Non-PTLD Malignancy post HSCT in patients with Primary Immunodeficiency: UK experience

Authors
Mohamed Najib Mohamed Unni M.MED, Reem Elfeky MD, Kanchan Rao MD, Zohreh Nademi PhD, Robert Chiesa MD, Persis Amrolia PhD, Roderick Skinner PhD, Olga Slater PhD, Austen Worth PhD, Terence Flood MD, Mario Abinun MD, Sophie Hambleton DPhil, Waseem Qasim PhD, Hubert B. Gaspar PhD, Andrew J. Cant MD, Andrew R. Gennery MD, Paul Veys MD, Mary A. Slatter MD

Institutions
1. Children’s Haemopoietic Stem Cell Transplant Unit, Great North Children’s Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, UK
2. Great Ormond Street Hospital NHS Trust, London, UK
3. Institute of Cellular Medicine, Newcastle University, UK

Corresponding author
Dr M.A. Slatter,
Paediatric Immunology, Infectious Diseases & Allergy Department
Clinical Resource Building, Block 2, Level 4
Royal Victoria Infirmary, Queen Victoria Road
Newcastle upon Tyne, NE1 4LP, UK
e-mail: mary.slatter@nuth.nhs.uk
Phone: 0191 2823767 Fax: 0191 2820497
There was no specific funding for this study.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Short summary
Secondary malignancy post haematopoietic stem cell transplantation (HSCT) for malignant disorders is well recognized. There are very few published reports on malignancy post HSCT for Primary Immunodeficiency (PID). We report 12 cases of 944 patients, who developed non-PTLD malignancy post-HSCT for PID.

Key words
Primary Immunodeficiency; HSCT; non-PTLD malignancy
To the Editor

Secondary malignancy post-haematopoietic stem cell transplantation (HSCT) for malignant disorders related to cytotoxic treatment, radiotherapy and pre-existing genetic pre-disposition, is well recognized. Data regarding the incidence of malignancy in normal children and in those post-HSCT for haematological disorders can be found in the online repository.

Some non-malignant disorders may predispose to malignancy as seen in cases with Fanconi anaemia developing squamous cell carcinoma of head, neck and anogenital mucosal surfaces particularly if graft-versus-host disease (GVHD) occurs. Post transplant lymphoproliferative disorders (PTLDs) usually in association with Epstein Barr virus (EBV), may occur after HSCT for any underlying diagnosis, usually within 2 years post-transplant, most often associated with T-lymphocyte depletion (TCD) and intense immunosuppression, for example in the context of GVHD\(^1\). Data are sparse on occurrence of non-PTLD malignancy post-HSCT in patients with primary immunodeficiencies (PID). PID are an heterogenous group of disorders affecting the regulation and function of the immune system. To date, more than 300 genetic defects cause different disease phenotypes. It is estimated that the risk of malignancy in children with PID is about 4%, 10 000 times greater than in age-matched controls\(^2\). HSCT can cure PID, and reduce the risk of malignancy, but it is unknown whether HSCT itself might increase the incidence of malignancy compared to the normal population. Fifty-two post HSCT malignancies were confirmed in a large study of 2266 patients with PID including 45 PTLDs. Three patients developed myelodysplastic syndrome (MDS) all of whom had received TBI and TCD grafts, 1
patient developed acute myeloid leukaemia (AML) and 3 developed solid tumours giving an incidence of 0.3% of non-PTLD malignancy. Six malignancies were reported from 318 patients who underwent allogeneic HSCT for non-malignant disorders, including 2 solid tumours in 130 patients with PID (1 with Severe combined immunodeficiency (SCID) and 1 with Chronic granulomatous disease).

We report a retrospective analysis of 944 children who underwent HSCT for PID at two UK centers. Diagnosis, timing and type of transplant, conditioning regimen, GVHD, viral reactivation, type of malignancy and outcome were recorded.

Twelve patients (1.27%) developed non-PTLD malignancy (Table 1). Median interval from HSCT to malignancy diagnosis was 3.75 years (3 months – 11.2 years). Mean age at transplant in those who developed malignancy was 85 months (4 months – 204 months). Four received an HLA matched sibling donor (MSD) bone marrow (BM) transplant, 4 had matched and 1 mismatched unrelated donor BM, 2 matched unrelated donor PBSC and 1 matched cord blood transplant.

None of the patients received radiotherapy. Seven had reduced intensity conditioning (RIC) with fludarabine and melphalan, 3 had reduced toxicity myeloablative conditioning with treosulfan and fludarabine, 2 had myeloablative doses of busulfan, 1 with cyclophosphamide(n=1), the other with fludarabine (n=1). Ten received serotherapy with Alemtuzumab and 2 MSD recipients had no serotherapy. All patients received cyclosporine based GVHD prophylaxis either alone (n=2) or with mycophenolate mofetil (P1-5,7,8 and 11) or methotrexate.
Two patients died from malignancy. The rest were successfully treated and are alive with a median follow up of 13.2 years (2 years 1 month – 18 years).

Both \(\text{P1} \) and \(\text{P12} \) had lost donor engraftment in whole blood or B cell/myeloid subsets before the onset of Philadelphia positive acute lymphoblastic leukemia (P1) and Juvenile Myelomonocytic Leukemia (P12) respectively. Both malignancies were confirmed to be recipient in origin. Both had an underlying immune defect that predisposes to malignancy (RAG 2 in P1, Griscelli syndrome in P12). This poses the question as to whether full donor chimerism might have abolished this risk. Alternatively recipient stem cells surviving chemotherapy may have acquired genotoxic insults.

\(\text{P9} \) developed Acute Myeloid Leukemia (AML M4) 11 years post-HSCT which is uncommon. Unfortunately, it was undetermined whether leukemic cells were donor or recipient origin. A European Bone Marrow Transplantation group survey estimated incidence of MDS/AML to be 1.2:1000 transplants, mostly occurring within 4 years of HSCT (See OR)\(^6\). Multiple hit theory postulates that donor cells already acquired a first hit in the donor and additional hits are acquired in the host marrow microenvironment. Viral persistence, disturbed immunosurveillance and accelerated telomere shortening may also be contributory\(^6,7\).

\(\text{P2} \) and \(\text{P5} \) developed parotid muco-epidermoid carcinoma (MEC) at 6 and 3 years post-HSCT. Interestingly both experienced oral cGVHD and had prolonged HHV6 viraemia post-HSCT. Data link parotid MEC to prolonged CMV infection, which remains dormant in the salivary glands\(^8\). Presence of HHV6 in an
immunocompromised host might have played a role in the development of this rare tumour.

P7 had fungal granuloma pre-transplant, received voriconazole throughout transplant and developed actinic keratosis, a pre-malignant condition and later squamous cell carcinoma of the lower leg and auricular basal cell carcinoma. A retrospective study confirmed the association between voriconazole and the development of squamous cell carcinoma post-allogenic HSCT9.

P8 and P11 had a family history of solid tumor suggesting possible genetic factors. P2,5,7 and 11 experienced acute GVHD and P11 additionally experienced chronic GVHD. Immune dysregulation post-HSCT might have played a role in the failure of T-lymphocyte checkpoint for tumors.

Whilst early haematological malignancies likely relate to the pre-existing genotype in remaining recipient cells, most of our patients developed late rare solid tumors. Understanding the pathogenesis of solid tumors after HSCT is limited, but intensive cytotoxic conditioning with defective DNA repair of persisting stem cells/stromal cells, viral infection and immunosuppression may be implicated. All patients in this cohort received alkylating agents during conditioning. These agents induce chromosomal breakage and possible malignant transformation. Over the last 15 years the use of RIC and reduced toxicity conditioning has increased but it is unknown whether this will reduce the risk of malignancy post-HSCT. Fludarabine-based conditioning, moderate-severe chronic GVHD and chronic myeloproliferative or non-malignant disease are risk factors for second malignancy in adult patients5,6. Shimoni et al found no significant difference in the incidence of secondary malignancies in 931 adults
receiving myeloablative, reduced intensity or reduced toxicity conditioning and postulated that there may be synergistic effects of DNA damage from an alkylator added to fludarabine related inhibition of DNA repair used in reduced intensity or toxicity regimens⁶.

In conclusion we report an incidence of 1.27% non-PTLD malignancy occurring in a large cohort of PID patients who received cytotoxic chemotherapy without radiotherapy for HSCT. This incidence is higher than that reported by Kamani et al. which may be due to the smaller number of patients. Underlying genetic disease, tissue distribution of genetic defect, GvHD, viral infections and extent of donor chimerism may be important factors that play a role in primary immunodeficiency patients developing secondary malignancies post-HSCT. Further studies are needed to evaluate risks but we support recommendations for life-long follow up for this population.

Authors

Mohamed Najib Mohamed Unni M.MED¹,
Reem Elfeky MD²,
Kanchan Rao MD²,
Zohreh Nademi PhD¹,
Robert Chiesa MD²,
Persis Amrolia PhD²,
Roderick Skinner PhD¹,
Olga Slater, PhD²
Austen Worth PhD²,
Terence Flood MD¹,
Mario Abinun MD¹,

Sophie Hambleton DPhil¹,³,

Waseem Qasim PhD²,

Hubert B. Gaspar PhD²,

Andrew J. Cant MD¹,

Andrew R. Gennery MD¹,³,

Paul Veys MD²,

Mary A. Slatter MD¹,³

Institutions

1. Children’s Haemopoietic Stem Cell Transplant Unit, Great North Children’s Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, UK

2. Great Ormond Street Hospital NHS Trust, London, UK

3. Institute of Cellular Medicine, Newcastle University, UK

References:

9. Wojenski DJ, Bartoo GT, Merten JA, Dierkhising RA, Barajas MR, El-Azhary
RA et al. Voriconazole exposure and the risk of cutaneous squamous cell carcinoma in allogenic hematopoietic stem cell transplant patients.

Transplant Infectious Disease 2015 April: 17(2): 250-258

Table I. Patient characteristics

<table>
<thead>
<tr>
<th>Diagnosis Lineage specificity of gene defect</th>
<th>Age at HSCT (years)</th>
<th>Conditioning Regimen</th>
<th>Source of stem cells</th>
<th>Chimerism T/B/Myeloid (%)</th>
<th>Malignancy</th>
<th>Interval post HSCT (years)</th>
<th>Acute/Chronic GVHD</th>
<th>Auto-immunity</th>
<th>Viral reactivation</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. RAG 2 SCID lymphocyte-specific</td>
<td>0.3</td>
<td>T 36g/m² F 150mg/m²</td>
<td>MSD BM</td>
<td>100/0/0</td>
<td>Ph+ Pre B ALL</td>
<td>2.5</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Died</td>
</tr>
<tr>
<td>2. MHC I systemic</td>
<td>13.6</td>
<td>F150mg/m² Me140mg/m² Al 1mg/kg</td>
<td>MUD BM</td>
<td>100/100/100</td>
<td>Parotid MEC</td>
<td>6</td>
<td>Acute Skin & oral GVHD</td>
<td>No</td>
<td>HHV6</td>
<td>Alive</td>
</tr>
<tr>
<td>3. GATA 2 systemic</td>
<td>15.9</td>
<td>F150mg/m² Me140mg/m² Al 1mg/kg</td>
<td>MMUD BM</td>
<td>94/100/100</td>
<td>Toe Melanoma</td>
<td>6.9</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Alive</td>
</tr>
<tr>
<td>4. JAK 3 SCID lymphocyte-specific</td>
<td>0.1</td>
<td>T36g/m² F150mg/m² Al 0.3mg/kg</td>
<td>Matched UCB</td>
<td>100/97/93</td>
<td>Right Occipital Ewing Sarcoma</td>
<td>3.58</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Alive</td>
</tr>
<tr>
<td>5. NFKB2 systemic</td>
<td>14</td>
<td>F150mg/m² Me140mg/m² Al 1mg/kg</td>
<td>MSD BM</td>
<td>100/100/100</td>
<td>Parotid MEC</td>
<td>3</td>
<td>Acute Skin Grade II and Liver Grade I GVHD + Oral GVHD</td>
<td>No</td>
<td>HHV6</td>
<td>Alive</td>
</tr>
<tr>
<td>6. WAS hematopoietic</td>
<td>17</td>
<td>F150mg/m² Me140mg/m² Al 1mg/kg</td>
<td>MUD BM</td>
<td>100/100/100</td>
<td>Squamous cell ca (gastrostomy site)</td>
<td>0.25</td>
<td>No</td>
<td>No</td>
<td>EBV</td>
<td>Alive</td>
</tr>
<tr>
<td>7. X linked-CGD myeloid specific</td>
<td>15</td>
<td>F160mg/m² Bu12.8mg/kg Al 1mg/kg</td>
<td>MUD PBSC</td>
<td>100/100/100</td>
<td>Basal cell ca (ear) and left lower leg squamous cell carcinoma in situ</td>
<td>4</td>
<td>Acute Skin Grade I</td>
<td>No</td>
<td>No</td>
<td>Alive</td>
</tr>
<tr>
<td>8. CD40 ligand T-lymphocyte-specific</td>
<td>1.8</td>
<td>F150mg/m² Me140mg/m² Al 1mg/kg</td>
<td>MUD PBSC</td>
<td>34/0/9</td>
<td>Renal cell ca</td>
<td>4.8</td>
<td>No</td>
<td>Auto-immune neutropenia</td>
<td>Adeno</td>
<td>Alive</td>
</tr>
</tbody>
</table>
| 9. T+B+NK low SCID unknown | 1.0 | Bu 12.8mg/kg
Cy 200mg/kg
Al 1mg/kg | MUD BM | 96 Whole blood | AML | 11 | No | No | No | Alive |
|-----------------------------|-----|---------------------------------|--------|----------------|-----|----|----|----|----|-------|
| 10. LAD1 systemic | 1.4 | F150mg/m²
Mel 140mg/m²
Al 1mg/kg | MUD BM | 100/100/100 | Renal Cell Ca | 11.2 | No | Immune thrombocytopenia | No | Alive |
| 11. T-B+NK+ SCID unknown | 4.4 | F 150mg/m²
Mel 140mg/m²
Al 0.6mg/kg | MSD BM | 100/100/100 | Embryonal RMS of right cheek | 0.45 | No | Adeno Varicella | Alive |
| 12. Griscelli/HLH systemic | 0.7 | T 42g/m²
F 150mg/m² | MSD BM | 0 whole blood | JMML | 0.78 | No | No | Adeno | Died |

T = Treosulfan, F = Fludarabine, Al =Alemtuzumab, Mel = Melphalan, Bu = Busulfan, Cy =Cyclophosphamide, MSD = matched sibling donor, UCB = Unrelated Cord Blood, MUD = Matched Unrelated Donor, BM = bone marrow, MMUD = mismatched unrelated donor, PBSC = Peripheral Blood Stem Cells, ALL = acute lymphocytic leukaemia, JMML = Juvenile Myelomonocytic Leukemia, AML = Acute Myeloid Leukemia, RMS = Rhabdomyosarcoma, Ca = Carcinoma, MEC = Mucoepidermoid Carcinoma, T=T Lymphocyte, B=B Lymphocyte, NK=Natural Killer, SCID =Severe Combined Immunodeficiency, MHC I =Major Histocompatibility Complex I , JAK3= Janus Kinase 3, NFKB2 = Nuclear Factor Kappa B 2, WAS= Wiskott Aldrich Syndrome, CGD= Chronic Granulomatous Disease, LAD 1= Leukocyte Adhesion Defect Type 1, HLH= Haemophagocytic Lymphohistiocytosis, GVHD = Graft versus Host Disease Adeno = Adenovirus, HHV6 = Human Herpes Virus 6, Varicella = Varicella zoster, EBV = Epstein Barr Virus
Data from the population-based Northern UK Region Young Persons' Malignant Disease Registry describe an age-standardized incidence rate of 121 per million per year in children aged 0-14 years diagnosed between 1968 and 1995, equating to 0.18% of children developing malignancy before their 15th birthday\(^1\). The latest UK incidence statistics indicate a similar risk of 0.2%\(^2\). A review of post-transplant secondary malignancies described its occurrence in up to 7% of recipients by 20 years post-transplant with no evidence of a plateau with longer follow-up\(^3\). Two large international registry-based studies describe the cumulative incidence of secondary solid malignancies in recipients of allogeneic HSCT for haematological conditions: using Kaplan-Meier analysis, invasive secondary solid malignancies (56% of which were not Post transplant lymphoproliferative disorders (PTLD)) occurred in 0.9%, 4.3% and 11% of 3182 children at 5, 10 and 15 years post-transplant\(^4\). More recently, using competing risks analysis, the cumulative incidence of secondary non-PTLD solid malignancies was 3.3% at 20 years post-transplant amongst 28,874 recipients of all ages\(^5\).

A European Bone Marrow Transplantation group survey estimated incidence of MDS/AML to be 1.2:1000 transplants, mostly occurring within 4 years of HSCT\(^6\).

References

