solutions in the cases (1-3) do not appear in the final statement of the

theorem because the condition of the admissibility. Observe that the solutions in the

cases (2) and (3) are branched at fixed singularities.

We now turn to the Hayman equation (3.13). The following theorem is somewhat

similar to the results of Halburd and Wang [12] in the complex plane, the proof,

however, requires some modifications.

Theorem 4.3.3 Let w be a meromorphic solution in Ω(λ, ρ) of equation (3.13) sat-

isfying the condition

log r

Tλ(r, w)
→ 0 as r →∞, (4.44)

and the coefficients α, β and γ are meromorphic in Ω(λ, ρ) and satisfy

Tλ(r, α) + Tλ(r, β) + Tλ(r, γ) = O(log r). (4.45)

Then w is one of the solutions described in the following list, where c1 and c2 are

constants.

1. If α = β = γ = 0, then w(z) = c2ec1z.

2. If β = γ = 0, then d1 = α 6= 0 is a constant and w = d1
c21
{1 + cosh(c1z + c2)}

or w = −d1
2

(z + c2)2.

3. If γ = 0, β 6= 0 and d1 = −α/β is a constant, then w(z) = c1ed1z.

4. If γ = 0 and α + β′ = 0, then

w(z) = ec1z
{
c2 −

ˆ
β(z)e−c1zdz

}
. (4.46)



Chapter 4. Application of Nevanlinna theory in a sectorial domain to dif-
ferential equations

110

5. If γ 6= 0 and there is a constant d1 and a meromorphic function h satisfying

h2 + βh+ γ = 0 and h′ − d1h = α + d1β, then

w = ed1z
(
c1 +

ˆ
h(z)e−d1zdz

)
. (4.47)

6. Suppose that γ 6= 0 and A = β(α+β′)−γ′
γ

is a constant.

(a) If A = 0 and there are nonzero constants d1 and d2 such that

d2
2 =

1

d2
1

{
1

4d2
1

(β′ + 2α)
2

+

(
γ − β2

4

)}
,

then w = ±d2 cosh(d1z + c1) + β′+2α
2d21

.

(b) If d2
1 =

(β2A−β′−2α)
2

β2−4γ
is a nonzero constant then

w = c1e(−A2 ±d1)z − 1

2d2
1

(
β

2
A− β′ − 2α

)
.

(c) If β
2
A− β′ − 2α = 0, then

w = e−Az/2
{
d1c1 −

ˆ
β

2
eAz/2dz

}
, (4.48)

where β2/4− γ = 0

Proof. A straightforward calculation shows that for α = β = γ = 0, we have

w(z) = c2ec1z. From now we take at least one of α, β, γ to be nonzero.

Consider a Laurent series expansion of the solution w around z0 ∈ Ω(λ, ρ), which

is either a zero or a pole of w

w(z) =
∞∑
i=0

ai ζ
i+p, ζ = z − z0, (4.49)

where a0 6= 0, z0 ∈ Ω and p ∈ Z+ is the leading power that needs to be found.
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Substituting the expansion (4.49) into the equation (3.13) gives

−p a2
0 ζ

2p−2 + · · · = α(z0)(a0 ζ
p+ . . . )+β(z0)(a0 p ζ

p−1 + . . . )+(γ(z0)+ . . . ). (4.50)

Hence, if β = γ = 0, then p = 2. Otherwise p = 1.

Recall that all zeros and the poles of the coefficients α, β and γ are in the disc Dρ

given by (4.26), i.e. they are outside the domain Ω(λ, ρ). The main ideas for the proof

are taken from the paper by Halburd and Wang paper [12], but the arguments due

to Nevanlinna theory regarding the growth of the solutions are replaced by sectorial

theoretic arguments with slight modifications. It suffices to write down a brief proof

of the cases β 6= 0.

The case β 6= 0, γ = 0 :

Substituting w(z) = a0ζ + a1ζ
2 +O(ζ3) in equation (3.13) we get a0 = −β and

α(z0) + β′(z0) = 0.

Hence, α(z0) + β′(z0) = 0 for every zero z0 of w in Ω(λ, ρ). Now we have two cases:

Case 1: α + β′ 6= 0.

Consider f = w′/w. If z0 is a pole of w then z0 ∈ Dρ. If z0 is a zero of w, then either

z0 ∈ Dρ or α(z0) + β′(z0) = 0 Thus the function f has a pole in Ω(λ, ρ) only if z0 is

a zero of w and α(z0) + β′(z0) = 0. Hence, it follows that

Nλ(r, f) = Nλ

(
r,
w′

w

)
= Nλ(r,

1

α + β′
)

≤ Tλ

(
r, α + β′

)
+ Qλ(r, w)

≤ Tλ(r, α) + Tλ(r, β
′) + Qλ(r, w)

= Qλ(r, w),
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and by the lemma on the logarithmic derivative and (4.44) we have

mλ(r, f) = mλ

(
r,
w′

w

)
= Qλ(r, f).

So Tλ(r, f) = Qλ(r, f). Substituting w′ = fw and w′′ = (f ′+f 2)w in equation (3.13)

with γ = 0 yields

f ′w = α + fβ.

Since the coefficients of the different powers of w are all Qλ(r, f), we must have

f ′ = α + fβ = 0. Hence, f(z) = d1 and α(z) = −d1β(z). Therefore, w(z) = c1e
d1z

Case 2: α + β′ = 0.

Equation (3.13) can be written as ((w′ + β)/w)′ = 0. Thus we conclude that the

general solution as given by (4.46). �

Remark 4.3.4 Indeed, the solutions given by (4.46) when β 6= 0 and (4.47), (4.48)

when γ 6= 0 were obtained in [12] using Nevanlinaa theory. If β or γ or h are non-

polynomial rational functions, then in general these solutions are not meromorphic

in the complex plane because they are branched at fixed singularities while they are

meromorphic in Ω(λ, ρ) as well as admissible if λ < 1. In other words, we could

allow for the solutions to be branched at fixed singularities.



Chapter 5

Conclusion

This thesis has been motivated by the desire to extend the idea of using the

simple singularity structure of solutions as a way of finding integrable equations,

to the use of singularity structure as a tool for finding all particular solutions with

simple singularity structure, even for non-integrable equations. Based on the success

of the Painlevé property, perhaps the first guess for an appropriate class of solutions

that one might reasonably expect to be able to find is the class of solutions with only

poles as movable singularities. The main difficulty in working with this class is in

proving that all such solutions have been found. In the case of the Painlevé property

it is enough to show that an equation has a single solution with branching around

a movable singularity in order to remove the equation from further consideration.

This can often be done using series methods alone. When dealing with individual

solutions the situation is much more delicate. In this case, in order to use series

methods, we need to address the question of whether a solution takes a particular

value often or has many poles. This kind of question is naturally addressed in

Nevanlinna’s theory of the value distribution of meromorphic functions. In order to

use the classical theory we have to make two further assumptions about our solutions:

they need to be globally meromorphic (i.e., not only are their movable singularities

113
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poles, but so are any fixed singularities) and they must be admissible in the sense

that the Nevanlinna characteristic of the solution must grow faster than that of the

the coefficients.

The original work in chapter 3 of this thesis was directed at finding all admissible

meromorphic solutions of equation (3.14). In most cases we were able to show that

any such solution must also solve a first-order equation that ultimately could be

transformed to either a linear equation, a Riccati equation or an equation of the

form (u′)2 = P (u), where P is a polynomial of degree at most four, possible after a

change of variables. The remaining cases were studied using resonance conditions and

were related to the first and second Painlevé equations. Some of the solutions that we

were led to in our proof Theorem 3.2.1 failed to be admissible or even meromorphic.

Interestingly, all of the solutions that failed to be meromorphic did so purely because

of non-pole fixed singularities. This further confirms the original intuition that one

should allow solutions to be branched at fixed singularities.

Chapter 4 was a first attempt at constructing a theory that would allow us to

consider solutions that are branched at fixed singularities. We started with a self-

contained introduction to the Tsuji version of Nevanlinna theory for functions mero-

morphic in the half-plane. This was then extended to functions meromorphic in a

larger sector outside a disc centred at the origin. We then applied this theory to

differential equations in which all fixed singularities were contained in the deleted

disc. In this way, we were able to consider solutions with branching at the fixed

singularities. After deriving some simple analogues of some classical theorems, we

returned to our main equation as well as some solutions to equation (3.13) consid-

ered in the work of Halburd and Wang. We were able to keep some, but not all,

of the previously discovered solutions as some solutions did not satisfy the required

admissibility assumptions. We hope to address this problem in future work.
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