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Abstract

Coronal mass ejections (CMEs) are large-scale eruptions of plasma from the coronae of stars. Understanding the plasma
processes involved in CME initiation has applications for space weather forecasting and laboratory plasma experiments.
James et al. used extreme-ultraviolet (EUV) observations to conclude that a magnetic flux rope formed in the solar
corona above NOAA Active Region 11504 before it erupted on 2012 June 14 (SOL2012-06-14). In this work, we use
data from the Solar Dynamics Observatory (SDO) to model the coronal magnetic field of the active region one hour
prior to eruption using a nonlinear force-free field extrapolation, and find a flux rope reaching a maximum height of
150Mm above the photosphere. Estimations of the average twist of the strongly asymmetric extrapolated flux rope are
between 1.35 and 1.88 turns, depending on the choice of axis, although the erupting structure was not observed to kink.
The decay index near the apex of the axis of the extrapolated flux rope is comparable to typical critical values required
for the onset of the torus instability, so we suggest that the torus instability drove the eruption.
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1. Introduction

Coronal mass ejections (CMEs) are large-scale eruptions of
plasma from the coronae of stars, and there is currently no
consensus regarding their cause. Understanding the stability of
the plasma structures involved in CME initiation is important
for forecasting space weather sufficiently far in advance of
CME arrival at Earth.

Solar CMEs have large kinetic energies (∼1032 erg;
Forbes 2000), so many CME models describe processes by
which an increasing amount of energy is stored in the corona
and then suddenly released (Forbes 2000). The question of
what processes cause this storage and release of energy in
CMEs is closely tied to understanding the pre-eruptive
configuration of the corona, because certain eruption mechan-
isms may only be relevant to specific topologies. Measure-
ments taken at 1 au have in some cases revealed that CMEs
arriving at Earth contain twisted magnetic structures called flux
ropes (Burlaga et al. 1981), however it is debated whether these
flux ropes form before or after CME onset (Antiochos
et al. 1999; Moore et al. 2001; Green & Kliem 2009).

There are a wide range of proposed CME triggers that bring
the coronal magnetic field to the brink of eruption, including
rotation of sunspot fragments around each other (e.g., Yan
et al. 2012; James et al. 2017), magnetic reconnection (e.g., flux
cancellation; van Ballegooijen & Martens 1989, and tether-
cutting; Moore et al. 2001), and the helical kink instability of a
flux rope (Török & Kliem 2005), but there are only two main

groups of theories regarding the process that drives the rapid
expansion of CMEs. One group assumes that CMEs are driven
by an ideal magnetohydrodynamic instability involving a flux
rope, such as the torus instability (van Tend & Kuperus 1978;
Kliem & Török 2006; Démoulin & Aulanier 2010), whereas the
other set of theories assumes that CMEs are driven by flare
reconnection (Antiochos et al. 1999; Temmer et al. 2010;
Karpen et al. 2012).
James et al. (2017; hereafter Paper I) observationally studied

the pre-eruptive configuration of a CME that occurred on 2012
June 14. The CME originated from NOAA Active Region 11504
when it was near the center of the solar disk. Extreme-ultraviolet
(EUV) images show a transient sigmoid during a confined flare
two hours before the CME, suggesting that a flux rope was
present before the onset of eruption, and the flux rope footpoints
were inferred by EUV dimmings and flare ribbons. For details on
observational signatures of flux ropes, see Paper I and references
within. Observations from a number of EUV channels suggest
that the flux rope formed by reconnection in the corona rather
than in the photosphere or chromosphere, which is confirmed by
the measured coronal plasma composition in the flux rope. For
more examples of flux ropes formed via coronal reconnection,
see Patsourakos et al. (2013) and Nindos et al. (2015).
The conclusions of Paper I were based on indirect indications

of the flux rope, because presently we are unable to directly
measure the coronal magnetic field. However, techniques have
been developed to extrapolate the coronal magnetic field from
complex (but routinely available) photospheric measurements
under the assumption that the corona is in a force-free state
(Wiegelmann & Sakurai 2012), i.e.,

´ = ( )J B 0, 1
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where B is the magnetic field vector and J is the electric
current density

m
=  ´ ( )J B

1
. 2

0

This assumption is satisfied by either a potential field
(J = 0), or a field in which electric currents are parallel to the
magnetic field vector (∇× B = αB). In the nonlinear case,
the force-free parameter, α, varies for different field lines.
The nonlinear force-free field (NLFFF) approximation is the
simplest method that can reproduce the electric currents and
complex distributions of twist associated with a flux rope
embedded in an arcade.

In this work, we use an NLFFF extrapolation to test the
hypothesis of Paper I, that a flux rope formed before the CME
that occurred at ≈13:30 UT on 2012 June 14, and investigate
the cause of its eruption.

2. Data, Method, and Validation of the Model

The NLFFF extrapolation of NOAA Active Region 11504
was performed using a photospheric magnetogram produced by
the Helioseismic and Magnetic Imager (HMI; Scherrer
et al. 2012) on board the Solar Dynamics Observatory (SDO;
Pesnell et al. 2012). The chosen magnetogram was taken at
≈12:24 UT on 2012 June 14: approximately one hour after the
first observational indication that a flux rope was present, and
one hour before the CME began (see Paper I).

The observed EUV sigmoid extended to the south of the
NOAA Active Region 11504 before the CME occurred (see
Figure 5(c) of Paper I), and so the field-of-view of the publicly
available HMI SHARP series magnetogram (Bobra et al. 2014)
was too small to accurately reproduce the sigmoidal field in the
extrapolation. A bespoke SHARP-style magnetogram was
produced with a large enough field-of-view to accommodate
the size of the sigmoid (≈400″×600″), while still excluding

as much of the dispersed negative magnetic flux to the south of
the active region as possible (see the red boxes in Figure 1).
The magnetogram was re-binned to 1/6 resolution, such that

each pixel in the cylindrical equal-area projection represents an
angular diameter of 0°.18 (equivalent to 3″or ≈2.18Mm at
disk center when viewed from 1 au) and smoothed using the
median of a 7-pixel boxcar. To alleviate the impact on the
extrapolated field caused by the isolated negative magnetic flux
to the south of the active region, a balance of positive and
negative magnetic flux was enforced over the magnetogram
corresponding to an increase of 5.2 G in each pixel (which is
far smaller than the 100 G error estimation suggested by
Hoeksema et al. (2014) and corresponds to a total change of
13.6% in the open field flux). The magnetogram was then pre-
processed using the method of Fuhrmann et al. (2007) to
reduce the total Lorentz force by applying variations to the
horizontal and vertical magnetic field components. Modifica-
tions to the observed horizontal (vertical) field component in
each pixel were limited to 80 G or 30% (30 G or 10%) of its
initial value—whichever is largest.
The coronal magnetic field was then extrapolated from the

pre-processed magnetogram using the magnetofrictional
NLFFF method detailed by Valori et al. (2010), yielding a
model of the active region with a force-free parameter
σJ≈25% (Wheatland et al. 2000) and solenoidal error limited
to 9% of the total energy (Valori et al. 2013). The top boundary
of the extrapolation volume was chosen to sufficiently
accommodate the height of a toroidal flux rope with a footpoint
separation as indicated in Figure6 of Paper I.
To check the validity of the extrapolation, we compare the

extrapolated magnetic field to EUV observations of the active
region produced by the Atmospheric Imaging Assembly (AIA;
Lemen et al. 2012) on board SDO after re-projecting the
NLFFF extrapolated field lines onto the AIA plane-of-sky
images (as in Polito et al. 2017). Figure 2 shows that the
extrapolation reproduces the large-scale active region emission

Figure 1. HMImagnetograms of the Sun taken on 2012 June 14. Positive (negative) magnetic flux is shown in white (black), and saturated at±1000 G. The left panel
is a line-of-sight magnetogram for context, and the right panel shows the radial magnetic field component in cylindrical equal-area projection. The red boxes show the
boundary of the SHARP-style magnetogram that was used for the NLFFF extrapolation, containing NOAA Active Region 11504.
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structures seen in the 193Å channel of AIA, including field
lines that fan out from the edges of the active region and a
sheared arcade in the core of the active region (shown by the
southern group of white field lines in Figure 2(a)) that matches
the observed sheared arcade (see Section 3.3 and Figure5 of
Paper I for more details).

3. The Pre-eruptive Flux Rope

We use the force-free parameter, α, as a proxy for twist in
the extrapolated magnetic field. Figure 3(a) shows a volume
between the active region sunspots in the NLFFF model, where
α is large relative to the rest of the extrapolated field (see
Figure 3(a)). Visualizing magnetic field lines that pass through
this region where α>0.02Mm−1 reveals a flux rope (see
Figures 3(b) and (c)). The location and shape of the flux rope
remarkably matches most, if not all, of the observational
constraints identified in Section4 of Paper I.

The flux rope extends high in the corona, with its highest
point reaching ≈150Mm (≈0.2 Re) above the photosphere.
The axis of the flux rope is not planar, but is oriented roughly
eastward and inclined to the south with respect to the vertical.
The flux rope is highly asymmetric and has a strongly
inhomogeneous distribution of right-handed twist. The flux
rope cross-section shown in Figure 3(a) has a major diameter of
≈105Mm and a minor diameter of ≈35Mm.
The footpoints of the extrapolated flux rope are located in the

north-western penumbra of the positive sunspot and to the
south of the negative sunspot. EUV observations, however,
suggest that the western footpoint of the flux rope was rooted in
the south-western penumbra of the positive sunspot during the
eruption (see Figure6 of Paper I). This difference of
approximately half the sunspot diameter could be due to
modification of the magnetogram induced by pre-processing, to
the difference in time between the pre-eruptive extrapolation
and observations during the dynamic phase of the eruption, or
to projection effects in the coronal EUV data.

Figure 2. The extrapolated coronal magnetic field (left) closely matches a number of active region features observed in the 193 Å channel of AIA (right). The AIA
image is saturated at 2500 DN s−1 pixel−1.

Figure 3. (a) Vertical slice at x=67 pixels to show α through the extrapolation volume. A large region of high α is outlined by a red box and used to define the extent
of the flux rope. (b) The flux rope in the extrapolated field as seen from the same perspective as SDO. (c) Side-on view of the extrapolated flux rope. Flux rope stream
lines are drawn through the selected region of α>0.02 Mm−1 shown in panel (a) and are each given a fixed color along their length.
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In addition to the set of observations presented in Paper I, a
differential emission measure (DEM) inversion was performed
using the method of Cheung et al. (2015) to study the thermal
emission of the active region. At the time of the extrapolation,
the sigmoid and underlying flare arcade observed in the
active region emitted most strongly in the temperature range
log(T/K )=6.85–7.15. This is consistent with their observa-
tion in the 131Å channel of AIA, which has a peak in
temperature response at 11MK (Lemen et al. 2012), and
confirms flux rope temperatures from previous DEM studies
(e.g., Cheng et al. 2012). The shape of the sigmoid in the EUV
observations and DEM closely matches extrapolated field lines
that pass through the strong region of current density in the
bottom-third of the flux rope (see Figure 4).

Field lines that reproduce the observed sheared arcade were
also found to pass through a region of strong current beneath
the flux rope (see the green field lines in Figures 4(c) and (d);
the average value of α here is ≈0.07Mm−1). In addition to the
many observational details summarized above, the similarly hot

temperatures and high current densities of the sigmoid and the
arcade support the hypothesis of Paper I that the flux rope and
flare arcade form as the products of magnetic reconnection in
the corona.
The flux rope (as defined by the region of large α in the red box

in Figure 3(a)) contains 4×1020 Mx of magnetic flux (≈3% of
half the unsigned active-region flux). The average value of α in
the flux rope is ≈0.07Mm−1, as in the part of the sheared arcade
where the current density is stronger. The total electric
current within the flux rope is 2.3×1011 A, with an average
current density of 9.9×10−5 A m−2. These values are similar in
magnitude to previous estimations of currents in prominences
(Filippov et al. 2015, and references within).

3.1. Twist and Writhe

The flux rope is twisted and extends very high in the
atmosphere, so we investigate whether it is actually stable.
According to the test in Section4.3 of Valori et al. (2010), an

Figure 4. (a) EUV image of NOAA Active Region 11504 in the 131 Å channel of AIA showing the bright central flare arcade and the faint sigmoid. The image is
saturated at±200 DN s−1 pixel−1. (b) Differential emission measure of NOAA Active Region 11504 in the temperature range log(T/K )=6.85–7.15 shows the flare
arcade and sigmoid. (c) Electric current in a vertical slice taken through the extrapolation volume. The flux rope appears as a region of relatively high current, which is
particularly strong at the bottom of the flux rope. Stream lines are drawn through regions of strong current that match the EUV observations of the sigmoid (blue) and
the flare arcade (green). (d) The extrapolated sigmoidal and flare arcade stream lines from panel (c) as viewed from the perspective of SDO, imposed on the
extrapolated magnetogram.
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unstable equilibrium would result in an uncommonly long
computational time, which was not recorded in this case.

The helical kink instability will occur if the flux rope twist
exceeds a critical value. To quantify the twist in our very
asymmetric case, the twist of individual field lines in the flux
rope was calculated around an axis, and the average was taken
(Guo et al. 2010, 2013). Following Guo et al. (2017), the axial
field line is defined as the field line with the smallest ratio of
tangential-to-normal magnetic field components with respect to
a plane roughly perpendicular to the body of the flux rope.

Given the marked asymmetry of the flux rope, we took three
slices through the flux rope with different inclinations, resulting
in three axes and therefore three values of the average twist,
namely 1.35, 1.61, and 1.88 turns. The axes are similar in
height and length (for reference, the first axis is ≈350Mm long
and reaches up to ≈120Mm above the photosphere). The same
set of flux rope field lines were used to determine the twist
around each of the three axes.

Török & Kliem (2003) examined a Titov & Démoulin
(1999) flux rope topology and found a critical twist of 3.5π
(1.75 turns) for the onset of the helical kink instability. This
twist threshold is comparable to two of the values obtained for
the asymmetric, non-uniform flux rope in this work.

The observations detailed in Paper I show no significant sign
of the flux rope kinking before or during the eruption. In fact,
the axis of the flux rope changed so little that the CME
configuration measured in situ closely matched the pre-eruptive
configuration (Palmerio et al. 2017). Therefore, we suggest that
the critical twist required for this flux rope to become kink
unstable was not reached.

The writhes of the three axes were 0.29, 0.09, and −0.07
turns. The axis that resulted in the largest value of average twist
was the one with the smallest writhe, and vice versa. Therefore,
the sum of the twist and writhe is closer to being independent
from the choice of the plane used to determine the axis
(as expected; Török et al. 2010).

Guo et al. (2017) concluded that a good proxy of the
magnetic helicity in the current-carrying field inside a finite
volume is

= F +( ) ( )H Twist Writhe , 3TW
2

where Φ is magnetic flux. In our case, using the total magnetic
flux in the flux rope, this method gives a maximum helicity
estimate of ≈3×1041 Mx2. On the other hand, using the
extrapolated field, the helicity of the closed, current-carrying
field, HJ, in the extrapolation volume is ≈4×1042 Mx2, which
is 14 times larger than HTW. Part of this discrepancy may
originate from underestimating the magnetic flux in the flux
rope when defining the boundary of the flux rope using the
force-free parameter, α. However, because HTW scales with Φ2,
there would need to be a factor of 14 ≈3.7 error in the
magnetic flux to fully explain the difference.

The mutual helicity between the potential field and current-
carrying field, HPJ (as defined, e.g., by Equation(11) in Pariat
et al. 2017),≈1×1043Mx2. The total helicity in the extrapolation
volume is then given by H=HJ+2HPJ≈2.4×10

43Mx2. We
are able to provide the first estimation of the eruptivity proxy
recently introduced by Pariat et al. (2017) for an NLFFF
extrapolation of an active region, equal to HJ/H=0.17.

3.2. Decay Index

A toroidal magnetic structure, such as a flux rope, may be
unstable to perturbations if the overlying magnetic field
strength decreases too rapidly with height. This phenomenon
is referred to as the torus instability (Kliem & Török 2006). The
rate of change of magnetic field strength with height may be
quantified by the decay index, n, defined as

= - ( )n
d B

d R

ln

ln
, 4

pext,

where Bext,p is the strength of the poloidal component of the
magnetic field external to the flux rope (non current-carrying),
and R is the major radius of the torus.
In order to estimate the decay index at the height of the flux

rope, we perform a potential field extrapolation using the method
of Alissandrakis (1981) to approximate magnetic field external to
the flux rope, and take the poloidal component as perpendicular
to the central section of the flux-rope axis. We compute the decay
index using the gradient of the poloidal field component in two
planes inclined parallel with, and perpendicular to, the axis of the
flux rope (see Figure 5).
The decay index near the center (axis apex) of the

extrapolated flux rope is equal to 1.8 (2.0). The value of the
critical decay index required for the torus instability of a
symmetric torus with a large aspect ratio is 3/2 (Bateman 1978;
Kliem & Török 2006), and a number of studies have found
similar values in magnetohydrodynamic simulations (Török &
Kliem 2007; Aulanier et al. 2010; Kliem et al. 2013; Zuccarello
et al. 2015, 2016). However, some studies have also found
lower and higher critical decay indices (e.g., ncrit=1.1–1.3;
Démoulin & Aulanier 2010, and ncrit≈2; Fan 2010). The
extrapolated asymmetric flux rope lays in the upper range of the
known stability limit for the torus instability, which is
compatible with the eruption of the flux rope occurring one
hour later.

4. Conclusions

In this study, we test the hypothesis of James et al. (2017;
Paper I) that a magnetic flux rope formed in the corona of
NOAA Active Region 11504 before erupting as a CME. We
produce an NLFFF extrapolation of the coronal magnetic field
from a photospheric magnetogram one hour before the onset of
eruption that closely supports the observational conclusions of
Paper I.
The axis of the extrapolated flux rope reaches ≈120Mm

above the photosphere (≈150Mm at the top of the flux rope).
The decay index near the center of the flux rope is ≈1.8, which
is comparable to the critical value for the torus instability onset
determined in other works. Therefore, we argue that the torus
instability drove the eruption.
The extrapolation represents the coronal magnetic field one

hour before the eruption. During that hour, it is likely that a
triggering process further evolved the field (for reference, the
coronal transit time in our model is about 140 s). Vemareddy
et al. (2017) observed the eruption of a highly twisted
prominence (flux rope; 2.96 turns), and concluded that the
helical kink instability caused the system to rise to the point at
which the torus instability set in. Our flux rope has an average
twist in the range of 1.35–1.88 turns, and although this is
similar to estimates of the critical twist for the kink instability
to occur, the observations presented in Paper I suggest that
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kinking did not occur. However, the flux rope in this study
forms already high in the corona and does not need to be raised
by another mechanism. Instead, the motion of umbral sunspot
fragments around each other may have inflated and therefore
weakened overlying field, leading to the torus instability. Our
NLFFF extrapolation closely matches this scenario proposed in
Paper I, and therefore further supports the proposal that the
eruption was triggered by photospheric flows and driven by the
torus instability.
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