UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Immunosuppressive therapy for kidney transplantation in children and adolescents: systematic review and economic evaluation

Haasova, M; Snowsill, T; Jones-Hughes, T; Crathorne, L; Cooper, C; Varley-Campbell, J; Mujica-Mota, R; ... Anderson, R; + view all (2016) Immunosuppressive therapy for kidney transplantation in children and adolescents: systematic review and economic evaluation. Health Technology Assessment , 20 (61) pp. 1-324. 10.3310/hta20610. Green open access

[img]
Preview
Text
3003442.pdf - Published version

Download (3MB) | Preview

Abstract

BACKGROUND: End-stage renal disease is a long-term irreversible decline in kidney function requiring kidney transplantation, haemodialysis or peritoneal dialysis. The preferred option is kidney transplantation followed by induction and maintenance immunosuppressive therapy to reduce the risk of kidney rejection and prolong graft survival. OBJECTIVES: To systematically review and update the evidence for the clinical effectiveness and cost-effectiveness of basiliximab (BAS) (Simulect,(®) Novartis Pharmaceuticals) and rabbit antihuman thymocyte immunoglobulin (Thymoglobuline,(®) Sanofi) as induction therapy and immediate-release tacrolimus [Adoport(®) (Sandoz); Capexion(®) (Mylan); Modigraf(®) (Astellas Pharma); Perixis(®) (Accord Healthcare); Prograf(®) (Astellas Pharma); Tacni(®) (Teva); Vivadex(®) (Dexcel Pharma)], prolonged-release tacrolimus (Advagraf,(®) Astellas Pharma); belatacept (BEL) (Nulojix,(®) Bristol-Myers Squibb), mycophenolate mofetil (MMF) [Arzip(®) (Zentiva), CellCept(®) (Roche Products), Myfenax(®) (Teva), generic MMF is manufactured by Accord Healthcare, Actavis, Arrow Pharmaceuticals, Dr Reddy's Laboratories, Mylan, Sandoz and Wockhardt], mycophenolate sodium, sirolimus (Rapamune,(®) Pfizer) and everolimus (Certican,(®) Novartis Pharmaceuticals) as maintenance therapy in children and adolescents undergoing renal transplantation. DATA SOURCES: Clinical effectiveness searches were conducted to 7 January 2015 in MEDLINE (via Ovid), EMBASE (via Ovid), Cochrane Central Register of Controlled Trials (via Wiley Online Library) and Web of Science [via Institute for Scientific Information (ISI)], Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects and Health Technology Assessment (HTA) (The Cochrane Library via Wiley Online Library) and Health Management Information Consortium (via Ovid). Cost-effectiveness searches were conducted to 15 January 2015 using a costs or economic literature search filter in MEDLINE (via Ovid), EMBASE (via Ovid), NHS Economic Evaluation Databases (via Wiley Online Library), Web of Science (via ISI), Health Economic Evaluations Database (via Wiley Online Library) and EconLit (via EBSCOhost). REVIEW METHODS: Titles and abstracts were screened according to predefined inclusion criteria, as were full texts of identified studies. Included studies were extracted and quality appraised. Data were meta-analysed when appropriate. A new discrete time state transition economic model (semi-Markov) was developed; graft function, and incidences of acute rejection and new-onset diabetes mellitus were used to extrapolate graft survival. Recipients were assumed to be in one of three health states: functioning graft, graft loss or death. RESULTS: Three randomised controlled trials (RCTs) and four non-RCTs were included. The RCTs only evaluated BAS and tacrolimus (TAC). No statistically significant differences in key outcomes were found between BAS and placebo/no induction. Statistically significantly higher graft function (p < 0.01) and less biopsy-proven acute rejection (odds ratio 0.29, 95% confidence interval 0.15 to 0.57) was found between TAC and ciclosporin (CSA). Only one cost-effectiveness study was identified, which informed NICE guidance TA99. BAS [with TAC and azathioprine (AZA)] was predicted to be cost-effective at £20,000-30,000 per quality-adjusted life year (QALY) versus no induction (BAS was dominant). BAS (with CSA and MMF) was not predicted to be cost-effective at £20,000-30,000 per QALY versus no induction (BAS was dominated). TAC (with AZA) was predicted to be cost-effective at £20,000-30,000 per QALY versus CSA (TAC was dominant). A model based on adult evidence suggests that at a cost-effectiveness threshold of £20,000-30,000 per QALY, BAS and TAC are cost-effective in all considered combinations; MMF was also cost-effective with CSA but not TAC. LIMITATIONS: The RCT evidence is very limited; analyses comparing all interventions need to rely on adult evidence. CONCLUSIONS: TAC is likely to be cost-effective (vs. CSA, in combination with AZA) at £20,000-30,000 per QALY. Analysis based on one RCT found BAS to be dominant, but analysis based on another RCT found BAS to be dominated. BAS plus TAC and AZA was predicted to be cost-effective at £20,000-30,000 per QALY when all regimens were compared using extrapolated adult evidence. High-quality primary effectiveness research is needed. The UK Renal Registry could form the basis for a prospective primary study. STUDY REGISTRATION: This study is registered as PROSPERO CRD42014013544. FUNDING: The National Institute for Health Research HTA programme.

Type: Article
Title: Immunosuppressive therapy for kidney transplantation in children and adolescents: systematic review and economic evaluation
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.3310/hta20610
Publisher version: https://doi.org/10.3310/hta20610
Language: English
Additional information: © Queen’s Printer and Controller of HMSO 2016. This work was produced by Haasova et al. under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.
Keywords: Abatacept, Antibodies, Monoclonal, Antilymphocyte Serum, Azathioprine, Child, Clinical Trials as Topic, Cost-Benefit Analysis, Drug Therapy, Combination, Everolimus, Humans, Immunosuppressive Agents, Kidney Failure, Chronic, Kidney Transplantation, Models, Economic, Mycophenolic Acid, Recombinant Fusion Proteins, Sirolimus, Tacrolimus, Technology Assessment, Biomedical
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Div of Psychology and Lang Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Div of Psychology and Lang Sciences > Clinical, Edu and Hlth Psychology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health
URI: https://discovery.ucl.ac.uk/id/eprint/10045872
Downloads since deposit
90Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item