1. Title Page

Title:
Efficacy and safety of intravitreal anti-TNF drugs in adults with non-infectious uveitis – a systematic review

Running head: Intravitreal anti-TNF drugs in adults with non-infectious uveitis – a systematic review

Authors
Inês Leal¹,²,³, Filipe B Rodrigues⁴,⁵,⁶, David C Sousa¹,²,³, Vasco Crispim Romão⁷,⁸, Gonçalo S Duarte⁴,⁵, Ester Carreño⁹, Andrew D. Dick⁹,¹⁰,¹¹, Carlos Marques-Neves¹,²,³, João Costa⁴,⁵,¹²,¹³, João Eurico Fonseca⁷,⁸

Affiliations
¹ Department of Ophthalmology, Hospital de Santa Maria-CHLN, Lisbon Academic Medical Centre, PT
² Department of Ophthalmology, Faculdade de Medicina, Universidade de Lisboa, PT
³ Centro de Estudos das Ciências da Visão, Faculdade de Medicina, Universidade de Lisboa, Lisbon, PT
⁴ Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, PT
⁵ Clinical Pharmacology Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, PT
⁶ Huntington’s Disease Centre, University College London, London, UK
⁷ Department of Rheumatology, Hospital de Santa Maria-CHLN, Lisbon Academic Medical Centre, PT
⁸ Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, PT
⁹ Clinical Research Unit, Bristol Eye Hospital NHS Foundation Trust, Bristol, UK
¹⁰ School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
¹¹ National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
Evidence Based Medicine Centre, Faculdade de Medicina, Universidade de Lisboa, Lisbon, PT
Portuguese Collaborating Centre of the Cochrane Iberoamerican Network, Faculdade de Medicina, Universidade de Lisboa, Lisbon, PT

Corresponding author
João Eurico Fonseca
Rheumatology and Metabolic Bone Diseases Department,
Hospital de Santa Maria, CHLN,
Rheumatology Research Unit, Instituto de Medicina Molecular,
Faculty of Medicine, University of Lisbon,
Lisbon Academic Medical Centre, Portugal
Av. Professor Egas Moniz
1649-035 Lisboa, Portugal
jecfonseca@gmail.com
Telephone number: +351 217 805 252
Fax number: +351 217 805 653
2. Abstract

Purpose: Anti-tumor necrosis factor (TNF) drugs have been extensively used in non-infectious uveitis (NIU), when corticosteroids or conventional immunosuppressive drugs cannot adequately control inflammation or intolerable side effects accrue. However, systemic anti-TNF therapies are also associated with a myriad of side effects. Therefore, intravitreal administration of anti-TNF biologics has been employed to minimize patient morbidity and systemic adverse effects, while maintaining therapeutic effectiveness. We undertook a systematic review to determine evidence of efficacy and safety of intravitreal administration of anti-TNF drugs in adults with NIU.

Methods: We conducted this systematic review according to the PRISMA guidelines. The protocol was registered with PROSPERO (CRD42016041946). We searched CENTRAL, MEDLINE and EMBASE, from inception to April 2017, as well as clinical trial registries and grey literature. The qualitative analysis included all studies of adult patients with a diagnosis of NIU and who received intravitreal anti-TNF drugs with a 4-week minimum follow-up.

Results: A total of 4840 references were considered for title and abstract screening. Seven full-texts were screened and five studies were considered for analysis. All studies were open-label, single-center, prospective, non-randomized, interventional case-series with a follow-up between 4 and 26 weeks, employing either adalimumab in two studies and infliximab in three. Three studies showed a treatment effect of anti-TNF intravitreal injections, while one study revealed short-term improvement and one study revealed no efficacy of anti-TNF intravitreal therapy. None of the studies reported ocular adverse effects but only two studies included electrophysiological assessment in the safety analysis and no study assessed systemic human anti-drug antibodies.

Conclusion: The available evidence is not sufficiently robust to conclude about the clinical effectivity of intravitreal anti-TNF in NIU and so no recommendation can be made. Intravitreal injection of anti-TNF antibodies remains a possible treatment option to be explored through robust clinical investigation.

Key-words: non-infectious uveitis, intravitreal, anti-tumor necrosis factor, biologics.
3. Text

Background

Uveitis comprises a heterogeneous group of intraocular inflammatory diseases. (Cordero-Coma & Sobrin 2015, Jabs 2005, Levy-Clarke et al. 2014) Non-infectious uveitis (NIU) are thought to result from an immune-mediated response to ocular antigens. Immune responses against ocular antigens in uveitis remain unknown, although retinal arrestin (also known as Soluble antigen or S-Ag) and interphotoreceptor retinoid binding protein (IRBP) have been proposed. (Mattapalliil et al. 2011) Similarly, mechanisms of disease are not fully elucidated, in part because of the heterogeneity of uveitic conditions that we categorise under the umbrella term “NIU”. There is evidence that highlights the possibility that both autoinflammatory and autoimmune responses are operative in NIU. In particular, where activation of innate immune response leads to development of adaptive immune responses. (Janssen et al. 2012, Lee et al. 2014) Notwithstanding which pathways are at play, late complications of uveitis, such as cataract, glaucoma, or chronic macular edema can be sight threatening. (Androudi et al. 2010, Caspi 2010, Cordero-Coma & Sobrin 2015, Srivastava, Rajappa & Kaur 2010) and in developed countries, they represent one of the leading causes of blindness in the working age population. (Durrani et al. 2004) Substantial healthcare costs, workforce absence, leave of absence and long-term disability have been associated to NIU. (Thorne et al. 2016).

Overall, the goals of NIU therapy are to reduce ocular inflammation, avoid damage to anatomical structures, and prevent visual loss. (Cordero-Coma & Sobrin 2015, Levy-Clarke et al. 2014) Although corticosteroids have been the mainstay of therapy, they are often insufficient for adequate disease control, and are associated with numerous well-known systemic and local complications. (Lin, Suhler & Rosenbaum 2014, Pavesio et al. 2010, Sánchez-Cano et al. 2013) When inflammation is not well controlled by corticosteroids or side effects are unacceptable or intolerable, systemic immunomodulatory therapy (IMT) should be considered. Current IMT options comprise the biologics, such as monoclonal antibodies (mAb) and fusion proteins. (Giuliari, Sadaka & Hinkle 2014, Pasadhika & Rosenbaum 2014, Pavesio et al. 2010, Srivastava, Rajappa & Kaur 2010)

Different cytokines and chemokine have been involved in the pathogenesis of uveitis and have been shown to be elevated in patients with uveitis. (Carreño et al. 2016) Tumor necrosis factor (TNF) has been the leading target for NIU biologic treatment. (Caspi 2010, Cordero-Coma & Sobrin 2015, Dick et al. 2004, Nakamura et al. 1994, Srivastava, Rajappa & Kaur 2010) As a pleiotropic and multifunctional cytokine, TNF plays a pivotal role in ocular inflammation, via
reactive oxygen species, promotion of angiogenesis and breakdown of the blood-retinal barrier (BRB), being associated with the development of sight-threatening NIU-associated complications.(Caspi 2006, Caspi 2010, Cordero-Coma & Sobrin 2015, Levy-Clarke et al. 2014, Markomichelakis et al. 2012, Pulido et al. 2010, Shim 2011) Anti-TNF drugs have established efficacy in several systemic inflammatory conditions related to NIU such as Behçet disease(Hatemi et al. 2008), spondyloarthritis(Zochling et al. 2006), sarcoidosis(Maneiro et al. 2012) or juvenile idiopathic arthritis(Kalinina Ayuso et al. 2014, Ostring & Singh-Grewal 2013). The inactivation of TNF can been achieved with mAb, such as infliximab, adalimumab, golimumab, and certolizumab-pegol, or with receptor fusion proteins, as etanercept.(Cordero-Coma & Sobrin 2015, Levy-Clarke et al. 2014, Pulido et al. 2010) Currently these drugs are only approved for systemic administration and their route of administration and half-life are summarized on Error! Reference source not found. (adapted from Pascual-Camps, 2014). (Pascual-Camps et al. 2014)

Although these compounds are approved for other chronic immune-mediated inflammatory diseases and have shown positive results in the treatment of NIU (with variable levels of evidence and excluding etanercept), their use in NIU remains largely off-label, with the exception of adalimumab that was recently licenced after the publication of the VISUAL I and II trials.(Schwartzman 2016) (Jaffe et al. 2016, Levy-Clarke et al. 2014, Nguyen et al. 2016, Sánchez-Cano et al. 2013, Srivastava, Rajappa & Kaur 2010)

Several anti-TNF-related adverse effects have been described, such as reactivation of latent tuberculosis or hepatitis B virus, invasive fungal infections, central and peripheral neuropathies, and induction of immune disturbances.(Cordero-Coma & Sobrin 2015, Lawson, Thomas & Akobeng 2006, Levy-Clarke et al. 2014, Ma & Xu 2013, Pulido et al. 2010) Side effects related to systemic administration have led to the investigation of intravitreal route of administration, as an option that could curtail some of these unwanted effects while preserving therapeutic efficacy.(Levy-Clarke et al. 2014, Pascual-Camps et al. 2014) This route of drug delivery has been well established in uveitis treated with corticosteroids(Kane et al. 2008, Kempen et al. 2015, Reddy et al. 2016, Taylor et al. 2012), anti-vascular endothelial growth factor (VEGF), (Androudi et al. 2010, Tempest-Roe et al. 2013) or sirolimus.(Ibrahim et al. 2015, Vigil et al. 2015) In experimental autoimmune uveitis, intravitreal anti-TNF administration suppresses ocular inflammation particularly inhibiting macrophage activation that suppresses structural damage and prevents functional loss. Despite no direct effect in systemic cell migration to the eye, intravitreal anti-TNF has the opportunity and experimental evidence to curtail cell activation at the target site.(Khera et al. 2012) Nonetheless, in man, intravitreal administration of anti-TNF

The aim of this systematic review is to assess the efficacy and safety of intravitreal administration of anti-TNF drugs in adults with NIU, to discern opportunities and unmet needs.
Methods

Protocol and registration:
We conducted this systematic review and meta-analysis according to the PRISMA guidelines. (Liberati et al. 2009) The protocol was prospectively registered with PROSPERO (registration number: CRD42016041946) and done according to PRISMA-P guidelines. (Moher et al. 2015)

Eligibility criteria:
All studies, including case reports, case-series, cohorts, case-controls and clinical trials of adult patients – aged above 18 years old – with a clinical diagnosis of persistent NIU and where patients received intravitreal anti-TNF drugs with a minimum follow-up of 4 weeks. Persistent NIU is defined as inflammation of any part of the uvea (choroid, ciliary body and/or iris) that lasts for 3 or more months, after an infectious etiology has been excluded, or if there is a high suspicion of an immune-mediated underlying mechanism, which may occur isolated or in association with a systemic condition. (Jabs 2005) There were no restrictions regarding the number of participants reported in studies, year of and language of publication, publication status, or etiology of NIU.

Information sources:
For the identification of studies considered for inclusion in this review, detailed search strategies were developed for each database explored: Medline (from inception to April 2017), EMBASE (from inception to April 2017) and CENTRAL (from inception to April 2017). Grey literature was retrieved from appropriate databases from inception to April 2017 (www.opensigle.inist.fr; www.ntis.gov). Clinical trials registries (www.clinicaltrial.gov; www.clinicaltrialsregistry.eu) were also pursued from inception to April 2017. Non-English papers were equally assessed, translated as necessary and evaluated for inclusion. Reference lists were crosschecked, and whenever necessary, authors of published trials were contacted for further information and unpublished data.

Search:
The search strategy combined (uveitis) AND (etanercept OR infliximab OR adalimumab OR golimumab OR certolizumab). The search was restricted to humans. All terms were searched as free-text and as controlled vocabulary. The search strategies can be found in the Appendix 1.

Study selection:
Two independent review authors (DS, IL) assessed the references identified by the search strategy, read each of the titles and abstracts of the reports and selected for inclusion the appropriate ones. If there was no abstract, the report was retrieved in full text. Then, two review
authors (DS, IL) independently assessed the full-text articles for methodological quality and data extraction. Disagreements were resolved by discussion or by consensus with the participation of a third author (FBR).

Data collection process:
Two review authors (DS, IL) independently extracted the data onto standardized forms and crosschecked them for accuracy. Disagreements were resolved by discussion or reached by consensus with the participation of a third author (FBR).

Data synthesis
Due to the clinical and methodological heterogeneity of the available data, the studies retrieved were only qualitatively evaluated.
Results
Before de-duplication, a total of 5675 references were considered (MEDLINE 1582, Embase 4093, CENTRAL 93). Our grey literature strategy did not retrieve any reference. One reference was retrieved by hand-search (Hamza et al. 2016) De-duplication generated 4840 references for screening. After title and abstract screening, seven studies were examined in full-text. Two studies were further excluded, one due to inappropriate study design (narrative review (Yeh et al. 2012)) and another due to wrong patient population (age-related macular degeneration (Giganti et al. 2010)). Five studies enrolling a total of 57 patients were thus included in the final analysis: one published in 2010 (Androudi et al. 2010), two published in 2012 (Farvardin, Afarid & Shahrzad 2012, Markomichelakis et al. 2012), one published in 2014 (Hamam et al. 2014) and one study published in 2016 (Hamza et al. 2016). We did not retrieve any unpublished studies. See Figure 1 for the Systematic review flow diagram.

Study characteristics
All studies were open-label, single-center, prospective, nonrandomized, interventional case-series. The number of participants in each study ranged from 7 to 20. Overall, the studies enrolled a total of 66 eyes from 57 patients, based on an intention-to-treat population. All studies evaluated intravitreal injection of anti-TNF in an open-label fashion. Table 1 summarizes individuals’ studies characteristics regarding anti-TNF administered drug, dose, number and scheme of injections, and duration across studies. The main inclusion criteria were patients with active NIU in all but one study – Androudi, 2010, which included patients with controlled uveitis and persistent cystoid macular edema (CME) despite control of the inflammation. It is noteworthy that all studies bar two included patients with several etiologies of NIU. Markomichelakis, 2012 and Hamza, 2016 exclusively included patients with ocular inflammation associated with Behçet disease. Table 2 describes demographic characteristics of the enrolled subjects, uveitis etiologies, mean disease duration, possibility of concomitant conventional immunosuppressive treatment and number of patients naïve to anti-TNF drugs across studies. Across all studies, age ranged from 11 to 53 years-old and 32% (n=18) were female. All studies, except Farvardin, 2012, included adult patients only. Information about the lens status in each patient was provided only in Androudi, 2010. No study received industry funding.

The main outcome measures were: i) change in central macular thickness (CMT) on optical coherence tomography (OCT) in Androudi, 2010; ii) change in best-corrected visual acuity (BCVA) and change in CMT on OCT in Hamza, 2016; iii) change in the grade of inflammatory
anterior chamber cells and vitreous haze, change in fluorescein angiography (FA) score, change in CMT on OCT and change in electrophysiological tests in Hamam, 2014; iv) change in BCVA, change in the grade of inflammatory anterior chamber cells, vitreous haze and posterior segment in Markomichelakis, 2012; and v) change in BCVA, change in CMT on OCT, change in vitreous haze, number of patients with retinitis, vasculitis and papillitis and change in in electrophysiological tests in Hamza, 2016.

Tables 3 and 4 report results in each study regarding efficacy outcomes, namely number of patients with CME, mean OCT, mean CMT, mean BCVA, mean anterior chamber cells and mean vitreous haze at baseline and day 30 and the general authors’ conclusion about the efficacy of the intervention.

CMT measured by OCT significantly decreased in Markomichelakis, 2012 and Farvardin, 2012 whereas this decrease was not significant in Androudi, 2010. In Hamam, 2014, only the change in median CMT between baseline and final visit (week 26) was reported, being statistically significant. About the OCT device used to assess the macula, 2 studies used a spectral-domain OCT device (Androudi, 2010 and Hamam, 2014), while the other three, used a time-domain OCT device. Regarding BCVA change, in Hamza, 2016, Markomichelakis, 2012 and Farvardin, 2012 there was a significant improvement, whereas in Androudi, 2010 it did not change significantly. In Hamam, 2014, it is impossible to draw a similar conclusion since BCVA was only reported at baseline and 26 weeks, (at 4 weeks was only the median and interquantile range are reported). Anterior chamber cells assessment according to the Standardization of Uveitis Nomenclature (SUN)(Jabs 2005) Working Group reporting is available in Markomichelakis, 2012 and Hamam, 2014 studies. In the former, a significant decrease in this parameter between baseline and week 4 is reported, whereas in Hamam, 2014, information about this parameter is only available at baseline and week 26th. The vitreous haze is reported in four studies. In Markomichelakis, 2012, Hamam, 2014 and Hamza, 2016 this grading was performed according to the SUN(Jabs 2005), whereas in Farvardin, 2012 this grading was performed according to the BIO Score(Neri et al. 2013). In Markomichelakis, 2012, Hamza, 2016 and Farvardin, 2012, a significant vitreous haze difference was reported between baseline and week 4. In Hamam, 2014 study, the progression of the median of the vitreous haze was reported to decrease significantly after 26 weeks.
Regarding concurrent IMT, in Androudi, 2010 study, 4 patients were on oral IMT (with no further specification), one patient was not under nor had history of systemic IMT and 3 patients had a previous history of IMT (with no further specification); in Farvardin, 2012 study there is only mention to known absence of response to conventional IMT in the previous 3 months in all patients; in Hamam, 2014 study prior systemic IMT and results are detailed (patient 1 has received prior azathioprine and IFN-α-2a and had inflammation relapse, patient 2 has received prior cyclosporine A and discontinued 8 weeks after initiating intravitreal adalimumab, patient 3 had not received prior IMT and had documented inflammation relapse, patient 4 has received prior azathioprine and systemic adalimumab and had treatment failure, patient 5 has received prior azathioprine and had treatment failure, patient 6 has received prior methotrexate, IFN-α-2a and systemic with infliximab treatment failure and patient 7 received prior methotrexate, mycophenolate mofetil and azathioprine and was intolerant to conventional IMT; in Markomichelakis, 2012 study, 4 patients did not receive any prior IMT, 5 patients have received monotherapy with azathioprine or cyclosporine and 6 patients receiving combination therapy with azathioprine and cyclosporine. In this study, a sub-analysis was done to evaluate a possible influence of background IMT in these 3 subgroups of patients and statistical analysis did not reveal significant differences between the subgroups in all variables studied, including BCVA; finally in Hamza, 2016 study all patients received prior azathioprine and/or cyclophosphamidine and did not suspend their background treatments when entering in the study.

Safety outcomes are detailed in Table 5. Systemic adverse effects were not reported in any study. Only in Androudi, 2010, 2 patients discontinued the study due to participants’ preferences and one participant was lost to follow-up after the first injection. In the other four studies, there were no withdrawals independently of the reason. Only two studies reported electrophysiological assessment. No study assessed the development of anti-drug antibodies.

Taking the data together, three small observational studies (Hamam, 2014, Hamza, 2016 and Markomichelakis, 2012) showed a treatment effect of anti-TNF intravitreal injections in NIU when considering a variety of endpoints that were independently chosen for each study; one small observational study (Androudi, 2010) showed no efficacy of anti-TNF intravitreal injections, and one (Farvardin, 2012) found a short-term improvement in ocular inflammation with anti-TNF intravitreal injections. Finally, although a systematic review was performed according to PRISMA(Moher et al. 2015, The Prisma Group from Moher D, Liberati A, Tetzlaff J
2009) and Cochrane (Higgins & Green 2011) standards, we classified the level of evidence found as 3a according to Oxford Center for Evidence-Based Medicine 2011 Levels of Evidence (= et al. 2011) and no randomized controlled trials were retrieved in our search.
Discussion

Rationale for intravitreal administration of anti-TNF drugs

Anti-TNF drugs are widely used in several systemic immune-mediated conditions such as spondyloarthritis, rheumatoid arthritis and inflammatory bowel disease. Specifically, adalimumab is a recombinant human IgG1 monoclonal antibody specific for human TNF that blocks this molecule via an interaction with the p55 and p75 cell-surface TNF receptors. Infliximab is a monoclonal, chimeric (mouse/human) IgG1 κ antibody that binds to the soluble and transmembrane forms of TNF.

Firstly, the recently published VISUAL trials have provided level 1 evidence supporting the clinical efficacy of subcutaneous adalimumab in controlling inflammation and reducing the frequency of flares with a diverse range of uveitic diagnosis. Although not formally approved for NIU, there are an important number of studies with infliximab specifically in two underlying conditions: Behçet disease and juvenile idiopathic arthritis. Moreover, evidence of the efficacy and safety of adalimumab and infliximab in adult NIU may also be found in case reports and prospective case series. Secondly, systemic TNF blockade can cause adverse events such as serious infections (notably tuberculosis reactivation), heart failure exacerbation and demyelinating disease. Local treatment of uveitis remains useful, namely with steroids in both adult and pediatric uveitis. Thus, the possibility to administer these drugs directly into the eye may minimize systemic adverse effects of anti-TNF drugs, while achieving local therapeutic concentrations. In support, intravitreal anti-TNF administration has been studied in...
animal models with variable effects regarding efficacy and retinal toxicity. (Giansanti et al. 2008, Manzano et al. 2011, Melo et al. 2012, Theodossiadis et al. 2009, Tsimiliaris et al. 2009, Yuksel et al. 2014) The aim of the five studies included in our systematic review was to evaluate the safety and efficacy of intravitreal injections of anti-TNF drugs.

Although not fully understood, one pivotal purported mechanism in idiopathic NIU is activation and expansion of retinal antigen-specific CD4+ T lymphocytes and elaboration of non-specific innate immune responses. (Kerr et al. 2008, Khera et al. 2012, Lee et al. 2014) Also, high levels of the cytokine TNF in the aqueous humor of patients with NIU have been described in literature. (Kuiper et al. 2011, Sijssens et al. 2007) Thus, the inceptive rational for the intravitreal use of anti-TNF drugs is based on the efficacy of these drugs in NIU when used systemically (Durrani et al. 2016, Interlandi et al. 2014, Lin, Suhler & Rosenbaum 2014, Suhler et al. 2005, Vallet et al. 2016) and the capability to rapidly reach therapeutic drug levels in the eye when used intravitreally. (Modorati & Miserocchi 2012) One reason that may explain the lack of efficacy or long-term efficacy in some of the studies is that their mechanisms of action may not be effective when administered locally in the eye, given the systemic nature of the diseases underlying the inflammatory process. (Jaffe et al. 2016, Nguyen et al. 2016, Suhler et al. 2005, Tempest-Roe et al. 2013) Indeed, even in specific uveitic conditions with inflammation classically confined to the eye, such as birdshot chorioretinopathy, a systemic immune deviation has been shown. (Daien et al. 2017, Kuiper et al. 2011, Lee et al. 2014, Yang & Foster 2013) In the future, the combination of local and systemic anti-TNF therapy may be a reality to achieve optimal control of inflammation in NIU, alongside a more favorable safety profile. (Khera et al. 2012, Lee et al. 2014)

Summary of evidence
In four of the five included studies, although not long-lasting, a favorable outcome in terms of anatomy and function is reported. In Androudi, 2010 intravitreal adalimumab showed no efficacy in improving BCVA or decreasing CMT; however, it should be noted that in this particular study, all patients had refractory CME at baseline. Uveitic CME is thought to result from increased vascular permeability due to the breakdown of BRB and is a major risk factor for vision loss (Fardeau et al. 2015, Goldhardt & Rosen 2016) and often difficult to manage. (Androudi et al. 2010, Deuter et al. 2016, Fardeau et al. 2015, Goldhardt & Rosen 2016) As long standing CME will result in irreversible damage to as a result of outer retinal and photoreceptor damage, anatomical resolution of the CME will not lead to improvement in BCVA. (Androudi et al. 2010)
Notwithstanding this fact, in this study, the change in CMT with intravitreal adalimumab from baseline to the end of follow-up was not significant, a finding that may in part be explained by the small sample size.

In the five included studies there were no ocular adverse effects reported, although safety assessment was limited.

Safety Monitoring

With intravitreal administration, safety concerns have been raised by the experience of the use of anti-TNF in other ocular non-inflammatory conditions. (Yuksel et al. 2014) Specifically, infliximab injections may be both retinotoxic (documented with electrophysiology) (Giganti et al. 2010) and immunogenic. (Giganti et al. 2010, Wu et al. 2011) Only Hamza, 2016 and Hamam, 2014 included electrophysiological assessment, and their limited data showed that intravitreal infliximab and adalimumab, respectively, were not toxic. Another main concern with intravitreal anti-TNF is the potential immunogenicity, an adverse effect that has been reported in studies with intravitreal anti-TNF for non-uveitic conditions. (Arias et al. 2010, De Freitas et al. 2013, Giganti et al. 2010, Semeraro et al. 2013, Theodossiadis et al. 2009, Wu et al. 2011) None of the studies reported here demonstrated immunogenicity. However, in uveitic eyes an immunogenic reaction or change in pattern of the pre-existent inflammation is difficult to assess. (He et al. 2013) No study assessed systemic human anti-drug antibody responses. As such we are limited in concluding on the extent of immunogenicity following intravitreal administration in inflamed eyes.

Need for repeated injections

In Hamza, 2016 study, a need for repeated injection was inferred as a result because of deterioration in BCVA and increased vitreous haze between week 4 and 6. Markomichelakis, 2012 study recommends that repeated intravitreal versus intravenous administration of infliximab should be trialled. (Markomichelakis et al. 2012) Farvardin, 2012 proposes that the beneficial effect of intravitreal infliximab is not long lasting and, therefore, multiple injections may be required to achieve optimal inflammation control (Farvardin, Afarid & Shahrzad 2012), similarly to the current systemic treatment protocol with adalimumab or infliximab. (Jaffe et al. 2016, Jaffe et al. 2016, Mushtaq et al. 2007, Suhler EB, Smith JR, Giles TR, Lauer AK, Wertheim MS, Kurz DE, Kurz PA, Lim L, Mackensen F, Pickard TD 2009)

Limitations and unmet needs
Study designs were disparate across studies, namely regarding the anti-TNF drug used and the concentration and number of injections administered. Baseline population characteristics also presented differences, especially with respect to uveitis etiology. In addition, the OCT device used to image and measure CMT was different across studies contributing to differences that have been acknowledged regarding retinal thickness analysis and segmentation algorithms in the several studies.(Mylonas et al. 2009). The fact that concurrent/prior IMT is detailed only in 3 of 5 studies is a limitation in the interpretation these studies. We therefore emphasize the importance of specifically reporting these data, in order to draw more accurate conclusions of studies evaluating treatment outcomes in uveitis.

Finally, all studies had a small sample size. Further well-conducted and properly sized randomized controlled trials are needed to ascertain the effects of intravitreal anti-TNF drugs in NIU. Future studies should provide more robust and fast evidence of efficacy as well as determine intravitreal half-life and toxic effects.(Androudi et al. 2010) Following this step, and depending on the nature of the results, comparative, well-designed and adequately powered, randomized clinical trials should be sought. (Pulido et al. 2010)

Conclusions

Overall, the evidence is not sufficiently robust to conclude about the efficacy of intravitreal anti-TNF in chronic NIU (i.e., any estimate of the effect is very uncertain(Atkins et al. 2004)). The analyzed studies could not be directly compared or meta-analyzed due to fundamental heterogeneity in study design, inclusion criteria, doses and schema of drug administration, and endpoints. The authors conclude that no recommendation can be made and that intravitreal injection of anti-TNF antibodies remains a treatment possibility still to be adequately explored.
4. Acknowledgements

No acknowledgments.
5. References:

Yeh S, Albini TA, Moshfeghi AA & Nussenblatt RB (2012): Uveitis, the comparison of age-
related macular degeneration treatments trials (CATT), and intravitreal biologics for ocular inflammation. Am J Ophthalmol.

6. Figure and figure legends

None
7. Tables

Table 1 Summary of the route of administration and half-life of the commercial available monoclonal TNF inhibitors (adapted from Pascual-Camps, 2014). (Pascual-Camps et al. 2014)

<table>
<thead>
<tr>
<th>Generic name</th>
<th>Route of administration</th>
<th>Half-life (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adalimumab</td>
<td>Subcutaneous injection</td>
<td>14</td>
</tr>
<tr>
<td>Certolizumab</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Etanercept</td>
<td></td>
<td>4 to 6</td>
</tr>
<tr>
<td>Golimumab</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Infliximab</td>
<td>Intravenous infusion</td>
<td>8 to 10</td>
</tr>
<tr>
<td>Study</td>
<td>Type of study</td>
<td>Number of patients/eyes</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Androudi S, 2010</td>
<td>Open-label, single-center, prospective, nonrandomized, interventional case series</td>
<td>8/8 (but results data only about 5 patients due to withdrawals)</td>
</tr>
<tr>
<td>Farvardin M, 2012</td>
<td>Single injection</td>
<td>7/10</td>
</tr>
<tr>
<td>Haman RN, 2014</td>
<td>Injection at baseline, 2 weeks and then monthly for a total of 7 injections. Patients with deterioration of BCVA of two or more lines or worsening of inflammation by at least 2+ cell/haze at any time during follow-up were withdrawn; Patients with no or minimal improvement (<2+ cells/haze, fluorescein leakage and vascular staining) and stable ERG received a higher dose of subsequent injections (2.5 mg/0.05 mL)</td>
<td>7/13</td>
</tr>
<tr>
<td>Markomichelakis N, 2012</td>
<td>Single injection</td>
<td>15/15</td>
</tr>
<tr>
<td>Hamza MME, 2016</td>
<td>Three consecutive intravitreal injections 6 weeks apart</td>
<td>20/20</td>
</tr>
</tbody>
</table>

Legend: TNF: tumor necrosis factor; ADA: adalimumab; IFX: infliximab; BCVA: best corrected-visual acuity; OCT: optical coherence tomography; ERG: electroretinogram
Table 3 Demographic characteristics of subjects enrolled in all studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Female gender n(%)</th>
<th>Age in years mean ± SD (range)</th>
<th>Inclusion criteria</th>
<th>Mean disease duration</th>
<th>Concomitant conventional immunosuppression</th>
<th>Naïve to anti-TNF drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Androudi S, 2010</td>
<td>4 (50.0)</td>
<td>37 ± 0 (23-52)</td>
<td>Patients with CME, despite control of their ocular inflammation, who had failed previous CME therapies</td>
<td>NS</td>
<td>Yes, not all patients</td>
<td>NS</td>
</tr>
<tr>
<td>Farvardin M, 2012</td>
<td>6 (85.7)</td>
<td>26.6 ±12.8 (11-50)</td>
<td>Behçet (4), JIA (1), multifocal choroiditis and panuveitis (1), pars planitis (1) with no response to conventional treatments in the previous 3 months</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Haman RN, 2014</td>
<td>2 (28.6)</td>
<td>37.5 (19-48)</td>
<td>Behçet uveitis (4 patients) and idiopathic (3 patients)</td>
<td>48 (4-96) months</td>
<td>Yes, not all patients</td>
<td>5 patients (2 had had ADA or IFX)</td>
</tr>
<tr>
<td>Markomichelakis N, 2012</td>
<td>5 (33.3)</td>
<td>35.3 ± 8.9 (23-53)</td>
<td>Relapsing ocular inflammation associated with Behçet disease with unilateral sight-threatening posterior segment flare</td>
<td>5.6 ± 4.3 years</td>
<td>Yes</td>
<td>13</td>
</tr>
<tr>
<td>Hamza MME, 2016</td>
<td>1 (5.0)</td>
<td>31.4 ± 3.5 (26-38)</td>
<td>Refractory posterior uveitis in Behçet's disease</td>
<td>NS</td>
<td>Yes</td>
<td>20 (only previous conventional immunosuppression was allowed)</td>
</tr>
</tbody>
</table>

Legend: CI: confidence interval; CME: cystoids macular edema; JIA: juvenile idiopathic arthritis; NS: not stated; TNF: tumor necrosis factor; TNFi: tumor necrosis factor inhibitor; ADA: adalimumab; IFX: infliximab
Table 4 Efficacy outcomes across studies I

<table>
<thead>
<tr>
<th>Study</th>
<th>Cystoid macular edema at baseline (number of patients)</th>
<th>Cystoid macular edema at day 30 (number of patients)</th>
<th>Significance of change (p-value)</th>
<th>OCT CMT at baseline (μm) mean ± SD (range)</th>
<th>OCT CMT at day 30 (μm) mean ± SD (range)</th>
<th>Significance of change (p-value)</th>
<th>BCVA baseline (logMar) mean ± SD (range)</th>
<th>BCVA day 30 (logMar) mean ± SD (range)</th>
<th>Significance of change (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Androudi S, 2010</td>
<td>8 in 8</td>
<td>8 in 8</td>
<td>Non-significant</td>
<td>692</td>
<td>611</td>
<td>Non-significant</td>
<td>1.1*</td>
<td>1.0*</td>
<td>Non-significant</td>
</tr>
<tr>
<td>Farvardin M, 2012</td>
<td>NS</td>
<td>-</td>
<td></td>
<td>673.2 ± 338.39</td>
<td>456.4 ± 317.46</td>
<td>0.01</td>
<td>1.37 ± 0.14 (1 to 2.07)</td>
<td>0.68 ± 0.56 (0.3 to 1.78)</td>
<td><0.001</td>
</tr>
<tr>
<td>Haman RN, 2014</td>
<td>8 in 13</td>
<td>NS</td>
<td>-</td>
<td>320 (170 to 512)</td>
<td>NS</td>
<td>-</td>
<td>0.53*</td>
<td>NS</td>
<td>-</td>
</tr>
<tr>
<td>Markomichelakis N, 2012</td>
<td>11 in 15</td>
<td>9 in 15</td>
<td>Non-significant</td>
<td>434 (364 to 504)</td>
<td>309 (227 to 391)</td>
<td>< 0.001</td>
<td>0.74 (0.51 to 0.96)</td>
<td>0.30 (0.07 to 0.52)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Hamza MME, 2016</td>
<td>NS</td>
<td>-</td>
<td></td>
<td>361</td>
<td>239</td>
<td>< 0.0001</td>
<td>0.94 ± 0.32</td>
<td>0.41 ± 0.18</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

Legend: NS: not-stated; OCT: optical coherence tomography; CMT: central macular thickness; BCVA: best-corrected visual acuity; * after conversion to LogMar
<table>
<thead>
<tr>
<th>Study</th>
<th>Mean anterior chamber cells (95% CI) baseline (range)</th>
<th>Mean anterior chamber cells (95% CI) day 30 (range)</th>
<th>Significance of change (p value)</th>
<th>Mean vitreous haze (95% CI) baseline</th>
<th>Mean vitreous haze (95% CI) day 30</th>
<th>Significance of change (p value)</th>
<th>Intravitreal anti-TNF treatment considered efficacious?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Androudi S, 2010</td>
<td>NS</td>
<td>NS</td>
<td>-</td>
<td>NS</td>
<td>NS</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Farvardin M, 2012</td>
<td>NS</td>
<td>NS</td>
<td>-</td>
<td>2.7±0.82</td>
<td>0.95±0.43</td>
<td>< 0.0005</td>
<td>Yes, but temporary effect</td>
</tr>
<tr>
<td>Haman RN, 2014</td>
<td>0.62 (range: 0-4)</td>
<td>NS</td>
<td>-</td>
<td>1.19 (0-3)</td>
<td>NS</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Markomichelakis N, 2012</td>
<td>2.13 (1.55-2.72)</td>
<td>0.20 (0.0-0.51)</td>
<td>< 0.0001</td>
<td>1.73 (1.24-2.22)</td>
<td>0.33 (0.06-0.60)</td>
<td>< 0.0001</td>
<td>Yes</td>
</tr>
<tr>
<td>Hamza MME, 2016</td>
<td>NS</td>
<td>NS</td>
<td>-</td>
<td>2</td>
<td>0.2</td>
<td>< 0.0001</td>
<td>Yes, but probable temporary effect</td>
</tr>
</tbody>
</table>

Legend: CI: confidence interval; NS: non-significant; TNF: tumor necrosis factor
Table 6 Safety outcomes across studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Anti-TNF antibodies determination</th>
<th>Electrophysiological assessment</th>
<th>Systemic adverse effects</th>
<th>Ocular adverse effects</th>
<th>Withdrawals due to inefficacy/adverse effects/other reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Androudi S, 2010</td>
<td>No</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>0/0/2 patients lost due to patients preferences, 1 patient lost to follow-up after 1st injection</td>
</tr>
<tr>
<td>Farvardin M, 2012</td>
<td>No</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>Haman RN, 2014</td>
<td>Yes</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1 eye of a patient failed the treatment and was removed from the study due to worsening of inflammation and VA after the 4th injection/0/0</td>
</tr>
<tr>
<td>Markomichelakis N, 2012</td>
<td>No</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>Hamza MME, 2016</td>
<td>Yes</td>
<td></td>
<td>0</td>
<td>Subconjunctival hemorrhage in 4 patients after injection</td>
<td>0/0/0</td>
</tr>
</tbody>
</table>

Legend: TNF: tumor necrosis factor; VA: visual acuity
8. Illustrations and graphics

None.