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WELL-POSED PDE AND INTEGRAL EQUATION FORMULATIONS
FOR SCATTERING BY FRACTAL SCREENS∗
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Abstract. We consider time-harmonic acoustic scattering by planar sound-soft (Dirichlet) and
sound-hard (Neumann) screens embedded in Rn for n = 2 or 3. In contrast to previous studies
in which the screen is assumed to be a bounded Lipschitz (or smoother) relatively open subset of
the plane, we consider screens occupying arbitrary bounded subsets. Thus our study includes cases
where the screen is a relatively open set with a fractal boundary and cases where the screen is fractal
with empty interior. We elucidate for which screen geometries the classical formulations of screen
scattering are well-posed, showing that the classical formulation for sound-hard scattering is not well-
posed if the screen boundary has Hausdorff dimension greater than n−2. Our main contribution is to
propose novel well-posed boundary integral equation and boundary value problem formulations, valid
for arbitrary bounded screens. In fact, we show that for sufficiently irregular screens there exist whole
families of well-posed formulations, with infinitely many distinct solutions, the distinct formulations
distinguished by the sense in which the boundary conditions are understood. To select the physically
correct solution we propose limiting geometry principles, taking the limit of solutions for a sequence
of more regular screens converging to the screen we are interested in; this a natural procedure for
those fractal screens for which there exists a standard sequence of prefractal approximations. We
present examples exhibiting interesting physical behaviors, including penetration of waves through
screens with holes in them, where the “holes” have no interior points, so that the screen and its
closure scatter differently. Our results depend on subtle and interesting properties of fractional
Sobolev spaces on non-Lipschitz sets.
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1. Introduction. This paper is concerned with the mathematical analysis of
time-harmonic acoustic scattering problems modeled by the Helmholtz equation

(1) ∆u+ k2u = 0

(or its inhomogeneous variant (52) below), where k > 0 is the wavenumber. Our focus
is on scattering by thin planar screens in Rn (n = 2 or 3), so that the domain in which
(1) holds is D := Rn \ Γ, where Γ, the screen, is a bounded subset of the hyperplane
Γ∞ := {x = (x1, . . . , xn) ∈ Rn : xn = 0}, and the compact set Γ is its closure.
As usual, the complex-valued function u is to be interpreted physically as either the
(total) complex acoustic pressure field or the velocity potential, and we write u as
u = ui + us, where ui is a given incident field and us := u − ui is the scattered field
which is to be determined and is assumed to satisfy (1) and the standard Sommerfeld
radiation condition ((23) below). We suppose that either sound-soft or sound-hard
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678 SIMON N. CHANDLER-WILDE AND DAVID P. HEWETT

boundary conditions hold, respectively, that either

(2) u = 0 or
∂u

∂n
= 0

on the screen in some appropriate sense, where n is the unit normal pointing in the
xn direction.

These are longstanding scattering problems, their mathematical study dating back
at least to [49, p. 139], and it is well-known (e.g., [45, 56], and see section 3.1 for more
detail) that, for arbitrary bounded Γ ⊂ Γ∞, these problems are well-posed (and the
solutions depend only on the closure Γ) if the boundary conditions are understood

in the standard weak senses that u ∈ W 1,loc
0 (D) in the sound-soft case and that

u ∈W 1,loc(D) and

(3)

∫
D

(v∆u+∇v · ∇u) dx = 0 for all v ∈W 1,comp(D)

in the sound-hard case. We spell out these weak formulations more fully in Defini-
tions 3.1 and 3.2 below using standard Sobolev space notation defined in section 2.

In the well-studied case where Γ is a relatively open1 subset of Γ∞ that is Lipschitz
or smoother, the alternative, classical formulation, dating back to the late 1940s
[42, 12], imposes the boundary conditions (2) in a classical sense, and additionally
imposes “edge conditions” requiring locally finite energy, that u and ∇u are square
integrable in some neighborhood of ∂Γ (see Definition 3.10 below). Equivalently, one
can formulate boundary value problems (BVPs) for us in a Sobolev space setting,
seeking us ∈ W 1,loc(D) satisfying (1) and the radiation condition, and imposing the
boundary conditions (2) in a trace sense, requiring that the Dirichlet or Neumann
traces on Γ∞, γ±us and ∂±n u

s, satisfy (γ±us)|Γ = gD ∈ H1/2(Γ) in the sound-soft
case and (∂±n u

s)|Γ = gN ∈ H−1/2(Γ) in the sound-hard case, where gD := −(γ±ui)|Γ
and gN := −(∂±n u

i)|Γ (see, e.g., [52] and Definition 3.11 for details). Finally, it is
well-known [52, 54, 28, 29, 21] that for Lipschitz Γ one can reformulate these BVPs
as the boundary integral equations (BIEs)

(4) S[∂nu
s] = −gD, T [u] = gN,

in the sound-soft and sound-hard cases, respectively. In these equations the un-
knowns are the jumps across the screen in u and its normal derivative, [u] ∈ H̃1/2(Γ)

and [∂nu
s] ∈ H̃−1/2(Γ), and the isomorphisms S : H̃−1/2(Γ) → H1/2(Γ) and T :

H̃1/2(Γ) → H−1/2(Γ) are the (acoustic) single-layer and hypersingular boundary in-

tegral operators (BIOs), respectively. Here H̃s(Γ) ⊂ Hs(Γ∞) for s ∈ R denotes the
closure in Hs(Γ∞) of C∞0 (Γ). As is pointed out in [17], the BIEs (4) are well-posed
(S and T are isomorphisms) for arbitrary open Γ.

The scattering problems we study may be longstanding, but there remain many
open questions concerning the correct choice, well-posedness, and equivalence of math-
ematical formulations when Γ is not a Lipschitz open set, and many interesting fea-
tures arise in this case. Among the new results in this paper we will see that

1. if the screen is sufficiently irregular, uniqueness fails for the classical and
Sobolev space BVP formulations;

1For brevity we shall henceforth omit the word “relatively” when discussing relatively open
subsets of Γ∞.
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SCATTERING BY FRACTAL SCREENS 679

2. the BIEs (4) are well-posed for every open Γ but their solutions differ from

those of the weak BVP if H̃±1/2(Γ) $ H
±1/2

Γ
(here Hs

F , for closed F ⊂ Γ∞,

is the set of those φ ∈ Hs(Γ∞) supported in F );

3. whenever H̃±1/2(Γ◦) $ H
±1/2

Γ
(where Γ◦ is the relative interior in Γ∞ of Γ)

there exists, in fact, an infinite family of well-posed BVP and equivalent BIE
formulations, which have infinitely many distinct solutions for generic bound-
ary data, and distinct solution choices are appropriate in different physical
limits.

A main aim of this paper is to derive the correct mathematical formulations for
screens that are fractal or have fractal boundary and to understand the convergence
of solutions as sequences of prefractals (as in Figures 1, 2, and 4) converge to a fractal
limit. One motivation for such a study is that fractal screen problems are of relevance
to a number of areas of current engineering research, for example, in the design of
antennas for electromagnetic wave transmission/reception (see, e.g., [48, 51]), and in
piezoelectric ultrasound transducers (see, e.g., [44, 43]). The attraction of using fractal
structures (in practice, high order prefractal approximations to fractal structures)
for such applications is in their potential for wideband performance. Indeed, a key
property of fractals is that they possess structure on every length scale, and the idea
is to exploit this to achieve efficient transmission/reception of waves over a broad
range of frequencies simultaneously. (In this direction, much earlier, Berry [8] urged
the study of waves diffracted by fractal structures (termed diffractals), as a situation
where distinctive high frequency asymptotics can be expected.) Although this is a
mature engineering technology (at least for electromagnetic antennas), as far as we are
aware no analytical framework is currently available for such problems. Understanding
well-posedness and convergence of prefractal solutions for the simpler acoustic case
considered in the current paper can be regarded as a significant first step toward these
applications.

Regarding related mathematical work, there is a substantial literature studying
trace spaces on fractal boundaries (see [35] and the references therein). This is an
important ingredient in formulating and analysing BVPs, and this theory has been
applied to the study of elliptic PDEs in domains with fractal boundaries, for example,
in [36]. However, a key assumption in these results is that the boundary satisfies a so-
called Markov inequality [35, 36]. This assumption on the boundary ∂Ω of a domain
Ω ⊂ Rn (in the language of numerical analysis, a requirement that a type of inverse
estimate holds for polynomials defined on ∂Ω) requires a certain isotropy of ∂Ω and
does not hold if ∂Ω is an (n − 1)-dimensional manifold (or part of such a manifold
as in this paper). Further, this theory applies specifically to the case where ∂Ω is a
d-set in the sense of [35, 36]. (Roughly speaking this is a requirement that ∂Ω has
finite d-dimensional Hausdorff measure, uniformly across ∂Ω. An example to which
this theory applies is the boundary of the Koch snowflake (Figure 4), a d-set with
d = log3 4.

Similar constraints on ∂Ω apply to other studies of BVPs in domains with fractal
boundary, for example, recent work on regularity of PDE solutions in Koch snowflake
domains and their prefractal approximations [13] and, closer to the specific problems
we tackle in this paper, work on high frequency scattering by fractals [50, 34]. In
these latter papers Sleeman and Hua address what we term above the weak scattering
problems (with the Dirichlet condition understood as u ∈ W 1,loc

0 (D), the Neumann
condition as (3)) in the case when the domain D := Rn \Ω and Ω is a bounded open
set whose boundary has fractal dimension in the range (n − 1, n). They study the
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680 SIMON N. CHANDLER-WILDE AND DAVID P. HEWETT

high frequency asymptotics of the so-called scattering phase, closely related to the
asymptotics of the eigenvalue counting function for the interior set Ω, which has been
widely studied both theoretically and computationally [38, 33, 39, 46], following the
1980 conjecture of Berry [9, 10] on the dependence of these asymptotics on the fractal
dimension of ∂Ω.

The particular case where Ω ⊂ R2 is a so-called ramified domain with self-similar
fractal boundary ∂Ω of fractal dimension greater than one has been extensively stud-
ied by Achdou and collaborators, including work on the formulation and numerical
analysis of (interior) Poisson and Helmholtz problems with Dirichlet and Neumann
boundary conditions [3, 2, 4], numerical studies of the Berry conjecture [4], charac-
terization of trace spaces [5], study of convergence of prefractal to fractal problems
[2, 3, 1] (as in our section 7), and study of transmission problems [1] (see also [7]).

This current paper deviates from the above-cited literature in a number of sig-
nificant respects. First, the above works all treat boundaries with fractal dimension
in the range (n − 1, n). In contrast, the boundary of our domain D is Γ, a bounded
subset of an (n − 1)-dimensional manifold. If fractal, Γ has Hausdorff dimension in
the range (0, n − 1). Second, for us a deep study of trace spaces seems superfluous:
our analysis only requires standard traces from the upper and lower half-spaces onto
the plane Γ∞ containing the screen Γ. Third, in this current paper a major theme is
to explore the multiplicity of distinct formulations and solutions, and to point out the
physical relevance of distinct solutions as limits of problems on more regular domains.
Nothing of this flavor arises in the above literature. Finally, we note that, in contrast
to the above studies, a significant focus in this paper is on BIEs on rough domains
(including on fractals), and our proof of well-posedness of our novel BVP formulations
is via analysis of their BIE equivalents.

Another motivation for this study is simply that BIE formulations are powerful
and well-studied for problems of acoustic scattering by screens, both theoretically
(e.g., [53, 52, 54, 28, 29, 17]) and as a computational tool in applications (e.g., [23, 22]),
so that it is of intrinsic interest to extend this methodology to deal with general, not
just Lipschitz or smoother, screens. Our analysis of BIEs in section 3.3 follows the
spirit of previous studies (e.g., [53, 52, 54]), in which to determine solvability one
needs to understand the BIOs in (4) as mappings between fractional Sobolev spaces
defined on the screen. While the mapping properties of the BIOs are well understood
for Lipschitz screens, they have not been studied for less regular screens. In remedying
this we draw heavily on our own studies of Sobolev spaces on rough domains presented
recently in [19, 18, 32, 17].

Our assumption that the screen is planar, rather than a subset of a more gen-
eral (n − 1)-dimensional submanifold, which we anticipate could be removed with
nontrivial further work, is made so as to simplify things in two respects. First, it
means that Sobolev spaces on the screen can be defined concretely in terms of Fourier
transforms on the hyperplane Γ∞, without the need for coordinate charts. Second,
and more importantly, it allows one to prove that the BIOs are coercive operators on
the relevant spaces, as has been shown recently (with wavenumber-explicit continuity
and coercivity estimates) in [17], building on previous work in [28, 29, 21]. As far as
possible, anticipating extensions to nonplanar screens, we will seek to argue without
making use of this coercivity, but we do use results from [32] that assume coercivity
to analyze dependence on the boundary in section 7.

The structure of the remainder of this paper is as follows. In section 2 we summa-
rize results on Sobolev spaces that we use throughout the paper, paying attention to
the important distinctions between different Sobolev space definitions that arise for
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SCATTERING BY FRACTAL SCREENS 681

non-Lipschitz domains. We also introduce the trace operators, layer potentials, and
novel BIOs that appear in our new BIE formulations, paying careful attention to the
subtleties introduced when integration is over a screen that is not Lipschitz (indeed
which may have zero surface measure).

Section 3 is the heart of the paper. We introduce first in section 3.1 the standard
weak and classical formulations, the novelty being that we study their interrelation
for general (rather than Lipschitz) screens. In sections 3.2 and 3.3, this a key contri-
bution of the paper, we introduce new infinite families of BVP and BIE formulations
distinguished by the sense in which the boundary condition is to be enforced, prove
their well-posedness, and study their relationship to the standard weak and classical
formulations. If the screen is sufficiently regular these formulations collapse to sin-
gle formulations, equivalent to the standard BVPs and BIEs, but generically these
formulations have infinitely many distinct solutions.

When Γ has empty interior the incident field may not “see” the screen; the scat-
tered field may be zero. Section 4 studies when this does and does not happen: a key
consideration is whether a set S ⊂ Γ∞ is or is not ±1/2-null (a set S ⊂ Γ∞ is s-null if
there are no φ ∈ Hs(Γ∞) supported in S), which we study using results from [32]. In
section 5 we establish the size (cardinality) of our sets of novel formulations and prove
that distinct formulations have distinct solutions, at least for plane wave incidence
and almost all incident directions. In section 5.1 we investigate, mainly using recent
results from [19], a key criterion in answering many of our questions, namely, when

is H̃±1/2(Γ◦) = H
±1/2

Γ
? In section 6 we elucidate precisely for which screens Γ the

classical formulations of Definitions 3.10 and 3.11 are or are not well-posed. In section
7 we study dependence of the screen scattering problems on Γ, establishing continuous
dependence results for weak notions of set convergence, and use these results to select,
from the infinite set of solutions arising from the formulations of sections 3.2 and 3.3,
physically relevant solutions by studying a general screen as the limit of a sequence
of more regular screens. Finally, in section 8 we illustrate the results of the previous
sections by a number of concrete examples, mainly examples where Γ is fractal or has
fractal boundary.

We remark that some of the results on the BVP and BIE formulations in this paper
appeared previously in the conference papers [31, 14] and the unpublished report [16]
and that elements of some of the results of section 7 and part of Example 8.2 appeared
recently in [19] (though the results in [19] are for =(k) > 0 rather than k real).

2. Preliminaries. We first set some basic notation. For any subset E ⊂ Rn
we denote the complement of E by Ec := Rn \ E, the closure of E by E, and the
interior of E by E◦. We denote by dimH(E) the Hausdorff dimension of E (cf., e.g., [6,
section 5.1]). For subsets E1, E2 ⊂ Rn we denote by E1	E2 the symmetric difference
E1 	 E2 := (E1 \ E2) ∪ (E2 \ E1). We say that a nonempty open set Ω ⊂ Rn is C0

(respectively, Lipschitz) if its boundary ∂Ω can at each point be locally represented
as the graph (suitably rotated) of a C0 (respectively, Lipschitz) function from Rn−1

to R with Ω lying only on one side of ∂Ω. For a more detailed definition see, e.g.,
[26, 1.2.1.1]. We note that for n = 1 there is no distinction between these definitions:
we interpret them both to mean that Ω is a countable union of open intervals whose
closures are disjoint and whose endpoints have no limit points. We will use, for r > 0
and x ∈ Rn, the notation Br(x) := {y ∈ Rn : |y − x| < r} and Br := Br(0).

For n ∈ N, let D(Rn) := C∞0 (Rn). For a nonempty open set Ω ⊂ Rn, let
D(Ω) := {u ∈ D(Rn) : suppu ⊂ Ω}, and let D∗(Ω) denote the associated space
of distributions (continuous antilinear functionals on D(Ω)). For s ∈ R let Hs(Rn)
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denote the Sobolev space of those tempered distributions whose Fourier transforms
are locally integrable and satisfy ‖u‖2Hs(Rn) :=

∫
Rn(1 + |ξ|2)s |û(ξ)|2 dξ <∞. D(Rn)

is dense in Hs(Rn); indeed [41, Lemma 3.24], for all v ∈ Hs(Rn) and ε > 0 there
exists u ∈ D(Rn) such that

(5) ‖v − u‖Hs(Rn) < ε and suppu ⊂ {x ∈ Rn : |x− y| < ε and y ∈ supp v},

where supp v denotes the support of the distribution v. It is also standard that
H−s(Rn) provides a natural unitary realization of (Hs(Rn))∗, the dual space of
bounded antilinear functionals on Hs(Rn), with the duality pairing, for u ∈ H−s(Rn),
v ∈ Hs(Rn),

〈u, v〉H−s(Rn)×Hs(Rn) :=

∫
Rn

û(ξ)v̂(ξ) dξ =

∫
Rn

uv dx,(6)

the second equality holding by Plancherel’s theorem, whenever u is locally integrable
and v ∈ D(Rn) (or vice versa).

Given a closed set F ⊂ Rn, we define, for s ∈ R,

(7) Hs
F := {u ∈ Hs(Rn) : suppu ⊂ F},

a closed subspace of Hs(Rn). Some of our later results will depend on whether or not
Hs
F is trivial (i.e., contains only the zero distribution) for a given F and s. Following

[32], for s ∈ R we will say that a set E ⊂ Rn is s-null if there are no nonzero elements
of Hs(Rn) supported entirely in E. In this terminology, for a closed set F , Hs

F = {0}
if and only if F is s-null.

Given a nonempty open set Ω ⊂ Rn, there are a number of ways to define Sobolev
spaces on Ω. First, we have Hs

Ω
, defined as in (7). Next, we consider the closure of

D(Ω) in Hs(Rn), which we denote by

(8) H̃s(Ω) := D(Ω)
Hs(Rn)

.

By definition, H̃s(Ω) is, like Hs
Ω

, a closed subspace of Hs(Rn), and it is easy to see

that H̃s(Ω) ⊂ Hs
Ω

for all s ∈ R. When Ω is sufficiently regular (for example, if Ω is

C0—see [41, Theorem 3.29]) it holds that H̃s(Ω) = Hs
Ω

; however, for general Ω the
two spaces can be different. We discuss this key issue in section 5.1, using results
from [19].

Next, let Hs(Ω) := {u ∈ D∗(Ω) : u = U |Ω for some U ∈ Hs(Rn)}, where U |Ω
denotes the restriction of the distribution U to Ω (see, e.g., [41]) with norm

‖u‖Hs(Ω) := inf
U∈Hs(Rn)
U |Ω=u

‖U‖Hs(Rn).

Where ⊥ denotes the orthogonal complement in Hs(Rn) and P : Hs(Rn) → (Hs
Ωc)⊥

is orthogonal projection, it holds that U − PU ∈ Hs
Ωc for U ∈ Hs(Rn), so that

(9) U |Ω = (PU)|Ω and ‖PU‖Hs(Rn) ≤ ‖U‖Hs(Rn), U ∈ Hs(Rn).

Thus for U ∈ Hs(Rn) we have ‖U |Ω‖Hs(Ω) = ‖E(U |Ω)‖Hs(Rn), where

(10) E(U |Ω) := PU
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is the extension of U |Ω from Ω to Rn with minimum norm, so that the restriction
operator |Ω : (Hs

Ωc)⊥ → Hs(Ω) is a unitary isomorphism, with inverse E : Hs(Ω) →
(Hs

Ωc)⊥. Hence Hs(Ω) can be identified with a closed subspace of Hs(Rn), namely,
(Hs

Ωc)⊥. We also remark that D(Ω) := {u ∈ C∞(Ω) : u = U |Ω for some U ∈ D(Rn)}
is a dense subset of Hs(Ω).

Central to our analysis will be the fact that for any closed subspace V ⊂ Hs(Rn)
the dual space V ∗ can be unitarily realized as a subspace of H−s(Rn), with duality
pairing inherited from H−s(Rn) × Hs(Rn). Explicitly (for more details see [19]),
let I : H−s(Rn) → (Hs(Rn))∗ be the unitary isomorphism implied by the duality
pairing (6), i.e., Iu(v) := 〈u, v〉H−s(Rn)×Hs(Rn), let R : Hs(Rn) → (Hs(Rn))∗ denote

the standard Riesz isomorphism, and let j : Hs(Rn) → H−s(Rn) be the unitary
isomorphism defined by j := I−1R. (j can be expressed explicitly as a Bessel potential
operator; see [19, Lemma 3.2 and its proof].) Then V ∗ ∼= j(V ) = (V a)⊥, where

(11) V a := {u ∈ H−s(Rn) : 〈u, v〉H−s(Rn)×Hs(Rn) = 0 for all v ∈ V }

is the annihilator of V in H−s(Rn), ⊥ denotes the orthogonal complement in H−s(Rn),
and the duality pairing is

(12) 〈u, v〉(V a)⊥×V := 〈u, v〉H−s(Rn)×Hs(Rn) , u ∈ (V a)⊥, v ∈ V.

Explicitly [19, Lemma 3.2], if V = Hs
F for F ⊂ Rn closed, then

V a = H̃−s(F c), so that (Hs
F )∗ ∼= (H̃−s(F c))⊥(13)

with the duality pairing (12). Similarly, if V = H̃s(Ω) for Ω ⊂ Rn open,

V a = H−sΩc and (H̃s(Ω))∗ ∼= (H−sΩc )⊥ ⊂ (H̃−s(Ω
c
))⊥ ∼= (Hs

Ω
)∗,(14)

again with the duality pairing (12). We note that, since |Ω : (H−sΩc )⊥ → H−s(Ω) is a
unitary isomorphism (as noted above), the first realization in (14) can be replaced by
the more familiar unitary realization

(H̃s(Ω))∗ ∼= H−s(Ω) with 〈u, v〉H−s(Ω)×H̃s(Ω) := 〈U, v〉H−s(Rn)×Hs(Rn),(15)

where U ∈ H−s(Rn) is any extension of u ∈ H−s(Ω) with U |Ω = u.
Sobolev spaces can also be defined as subspaces of L2(Rn) satisfying constraints

on weak derivatives. In particular, given a nonempty open Ω ⊂ Rn, let

W 1(Ω) :=
{
u ∈ L2(Ω) : ∇u ∈ L2(Ω)

}
, ‖u‖W 1(Ω) :=

(
‖u‖2L2(Ω) + ‖∇u‖2L2(Ω)

)1/2

,

where ∇u is the gradient in a distributional sense. W 1(Rn) = H1(Rn); in fact
W 1(Ω) = H1(Ω) (with equivalence of norms) whenever Ω is a Lipschitz open set
[41, Theorem 3.30], in which case D(Ω) is dense in W 1(Ω). Similarly, we define

W 1(Ω; ∆) :=
{
u ∈W 1(Ω) : ∆u ∈ L2(Ω)

}
, ‖u‖W 1(Ω;∆) :=

(
‖u‖2W 1(Ω) + ‖∆u‖2L2(Ω)

)1/2

,

where ∆u is the Laplacian in a distributional sense, and note that, when Ω is Lipschitz,
D(Ω) is also dense in W 1(Ω; ∆) [26, Lemma 1.5.3.9]. We define, for s ∈ R,

(16) Hs
0(Ω) := D(Ω)

∣∣
Ω

Hs(Ω)
, W 1

0 (Ω) := D(Ω)
∣∣
Ω

W 1(Ω)
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and note that, for every open set Ω, W 1
0 (Ω) = H1

0 (Ω), since the W 1(Ω) norm is
equivalent to the H1(Rn) norm on D(Ω). We will also use the notation W 1,comp(Ω) :=
W 1(Ω) ∩ L2

comp(Ω), where L2
comp(Ω) ⊂ L2(Ω) is the set of restrictions to Ω of those

u ∈ L2(Rn) that are compactly supported.
For wave scattering problems, in which functions decay only slowly at infinity, it

is convenient to define also

W 1,loc(Ω) :=
{
u ∈ L2

loc(Ω) : ∇u ∈ L2
loc(Ω)

}
,

W 1,loc(Ω; ∆) :=
{
u ∈W 1,loc(Ω) : ∆u ∈ L2

loc(Ω)
}
,

and

W 1,loc
0 (Ω) :=

{
u ∈W 1,loc(Ω) : χ|Ωu ∈W 1

0 (Ω), for every χ ∈ D(Rn)
}
,

where L2
loc(Ω) is the set of locally integrable functions u on Ω for which

∫
G
|u(x)|2dx <

∞ for every bounded measurable G ⊂ Ω. Analogously, for s ≥ 0,

Hs,loc(Ω) :=
{
u ∈ L2

loc(Ω) : χ|Ωu ∈ Hs(Ω) for every χ ∈ D(Rn)
}
.

Clearly H0,loc(Ω) = L2
loc(Ω) and H1,loc(Rn) = W 1,loc(Rn). It holds moreover (since

n = 2 or 3) that

(17) W 1,loc(Rn; ∆) = H2,loc(Rn) ⊂ C(Rn),

since if χ ∈ D(Rn) and u ∈W 1,loc(Rn; ∆), then v := χu ∈ H1(Rn) and ∆v ∈ L2(Rn),
from which it follows, by elliptic regularity (e.g., [25]), that v ∈ H2(Rn), so that
v ∈ C(Rn) by the Sobolev imbedding theorem (e.g., [41, Theorem 3.26]).

2.1. Function spaces on Γ∞ and trace operators. Recall that the propa-
gation domain in which the scattered field is assumed to satisfy (1) is D := Rn \ Γ
(n = 2 or 3), where Γ (the screen) is a bounded subset of the hyperplane Γ∞ := {x =
(x1, . . . , xn) ∈ Rn : xn = 0}.

To define Sobolev spaces on Γ∞ we make the natural association of Γ∞ with Rn−1

and set Hs(Γ∞) := Hs(Rn−1) for s ∈ R. For an arbitrary subset E ⊂ Γ∞ we set

Ẽ := {x̃ ∈ Rn−1 : (x̃, 0) ∈ E} ⊂ Rn−1. Then for a closed subset F ⊂ Γ∞ we define

Hs
F := Hs

F̃
, and for an open subset Ω ⊂ Γ∞ we set H̃s(Ω) := H̃s(Ω̃), Hs

Ω
:= Hs

Ω̃
,

Hs(Ω) := Hs(Ω̃), and Hs
0(Ω) := Hs

0(Ω̃). The spaces C∞(Γ∞), D(Γ∞), D(Ω) and
D(Ω) are defined analogously.

Letting U+ := {x ∈ Rn : xn > 0} and U− := Rn \ U+ denote the upper and
lower half-spaces, respectively, we define trace operators γ± : D(U±) → D(Γ∞) by
γ±u := u|Γ∞ , which extend to bounded linear operators γ± : W 1(U±)→ H1/2(Γ∞).
Similarly, we define normal derivative operators ∂±n : D(U±) → D(Γ∞) by ∂±n u =
∂u/∂xn|Γ∞ (so the normal points into U+), which extend (see, e.g., [15]) to bounded
linear operators ∂±n : W 1(U±; ∆) → H−1/2(Γ∞) = (H1/2(Γ∞))∗, satisfying Green’s
first identity, that

(18)
〈
∂±n u, γ

±v
〉
H−1/2(Γ∞)×H1/2(Γ∞)

= ∓
∫
U±

(∇u · ∇v̄ + v̄∆u) dx

for u ∈W 1(U±; ∆) and v ∈W 1(U±). Of note is the fact that

W 1(D) =
{
u ∈ L2(D) : u|U± ∈W 1(U±) and γ+u = γ−u on Γ∞ \ Γ

}
,(19)

W 1(D; ∆) =
{
u ∈W 1(D) : u|U± ∈W 1(U±; ∆) and ∂+

n u = ∂−n u on Γ∞ \ Γ
}

(20)

with (20) a consequence of (18) and (19).
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For compact K ⊂ Γ∞, let

D1,K := {φ ∈ D(Rn) : φ = 1 in some neighborhood of K}.

For u ∈W 1,loc(D; ∆), we define, where χ is any element of D1,Γ, the jumps

[u] := γ+(χu)− γ−(χu) ∈ H1/2

Γ
and [∂nu] := ∂+

n (χu)− ∂−n (χu) ∈ H−1/2

Γ
.(21)

These definitions are independent of the choice of χ ∈ D1,Γ, and the fact that [u] and

[∂nu] are supported in Γ follows from (19) and (20).
It is convenient, for closed T ⊂ Γ, also to use the notation

(22)
C∞T (D) :=

{
v ∈ C∞(D) : v|U+ = w+ and v|U− = w−, for some w± ∈ C∞(U± \ T )

}
,

where C∞(U±\T ) denotes the set of all u ∈ C∞(U±) for which the partial derivatives
of u of all orders have continuous extensions from U± to U± \ T .

2.2. Layer potentials and boundary integral operators. Let Φ(x,y) de-
note the fundamental solution of the Helmholtz equation such that v := Φ(·,y) satis-
fies the Sommerfeld radiation condition, that

∂v(x)

∂r
− ikv(x) = o

(
r(1−n)/2

)
,(23)

as r := |x| → ∞, uniformly in x̂ := x/|x|. Explicitly,

Φ(x,y) :=


eik|x−y|

4π|x− y|
, n = 3,

i

4
H

(1)
0 (k|x− y|), n = 2,

x,y ∈ Rn.(24)

We define the single and double layer potentials,

S : H
−1/2

Γ
→ C2(D) ∩W 1,loc(Rn) and D : H

1/2

Γ
→ C2(D) ∩W 1,loc(D),

respectively, by (note that both sign choices in γ± and ∂±n give the same result)

Sφ(x) :=
〈
γ±(χΦ(x, ·)), φ

〉
H1/2(Γ∞)×H−1/2(Γ∞)

, x ∈ D, φ ∈ H−1/2

Γ
,

Dψ(x) :=
〈
ψ, ∂±n (χΦ(x, ·))

〉
H1/2(Γ∞)×H−1/2(Γ∞)

, x ∈ D, ψ ∈ H1/2

Γ
,

where χ is any element of D1,Γ with x 6∈ suppχ. Explicitly, by (6),

Sφ(x) =

∫
Γ

Φ(x,y)φ(y) ds(y), x ∈ D,(25)

Dψ(x) =

∫
Γ

∂Φ(x,y)

∂n(y)
ψ(y) ds(y), x ∈ D,(26)

but with the first of these equations holding only when φ ∈ H−1/2

Γ
is locally integrable,

in which case φ ∈ L1
(
Γ
)
. Equation (26) holds for all ψ ∈ H1/2

Γ
since H

1/2

Γ
⊂ L1(Γ).

The following properties of S and D are standard when Γ is a bounded Lipschitz
open subset of Γ∞. The extension to general bounded Γ ⊂ Γ∞ follows immediately,
noting that layer potentials on Γ can be thought of as layer potentials on any larger
bounded open set Ω ⊃ Γ; for more details see [16, Theorem 3.1].
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Theorem 2.1. (i) For any φ ∈ H−1/2

Γ
and ψ ∈ H1/2

Γ
the potentials Sφ and Dψ

are infinitely differentiable in D and satisfy the Helmholtz equation (1) in D and the
Sommerfeld radiation condition (23);

(ii) for any χ ∈ D(Rn) the following mappings are bounded:

χS : H
−1/2

Γ
→W 1(Rn), χD : H

1/2

Γ
→W 1(D);

(iii) the following jump relations hold for all φ ∈ H−1/2

Γ
, ψ ∈ H1/2

Γ
, and χ ∈ D1,Γ:

[Sφ] = 0,(27)

∂±n (χSφ) = ∓φ/2, so that [∂nSφ] = −φ,(28)

γ±(χDψ) = ±ψ/2, so that [Dψ] = ψ,(29)

[∂nDψ] = 0.(30)

We will obtain BIE formulations for our scattering problems that can be expressed
with the help of single-layer and hypersingular operators, S∞ and T∞, respectively,
defined as mappings from D(Γ∞) to C∞(Γ∞) by the standard formulae

S∞φ(x) =

∫
Γ∞

Φ(x,y)φ(y) ds(y), T∞ψ(x) =
∂

∂n(x)

∫
Γ∞

∂Φ(x,y)

∂n(y)
ψ(y) ds(y)

(31)

for x ∈ Γ∞. Fix χ ∈ D1,Γ, in which case χ = 1 in some bounded open neighborhood

Γ† of Γ. It is standard (e.g., [41]) that, if φ, ψ ∈ D(Γ∞), then

S∞φ = γ±(χSφ) and T∞ψ = ∂±n (χDψ) in Γ†,(32)

so that we can define mappings S† and T† from D(Γ†) to D(Γ†) by

(33) S†φ := S∞φ|Γ† = γ±(χSφ)|Γ† , T†ψ := T∞ψ|Γ† = ∂±n (χDψ)|Γ†
for φ, ψ ∈ D(Γ†). It is clear from the mapping properties of the trace operators, those

of S and D in Theorem 2.1(ii), and the density of D(Γ†) in H̃s(Γ†), for s ∈ R, that
the representations (33) extend the definitions of S† and T† to bounded operators

S† : H̃−1/2(Γ†) → H1/2(Γ†) and T† : H̃1/2(Γ†) → H−1/2(Γ†). (These mapping
properties are well-known in the case that Γ† is Lipschitz or smoother—see, e.g.,
[28, 29], where Γ is assumed C∞.)

Recall that H±1/2(Γ†) can be identified with the dual space (H̃∓1/2(Γ†))
∗ via

the unitary mapping implied by the duality pairing (15). As noted in section 2, an

alternative natural unitary realization of (H̃∓1/2(Γ†))
∗, via the duality pairing (12),

is (H
±1/2
Γc
†

)⊥ ⊂ H±1/2(Γ∞). We can define versions of S† and T†, S‡ : H̃−1/2(Γ†) →

(H
1/2
Γc
†

)⊥ and T‡ : H̃1/2(Γ†)→ (H
−1/2
Γc
†

)⊥, which map to these alternate realizations of

the dual spaces, by

(34) S‡φ := P+γ
±(χSφ), T‡ψ := P−∂

±
n (χDψ)

for φ ∈ H̃−1/2(Γ†), ψ ∈ H̃+1/2(Γ†), where P± denotes orthogonal projection onto

(H
±1/2
Γc
†

)⊥ in H±1/2(Γ∞). Since ϕ|Γ† = 0 for ϕ ∈ H±1/2
Γc
†

, we see from (33) and (34)

that

(35) S† = |Γ†S‡, T† = |Γ†T‡
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with the mapping |Γ† : (H
±1/2
Γc
†

)⊥ → H±1/2(Γ†) a unitary isomorphism, as noted

in section 2, whose inverse (10) takes ϕ ∈ H±1/2(Γ†) to its unique extension in
H±1/2(Γ∞) with minimum norm.

Thus S†φ is simply the restriction of S‡φ to Γ†, and S‡φ the minimum norm
extension of S†φ; and the same relationship holds between T†φ and T‡φ. Moreover,
it is immediate from (31), (32), (33), and (35) that, for φ, ψ ∈ D(Γ†) and x ∈ Γ†,

S†φ(x) = S‡φ(x) =

∫
Γ†

Φ(x,y)φ(y) ds(y),(36)

T†ψ(x) = T‡ψ(x) =
∂

∂n(x)

∫
Γ†

∂Φ(x,y)

∂n(y)
ψ(y) ds(y).(37)

To write down weak forms of BIEs, we introduce sesquilinear forms associated to
these BIOs, defined by

aS(φ, ψ) := 〈S†φ, ψ〉H1/2(Γ†)×H̃−1/2(Γ†)
= 〈S‡φ, ψ〉H1/2(Γ∞)×H−1/2(Γ∞)(38)

for φ, ψ ∈ H̃−1/2(Γ†), and

aT (φ, ψ) := 〈T†φ, ψ〉H−1/2(Γ†)×H̃1/2(Γ†)
= 〈T‡φ, ψ〉H−1/2(Γ∞)×H1/2(Γ∞)(39)

for φ, ψ ∈ H̃1/2(Γ†). Explicitly, for φ, ψ ∈ D(Γ†) (which is dense in H̃±1/2(Γ†)), it
follows from (6), (31), (32), and (33) that

(40) aS(φ, ψ) =

∫
Γ†

S∞φ ψ̄ ds(x) and aT (φ, ψ) =

∫
Γ†

T∞φ ψ̄ ds(x)

with the actions of S∞ and T∞ given by (31). These sesequilinear forms are continuous
and coercive, in the sense of the following theorem, taken from [17] (and see [29, 21]).
We remark that coercivity in this sense is unusual for BIOs for scattering problems.
More usual—and in fact this would be enough for most of our later analysis—is that
the BIO is a compact perturbation of a coercive operator (where by a coercive operator
we mean one whose associated sesquilinear form is coercive). We note that [17] gives
explicit expressions for the constants in this theorem, as functions of the dimension n
and kL, where L := diam(Γ†).

Theorem 2.2. The sesquilinear forms aS and aT are continuous and coercive,
i.e., there exist constants cS , CS , cT , CT > 0 such that

|aS(φ, ψ)| ≤ CS‖φ‖H̃−1/2(Γ†)
‖ψ‖H̃−1/2(Γ†)

, |aS(φ, φ)| ≥ cS‖φ‖2H̃−1/2(Γ†)
(41)

for all φ, ψ ∈ H̃−1/2(Γ†), and

|aT (φ, ψ)| ≤ CT ‖φ‖H̃1/2(Γ†)
‖ψ‖H̃1/2(Γ†)

, |aT (φ, φ)| ≥ cT ‖φ‖2H̃1/2(Γ†)
(42)

for all φ, ψ ∈ H̃1/2(Γ†).

Since H±1/2(Γ†) is a unitary realization of (H̃∓1/2(Γ†))
∗ through the duality

pairing (15), the upper bounds in this theorem are equivalent to the bounds

(43) ‖S†‖ = ‖S‡‖ ≤ CS , ‖T†‖ = ‖T‡‖ ≤ CS .
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Further, by Lax–Milgram, the above theorem implies that these operators are invert-
ible, with

(44) ‖S−1
† ‖ = ‖S−1

‡ ‖ ≤ c
−1
S , ‖T−1

† ‖ = ‖T−1
‡ ‖ ≤ c

−1
T .

Our BIEs will be expressed in terms of single-layer and hypersingular operators
associated to the screen Γ, defined analogously to (34). Specifically, let V ± denote any

closed subspace of H
±1/2

Γ
(so that V ± ⊂ H̃±1/2(Γ†) by (5)), and let V ∓∗ := ((V ±)a)⊥

denote the natural unitary realization of (V ±)
∗

implied by the duality pairing (12),
where (V ±)a denotes the annihilator of V ± in H∓1/2(Γ∞), defined by (11). We note

in particular that if V ± = H̃±1/2(Ω), for some open Ω ⊂ Γ, or if V ± = H
±1/2
F , for

some closed F ⊂ Γ, then V ∓∗ are given explicitly by (14) and (13), as

(45) V ∓∗ =
(
H
∓1/2
Ωc

)⊥
and V ∓∗ =

(
H̃∓1/2(F c)

)⊥
,

respectively. Let PV ±∗ denote orthogonal projection onto V ±∗ in H±1/2(Γ∞). Then the
operators in our BIE formulations will be the single-layer and hypersingular operators,
S : V − → V +

∗ and T : V + → V −∗ , defined by

Sφ := PV +
∗
γ±(χSφ), φ ∈ V −, Tψ := PV −∗ ∂

±
n (χDψ), ψ ∈ V +.(46)

These definitions are independent of the choice of the ± sign in the trace operators, by
(27) and (30), and are independent of the choice of χ ∈ D1,Γ. (If χ1, χ2 ∈ D1,Γ, then

γ±((χ1−χ2)Sφ) ∈ (V ±)a, so that PV +
∗
γ±((χ1−χ2)Sφ) = 0; similarly, PV −∗ ∂

±
n ((χ1−

χ2)Dψ) = 0.)

Since V ± are closed subspaces of H̃±1/2(Γ†), it follows from (34) and (46) that

(47) S = PV +
∗
S‡|V − , T = PV −∗ T‡|V + ,

so that, since ‖PV ±∗ ‖ = 1, (43) implies that

(48) ‖S‖ ≤ CS , ‖T‖ ≤ CT .

Further, it is immediate from the definitions of V ±∗ and PV ±∗ that

〈Sφ, ψ〉V +
∗ ×V − = 〈Sφ, ψ〉H1/2(Γ∞)×H−1/2(Γ∞) = aS(φ, ψ), φ, ψ ∈ V −,(49)

〈Tφ, ψ〉V −∗ ×V + = 〈Tφ, ψ〉H−1/2(Γ∞)×H1/2(Γ∞) = aT (φ, ψ), φ, ψ ∈ V +.(50)

In other words, the sesquilinear forms corresponding to S and T are just the restric-
tions of aS and aT to the subspaces V − and V +, respectively. Thus these sesquilinear
forms are coercive with the same constants, and S and T are invertible by Lax–
Milgram with

(51) ‖S−1‖ ≤ c−1
S , ‖T−1‖ ≤ c−1

T .

3. Formulating screen scattering problems.

3.1. Standard BVP formulations and their interrelation. In this section
we study the standard formulations for screen scattering from the literature. We
will see that these formulations are equivalent for screens that occupy open sets in
Γ∞ with Lipschitz boundaries (this is well-known), but that some of these standard

D
ow

nl
oa

de
d 

03
/2

8/
18

 to
 1

28
.4

1.
9.

15
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCATTERING BY FRACTAL SCREENS 689

formulations (problems SD-cl, SN-cl, D-st, and N-st below) fail to have unique solu-
tions in less regular cases. (This is explored in section 6 below.) In the next section,
section 3.2, we will introduce new families of formulations that are well-posed in all
cases.

We begin by stating precisely the standard weak formulations of the sound-soft
(Dirichlet) and sound-hard (Neumann) scattering problems that we have referred to
in the introduction. In each case the problem is to find the scattered field us, or
equivalently the total field u = ui + us, given the incident field ui.

Definition 3.1 (problem SD-w). Given ui ∈ W 1,loc(Rn; ∆), find u ∈ W 1,loc

(D; ∆) ∩W 1,loc
0 (D) such that us := u − ui satisfies the Helmholtz equation (1) in D

and the Sommerfeld radiation condition (23).

Definition 3.2 (problem SN-w). Given ui ∈ W 1,loc(Rn; ∆), find u ∈ W 1,loc

(D; ∆) such that us := u − ui satisfies the Helmholtz equation (1) in D and the
Sommerfeld radiation condition (23), and such that u satisfies the weak sound-hard
boundary condition (3).

Remark 3.3. It is easy to see that the solutions us to problems SD-w and SN-w
depend only on ui in a neighborhood of Γ. Precisely, if us is a solution to SD-w (SN-w),
then us is also a solution to SD-w (SN-w) with ui replaced with ui], provided ui = ui]
in some neighborhood of Γ. In particular, without changing the set of solutions us,
we can replace ui by ui] := χui for any χ ∈ D1,Γ, in which case ui] ∈ W 1(Rn; ∆) and

is compactly supported, and u] := ui] + us ∈ W 1,loc(D; ∆) satisfies (1) outside the
support of χ and the Sommerfeld radiation condition (23).

Remark 3.4. An alternative way of formulating the scattering problem SD-w is
to start with a given f ∈ L2(D) = L2(Rn) that has bounded support and seek

u ∈W 1,loc(D; ∆) ∩W 1,loc
0 (D) which satisfies

(52) ∆u+ k2u = f

in D and the Sommerfeld radiation condition (23). This is equivalent to SD-w in the
sense that if u satisfies this formulation and we define ui ∈ W 1,loc(Rn; ∆) to be the
unique solution of ∆u+ k2u = f in Rn which satisfies (23), explicitly

(53) ui(x) = −
∫
Rn

Φ(x,y)f(y)dy, x ∈ Rn,

then u and us := u − ui satisfy SD-w. Conversely, if ui ∈ W 1,loc(Rn; ∆) is given
and us satisfies SD-w, then, by Remark 3.3, us also satisfies SD-w with ui replaced
by ui] := χui for any χ ∈ D1,Γ, and defining u := ui] + us, u satisfies (23) and

∆u+ k2u = f := (∆ + k2)ui], which is in L2(D) and has bounded support. Identical
remarks apply regarding the alternative formulation of SN-w.

The following well-posedness is classical and can be established by combining the
equivalence of formulations in Remark 3.4 with results in [56, Corollary 4.5] for SN-w
and in [45] for SD-w. In each case uniqueness follows from Green’s first theorem
and a result of Rellich (cf. the proof of Lemma 3.26 below), and existence from
uniqueness and local compactness and limiting absorption arguments. These require
in the Neumann case that the domain D satisfies a local compactness condition, which
it does as D satisfies Wilcox’s finite tiling property—see [56, Theorem 4.3 and p. 62].

Theorem 3.5. Problems SD-w and SN-w have exactly one solution for every ui ∈
W 1,loc(D; ∆).
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The following lemma uses the notation introduced above (46), so that V ± is

any closed subspace of H
±1/2

Γ
and PV ∓∗ orthogonal projection onto the realization

V ∓∗ ⊂ H∓1/2(Γ∞) of its dual space. This lemma will allow us to make connections
between SD-w, SN-w, and the other formulations we introduce below.

Lemma 3.6. If u satisfies SD-w or SN-w, then u ∈ C(D), us ∈ C∞(D), [u] ∈
H

1/2

Γ
, [∂nu] ∈ H−1/2

Γ
, and

(54) [us] = [u] = 0 if u satisfies SD-w, while [∂nu
s] = [∂nu] = 0 if u satisfies SN-w.

Further, for all χ ∈ D1,Γ,

(55) PV +
∗
γ±(χu) = 0 with V − = H

−1/2

Γ
, which implies that γ±(χu)|Γ◦ = 0,

if u satisfies SD-w, while

(56) PV −∗ ∂
±
n (χu) = 0 with V + = H

1/2

Γ
, which implies that ∂±n (χu)|Γ◦ = 0,

if u satisfies SN-w.

Proof. If u satisfies SD-w or SN-w, then us ∈ C∞(D) by (1) and standard elliptic
regularity (e.g., [25]). Further it follows from (17) that ui ∈ C(Rn), so that u ∈ C(D).

That [u] ∈ H1/2

Γ
and [∂nu] ∈ H−1/2

Γ
follows since u ∈ W 1,loc(D; ∆), as noted below

(21). Note also that [ui] = 0 and [∂nu
i] = 0, as ui ∈W 1,loc(Rn; ∆), so that [us] = [u]

and [∂nu
s] = [∂nu].

If u satisfies SD-w, then also [u] = 0 by density as [v] = 0 if v ∈ D(D). Further, if

v ∈ D(D), then γ±(χv) is in the annihilator of H
−1/2

Γ
, i.e., PV +

∗
γ±(χv) = 0 with V − =

H
−1/2

Γ
, and the same holds for u by density. As H̃−1/2(Γ

◦
) ⊂ H

−1/2

Γ
, this implies

PV +
∗
γ±(χv) = 0 with V − = H̃−1/2(Γ

◦
) and V +

∗ = (H
1/2

(Γ
◦
)c

)⊥, which is equivalent,

recalling (9) and that |Γ◦ : V +
∗ → H1/2(Γ

◦
) is an isomorphism, to γ±(χu)|Γ◦ = 0.

Suppose now that u satisfies SN-w. To show [∂nu] = 0 it is enough, given the
density (5), to show that 〈[∂nu], φ〉H−1/2(Γ∞)×H1/2(Γ∞) = 0 for all φ ∈ D(Γ∞). But if

φ ∈ D(Γ∞), choosing v ∈W 1,comp(Rn) ⊂W 1,comp(D) so that γ±v̄ = φ, and χ ∈ D1,Γ

such that χ = 1 in a neighborhood of the support of v, it follows from (18) that

〈[∂nu], φ〉H−1/2(Γ∞)×H1/2(Γ∞) = −
∫
D

(∇(χu) · ∇v + v∆(χu)) dx

= −
∫
D

(∇u · ∇v + v∆u) dx = 0.

Arguing similarly, given φ ∈ H
1/2

Γ
it is clear from (19) that one can choose v ∈

W 1,comp(D) so that γ+v̄ = φ and v = 0 in U−, and deduce that

〈∂+
n (χu), φ〉H−1/2(Γ∞)×H1/2(Γ∞) = −

∫
D

(∇u · ∇v + v∆u) dx = 0,

so that ∂+
n (χu), and also ∂−n (χu) as [∂nu] = 0, is in the annihilator of H

1/2

Γ
, i.e.,

PV −∗ ∂
±
n (χv) = 0 with V + = H

1/2

Γ
. This implies, arguing as above for the Dirichlet

case, that ∂±n (χu)|Γ◦ = 0.
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The next lemma is immediate from standard elliptic regularity results up to the
boundary (e.g., [25]).

Lemma 3.7. Suppose that v ∈ W 1,loc(D; ∆) satisfies the Helmholtz equation (1)
in D and that, for some χ ∈ D1,Γ, either γ±(χv)|Γ◦ ∈ C∞(Γ◦) or ∂±n (χv) ∈ C∞(Γ◦).

Then v is smooth up to the boundary away from ∂Γ, i.e., v ∈ C∞∂Γ(D) in the notation
of (22).

From Lemmas 3.7 and 3.6 we have the following corollary.

Corollary 3.8. If u satisfies SD-w or SN-w and ∆ui + k2ui = 0 in a neighbor-
hood of Γ (so that ui is C∞ in a neighborhood of Γ), then us ∈ C∞

∂Γ
(D).

Remark 3.9. Related to Corollary 3.8, common choices for the incident field in
problems SD-w and SN-w are the plane wave

(57) ui(x) = exp(ikd · x), x ∈ Rn,

for some unit vector d ∈ Rn, and the incident field (53), for some f ∈ L2(D) compactly
supported in D, both satisfying (∆ + k2)ui = 0 in a neighborhood of Γ. In particular
if, for some y ∈ D, c ∈ C, and ε < dist(y,Γ), we define f(x) := c for |y − x| < ε,
f(x) := 0, otherwise, then (53) implies

(58) ui(x) = CΦ(x,y) for |x− y| ≥ ε,

where C depends on c, ε, and k, this an incident cylindrical (spherical) wave for n = 2
(n = 3).

SD-w and SN-w are formulations of screen scattering with the boundary conditions
understood in weak, generalized senses. It is also possible to impose the boundary
conditions in a classical sense if ui is sufficiently smooth near Γ. The following is
the obvious generalization to an arbitrary screen Γ of early BVP formulations for
diffraction by screens (see [12] and the references therein), in which there is a (usually
implicit) assumption of smoothness of the solution up to the boundary away from
the screen edge, and an assumption of finite energy density (in other words finite W 1

norm of us) in some neighborhood of the screen boundary, this the Meixner [42] edge
condition.

Definition 3.10 (problems SD-cl and SN-cl). Given ui ∈ W 1,loc(Rn; ∆) such
that ∆ui + k2ui = 0 in a neighborhood of Γ, find us ∈ C∞∂Γ(D) that satisfies the
Helmholtz equation (1) in D, the Sommerfeld radiation condition (23), and the bound-
ary condition for x ∈ Γ◦ that

(59)

lim
y∈D, y→x

us(y) = −ui(x) for problem SD-cl,

lim
y∈D, y→x

∂us(y)

∂n
= −∂u

i(x)

∂n
for problem SN-cl,

and the edge condition that
∫
N

(|∇us|2 + |us|2)dx < ∞, where N := {x ∈ D :
dist(x, ∂Γ) < ε} for some ε > 0.

Problems SD-cl and SN-cl are phrased as Dirichlet and Neumann BVPs, respec-
tively, with boundary data in (59) in terms of ui. We can also study Dirichlet and Neu-
mann BVPs with more general boundary data. The following is a standard Sobolev
space formulation (e.g., [52]).
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Definition 3.11 (problems D-st and N-st). Given g̃D ∈ H1/2(Γ◦) and g̃N ∈
H−1/2(Γ◦), find v ∈ C2(D) ∩ W 1,loc(D) satisfying the Helmholtz equation (1) in
D, the Sommerfeld radiation condition (23), and the boundary conditions, for some
χ ∈ D1,Γ, that

(60)
γ±(χv)|Γ◦ = g̃D for problem D-st,

∂±n (χv)|Γ◦ = g̃N for problem N-st.

The following lemma is immediate from Lemma 3.7, noting that if u∈W 1,loc(D; ∆)
and χu ∈ C∞∂Γ(D) for some χ ∈ D1,Γ, then the Dirichlet (Neumann) boundary condi-

tion holds in (59) if and only if γ±(χu)|Γ◦ = 0 (∂±n (χu)|Γ◦ = 0).

Lemma 3.12. Suppose that ui satisfies the conditions of problems SD-cl and SN-
cl. Then us satisfies SD-cl (SN-cl) if and only if us satisfies D-st (N-st) with g̃D :=

−ui|Γ◦(g̃N := −∂u
i

∂n |Γ◦).
Corollary 3.13. Problem SD-cl (SN-cl) has at most one solution if and only if

the same holds for D-st (N-st).

The following lemma is immediate from Lemmas 3.6 and 3.12. The corollary
follows from Lemma 3.14 and Theorem 3.5.

Lemma 3.14. Suppose that ui satisfies the conditions of problems SD-cl and SN-
cl. If us satisfies SD-w (SN-w), then us satisfies D-st (N-st) with g̃D := −ui|Γ◦(g̃N :=

−∂u
i

∂n |Γ◦), and satisfies SD-cl (SN-cl).

Corollary 3.15. Problems SD-cl and SN-cl have at least one solution.

If Γ is an open set with sufficiently regular boundary, we will see in section 6 that
SD-cl and SN-cl are equivalent to SD-w and SN-w, so that they both have exactly
one solution. But we will show that uniqueness does not hold for SD-cl and SN-cl
(nor, by Corollary 3.13, for D-st and N-st) for general Γ, unless further constraints
are imposed. In particular, uniqueness can fail if Γ◦ is empty, when (59) is empty.
But we will also see (Theorem 6.2) that uniqueness fails when Γ is an open set if ∂Γ
is sufficiently wild.

3.2. Novel families of BVPs for screen scattering. We now introduce some
new families of BVP formulations for screen scattering. Our new formulations are de-
fined in terms of the notation introduced above (46), so that V ± is any closed subspace

of H
±1/2

Γ
and PV ∓∗ orthogonal projection onto the realization V ∓∗ ⊂ H∓1/2(Γ∞) of

its dual space. For any such spaces V ± we define the following BVPs and associated
scattering problems. In all these definitions the choice of χ ∈ D1,Γ is arbitrary.

Definition 3.16 (problem D(V −)). Given gD ∈ V +
∗ , find v ∈ C2 (D)∩W 1,loc(D)

satisfying the Helmholtz equation (1) in D, the Sommerfeld radiation condition (23),
and the boundary conditions

PV +
∗
γ±(χv) = gD for some χ ∈ D1,Γ,(61)

[v] = 0,(62)

[∂nv] ∈ V −.(63)

Definition 3.17 (problem N(V +)). Given gN ∈ V −∗ , find v ∈ C2 (D)∩W 1,loc(D)
satisfying the Helmholtz equation (1) in D, the Sommerfeld radiation condition (23),
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and the boundary conditions

PV −∗ ∂
±
n (χv) = gN for some χ ∈ D1,Γ,(64)

[∂nv] = 0,(65)

[v] ∈ V +.(66)

Definition 3.18 (problem SD(V −)). Given ui ∈W 1,loc(Rn; ∆) find us satisfying
problem D(V −) with

(67) gD := −PV +
∗
γ±(χui) for some χ ∈ D1,Γ.

Definition 3.19 (problem SN(V +)). Given ui ∈W 1,loc(Rn; ∆) find us satisfying
problem N(V +) with

(68) gN := −PV −∗ ∂
±
n (χui) for some χ ∈ D1,Γ.

Remark 3.20. In general, conditions (62), (63), (65), and (66) in the above for-
mulations are essential to ensure uniqueness. But, as we will see later in Theorem 6.1
(and see Remark 3.22), if Γ is sufficiently regular and V ± is constrained by (69) below,
these conditions are superfluous.

Each of SD(V −) and SN(V +) is a family of formulations indexed by the subspace

V ±. In the case that V ± = H
±1/2

Γ
we will show (Corollaries 3.31 and 3.32) that

SD(V −) and SN(V +) are equivalent to SD-w and SN-w, respectively. But we will also
show (Theorems 3.29 and 3.30 and Corollaries 3.31 and 3.32) that these problems are
well-posed for every choice of V ±; that (Theorems 5.5 and 5.6) distinct choices of
V ± lead to distinct solutions; and that (Remark 7.7) many of these solutions can be
interpreted as valid physical solutions for distinct screens Γ with the same closure.

But many choices of V ± do not correspond to physical scattering problems, for
example, choices where V ± is finite-dimensional (though these formulations may be
relevant as numerical approximations). Thus, in much (but not all) of our discussion
below, we will constrain V ± to satisfy a physical selection principle,

(69) H̃±1/2(Γ◦) ⊂ V ± ⊂ H±1/2

Γ
,

intended to ensure that D(V −) and N(V +) are physically reasonable. In (69) we un-

derstand H̃±1/2(Γ◦) to mean {0} if Γ◦ = ∅ (in which case (69) provides no constraint).
The point of (69) is the following lemma.

Lemma 3.21. If (69) holds and v ∈W 1,loc(D; ∆), then (61) and (64) imply that

(70) γ±(χv)|Γ◦ = gD|Γ◦ and ∂±n (χv)|Γ◦ = gN|Γ◦ ,

respectively. Indeed, if V ± = H̃±1/2(Γ◦), (61) and (64) are equivalent to these equa-
tions.

Proof. If (69) holds, then (61) and (64) imply that PV +
∗

(γ±(χv) − gD) = 0 and

PV −∗ (∂±n (χv) − gN) = 0, respectively, with V ± = H̃±1/2(Γ◦). This is equivalent to
(70) (cf. proof of Lemma 3.6).

Remark 3.22. Lemma 3.21 implies that, if V − = H̃−1/2(Γ◦), then D(V −) is the
standard formulation D-st augmented by the additional constraints (62) and (63).
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Similarly, if V + = H̃1/2(Γ◦), then N(V +) is the standard formulation N-st augmented
by the additional constraints (65) and (66). We will show in Theorem 6.1 that, if Γ
is sufficiently regular, these additional constraints are superfluous, which in turn will
imply (Theorem 6.2) that the standard formulations D-st and N-st are then well-posed.

Corollary 3.23. If (69) holds and v satisfies D(V −)(N(V +)), then v satisfies
D-st with g̃D = gD|Γ◦ (N-st with g̃N = gN|Γ◦).

Remark 3.24. Arguing as in the proof of Lemma 3.21, we have also that if (69)
holds and gD and gN are given as in problems SD(V −) and SN(V +), then, for every
χ ∈ D1,Γ,

gD|Γ◦ = −γ±
(
χui
) ∣∣

Γ◦
and gN|Γ◦ = −∂±n

(
χui
) ∣∣

Γ◦
.

Corollary 3.23, Remark 3.24, and Lemma 3.12 imply the following.

Corollary 3.25. If (69) holds, us satisfies SD(V −)(SN(V +)), and (∆+k2)ui =
0 in a neighborhood of Γ, then us satisfies SD-cl (SN-cl).

The following result is one half of a proof of well-posedness of D(V −) and N(V +)
that we will complete in Theorems 3.29 and 3.30 below.

Theorem 3.26. Problems D(V −) and N(V +) (and hence also SD(V −) and
SN(V +)) have at most one solution.

Proof. Suppose that v satisfies D(V −) with gD = 0, and choose real-valued χ∗, χ ∈
D1,Γ such that χ∗ = 1 in a neighborhood of the support of χ. Then, by Green’s first
theorem (18) applied with u and v replaced by χ∗v and χv, respectively, and using
(62) and (1),

〈[∂nv], γ±(χv)〉H−1/2(Γ∞)×H1/2(Γ∞) = −
∫
D

(
∇v · ∇(χv̄)− k2χ|v|2

)
dx.

The duality pairing on the left-hand side vanishes, since [∂nv] ∈ V − and PV +
∗
γ±(χv) =

0, so that γ±(χv) ∈ (V +
∗ )⊥, i.e., is in the annihilator of V −. Thus

(71) =
∫
D

v̄∇v · ∇χdx = 0.

Arguing similarly, but applying Green’s first theorem (e.g., [20, equation (3.4)]) in the
bounded domain BR to (1− χ])u and (1− χ)u (both in C2(Rn)), where χ] ∈ D1,Γ is
chosen so that χ = 1 in a neighborhood of the support of χ] and R is large enough
so that the support of χ is in BR, we see that∫

∂BR

v̄
∂v

∂r
ds =

∫
BR

(
∇v · ∇((1− χ)v̄)− k2(1− χ)|v|2

)
dx.

Taking imaginary parts and using (71) we see that =
∫
∂BR

v̄ ∂v∂r ds = 0 for all suf-

ficiently large R. But this, together with the radiation condition (23), implies that∫
∂BR
|v|2ds→ 0 asR→∞, which implies by the Rellich lemma (e.g., [20, Lemma 3.11])

that v = 0 in D.
An almost identical argument proves uniqueness for N(V +).

The following corollary is immediate from Lemma 3.6.

Corollary 3.27. If us satisfies SD-w, then us satisfies SD(V −) with V − =

H
−1/2

Γ
. Similarly, if us satisfies SN-w, then us satisfies SN(V +) with V + = H

1/2

Γ
.
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Combining this result with Theorems 3.5 and 3.26, we obtain the following.

Theorem 3.28. For V − = H
−1/2

Γ
, problem SD(V −) has exactly one solution

which is the unique solution of SD-w. Similarly, for V + = H
1/2

Γ
, problem SN(V +)

has exactly one solution which is the unique solution of SN-w.

3.3. BIEs, well-posedness, and equivalence of formulations. We now
study the reformulation as BIEs of the various BVPs we have introduced above.
We will also use these BIEs to complete proofs of well-posedness and to complete our
study of the connections between the various formulations.

The operators in these BIEs will be the single layer and hypersingular operators,
S : V − → V +

∗ and T : V + → V −∗ , that we introduced in (46), where, as above, V ±

is some closed subspace of H
±1/2

Γ
⊂ H±(Γ∞), and V ∓∗ ⊂ H∓1/2(Γ∞) the natural

realization of its dual space. These BIOs may seem exotic, especially in cases where Γ
has empty interior or even zero Lebesgue measure, but we emphasize that these BIOs
are nothing but restrictions to subspaces of operators that are completely familiar in
screen scattering problems. Explicitly, from (35) and (47),

S = PV +
∗
E+S†|V − and T = PV −∗ E

−T†|V + ,

where S† : H̃−1/2(Γ†) → H1/2(Γ†) and T† : H̃1/2(Γ†) → H−1/2(Γ†) are the familiar
operators defined by (33), (36), and (37), and E± : H±1/2(Γ†)→ H±1/2(Rn) are the
minimum norm extension operators introduced in (10).

We first reformulate as BIEs the Dirichlet and Neumann BVPs D(V −) and N(V +)
and prove well-posedness of these BVPs via well-posedness of the BIEs. We omit the
proof of Theorem 3.30, which is almost identical to that of Theorem 3.29. Recall that
the sesquilinear forms aS and aT are defined in (38), (39), and (40).

Theorem 3.29. Problem D(V −) has a unique solution, which satisfies

v(x) = −S [∂nv] (x), x ∈ D,(72)

with [∂nv] ∈ V − the unique solution of the BIE

S [∂nv] = −gD.(73)

Further, (73) is equivalent to the variational problem: find [∂nv] ∈ V − such that

aS ([∂nv], ψ) = −〈gD, ψ〉H1/2(Γ∞)×H−1/2(Γ∞) for all ψ ∈ V −.(74)

For every V − satisfying (69), the solution of D(V −) is a solution of D-st with g̃D =
gD|Γ◦ .

Proof. We have seen in Theorem 3.26 that D(V −) has at most one solution.
Further, we have observed above (51) that S : V − → V +

∗ is coercive and so invertible.
Defining φ := −S−1gD ∈ V − and v := −Sφ, it is immediate from Theorem 2.1 and
(46) that v satisfies D(V −) with [∂nv] = φ. The equivalence of (73) and (74) is clear
from (49) and the fact that V +

∗ is a realization of the dual space of V − via the duality
pairing on the left-hand side of (49). The last sentence follows from Corollary 3.23.

Theorem 3.30. Problem N(V +) has a unique solution, which satisfies

v(x) = D[u](x), x ∈ D,(75)
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with [v] ∈ V + the unique solution of the BIE

T [u] = gN.(76)

Further, (76) is equivalent to the variational problem: find [v] ∈ V + such that

aT ([v], ψ) = 〈gN, ψ〉H−1/2(Γ∞)×H1/2(Γ∞) for all ψ ∈ V +.(77)

For every V + satisfying (69), the solution of N(V +) is a solution of N-st with g̃N =
gN|Γ◦ .

The following corollary is immediate from Theorem 3.29, noting that [∂nu
i] = 0

as observed in the proof of Lemma 3.6. The exception is the penultimate sentence,
which is a restatement of Theorem 3.28, and the last sentence, which follows from
Lemma 3.25.

Corollary 3.31. Problem SD(V −) has a unique solution, which satisfies (where
u := ui + us)

u(x) = ui(x)− S [∂nu] (x), x ∈ D,(78)

with [∂nu] ∈ V − the unique solution of the BIE

S [∂nu] = PV +
∗
γ±(χui),(79)

where χ ∈ D1,Γ is arbitrary. Further, (79) is equivalent to the variational problem:

find [∂nu] ∈ V − such that

aS ([∂nu], ψ) = 〈γ±(χui), ψ〉H1/2(Γ∞)×H−1/2(Γ∞) for all ψ ∈ V −.(80)

If V − = H
−1/2

Γ
, then SD(V −) and SD-w have the same unique solution. For every

V − satisfying (69), the solution of SD(V −) is a solution of SD-cl if (∆ + k2)ui = 0
in a neighborhood of Γ.

Similarly, the following corollary follows from Theorem 3.30, with the penultimate
sentence a consequence of Theorem 3.28, and the last sentence a consequence of
Lemma 3.25.

Corollary 3.32. Problem SN(V +) has a unique solution, and this solution sat-
isfies (where u := ui + us)

u(x) = ui(x) +D[u](x), x ∈ D,(81)

with [u] ∈ V + the unique solution of the BIE

T [u] = −PV −∗ ∂
±
n

(
χui
)
,(82)

where χ ∈ D1,Γ is arbitrary. Further, (82) is equivalent to the variational problem:

find [u] ∈ V + such that

aT ([u], ψ) = −
〈
∂±n
(
χui
)
, ψ
〉
H−1/2(Γ∞)×H1/2(Γ∞)

for all ψ ∈ V +.(83)

If V + = H
1/2

Γ
, then SN(V +) and SN-w have the same unique solution. For every V +

satisfying (69), the solution of SN(V +) is a solution of SN-cl if (∆ + k2)ui = 0 in a
neighborhood of Γ.
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4. When is the scattered field just us = 0. From a variety of perspectives,
including that of inverse scattering, a fundamental question is, does the incident field
“see” the screen, by which we mean simply, is us 6= 0?

We first note from Corollaries 3.31 and 3.32 that a necessary condition for the
solution of SD(V −) (SN(V +)) to be nonzero is V − 6= {0} (V + 6= {0}). And, trivially,

there exists a subspace V ± of H
±1/2

Γ
with V ± 6= {0} if and only if H

±1/2

Γ
6= {0}. So

one relevant question is, for which compact sets K ⊂ Γ∞ is H
±1/2
K = {0}? That is,

using the terminology introduced below (7), for which compact sets K is K ±1/2-
null? We address this question in Theorem 4.1, which will be a key tool in much of
our later analysis, using results from [32].

Before stating the theorem we note that, as will be of no surprise to readers
familiar with potential theory (e.g., [37] and [6, Theorem 2.7.4]), for the Dirichlet
problem a key role is played by the capacity, defined for a compact set F ⊂ Rn by
cap(F ) := inf{‖u‖2H1(Rn)}, where the infimum is over all u ∈ D(Rn) such that u ≥ 1
in a neighborhood of F . For an open set Ω ⊂ Rn, and for an arbitrary Borel set
E ⊂ Rn,

cap(Ω) := sup
F⊂Ω

F compact

cap(F ), cap(E) := inf
Ω⊃E

Ω open

cap(Ω).

This last definition for arbitrary Borel sets applies, in particular, in the cases E
compact and E open, for which it coincides with the immediately preceding definitions
for these cases (as shown, e.g., in [32, section 3]). Also, we note that in Theorem 4.1
and the rest of the paper we use the notation m(E) to denote the (n−1)-dimensional
Lebesgue measure of E, for measurable E ⊂ Γ∞. Finally, we remark that illustrations
of the last sentence of the theorem are given in Examples 8.1–8.3.

Theorem 4.1. Let E be a Borel subset of Γ∞. Then
(a) E is −1/2-null if and only if cap(E) = 0;
(b) if E is closed, then E is −1/2-null if and only if W 1

0 (Rn \ E) = W 1(Rn);
(c) if E◦ is nonempty, then E is not ±1/2-null;
(d) if dimH(E) < n− 2, then E is −1/2-null, and if dimH(E) > n− 2, then E is

not −1/2-null;
(e) if m(E) = 0 or E is −1/2-null, then E is 1/2-null;
(f) if E = ∂Ω and Ω is in the algebra of subsets of Rn generated by all C0 open

sets, then E is 1/2-null: if Ω is in the algebra generated by all Lipschitz open
sets, then E is −1/2-null;

(g) if E is countable, then E is ±1/2-null; if E is a countable union of Borel
−1/2-null sets, then E is −1/2-null;

(h) if E is 1/2-null, F ⊂ Γ∞ is 1/2-null, and F has no limit points in E \F (this
holds, in particular, if F is closed), then E ∪ F is 1/2-null.

Further, there exists a compact set F ⊂ Γ∞ with F ◦ = ∅ and F not 1/2-null, and a
set F with m(F ) = 0 and F not −1/2-null.

Proof. A proof of (a) can be found in [19, section 4]; part (b) follows from (a)
and results in [40, section 13.2]; and the remaining results apart from (f) are proved
in [32]. Let I± denote the set of subsets A ⊂ Rn for which ∂A is ±1/2-null. Note
that Rn ∈ I+; and ∂A = ∂(Ac), so that Ac ∈ I+ if A ∈ I+; and A ∪ B ∈ I+ if
A,B ∈ I by (h), as ∂(A∪B) ⊂ (∂A)∪ (∂B). Thus I+ is an algebra of subsets of Rn.
As [32] Ω ∈ I+ if Ω is C0, the algebra I+ contains that generated by the C0 open
sets. Similarly, but using (g) in place of (h), we see that I− is an algebra and that
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I− contains the algebra generated by the Lipschitz open sets as these sets are in I−
by [32].

Another approach to the question “Is us = 0?” is to observe, since SD(V −) and
SN(V +) are well-posed, that the solutions to SD(V −) and SN(V +) are us = 0 if and
only if gD and gN, given by (67) and (68), vanish. This clearly happens for some
choices of incident field ui: for example, gD = gN = 0 if ui = 0 in a neighborhood of
Γ. But we will see, in Theorems 4.5 and 4.6, that for a large class of incident fields of
interest, including the plane wave (57), this does not happen, as long as V ± 6= {0}.

We first prove two preliminary lemmas. In both we assume that V is a closed
subspace of Hs(Γ∞), for some s ∈ R, and, as usual, we denote by V a the annihilator
of V in H−s(Γ∞) given by (11), by V ∗ the dual space realization V ∗ = (V a)⊥ ⊂
H−s(Γ∞) (with duality pairing (12)), and by PV ∗ orthogonal projection in H−s(Γ∞)
onto V ∗. In proving the lemmas we will use the fact that, if s ∈ R and u ∈ Hs(Γ∞)
is compactly supported, then û is an entire function and
(84)
(2π)(n−1)/2û(ξ) = 〈χeξ, u〉H−s(Γ∞)×Hs(Γ∞) = 〈u, χeξ〉Hs(Γ∞)×H−s(Γ∞) , ξ ∈ Γ∞,

for every χ ∈ D(Γ∞) such that χ = 1 in a neighborhood of suppu, where eξ ∈
C∞(Γ∞) is defined by eξ(x) = exp(iξ · x) for x, ξ ∈ Γ∞.

Lemma 4.2. Suppose that s ∈ R and that V ⊂ Hs(Γ∞) is a closed subspace of
Hs

Γ
. Suppose that there exists v ∈ V with v 6= 0 and χv ∈ V for all χ ∈ D(Γ∞).

Suppose further that g ∈ D(Γ∞) and that g(x) 6= 0 for x ∈ Γ. Then PV ∗g 6= 0.

Proof. We have noted above that v̂ is an entire function and, since v 6= 0, v̂(ξ) 6= 0
for some ξ ∈ Γ∞. Choose χ ∈ D1,Γ with g 6= 0 on the support of χ, and define φ ∈ V
by φ := (e−ξχ̄/ḡ)v. Then, abbreviating 〈·, ·〉H−s(Γ∞)×Hs(Γ∞) by 〈·, ·〉,

〈PV ∗g, φ〉 = 〈g, φ〉 = 〈eξχ, v〉 = (2π)(n−1)/2v̂(ξ) 6= 0,

so that PV ∗g 6= 0.

The proof of the next lemma uses the result that if the zero set of an entire
function of one complex variable has a limit point, then the function is identically
zero. This implies that if the set of real zeros of an entire function f(s, t) of two
complex variables has a positive two-dimensional Lebsegue measure, then the function
is identically zero. (For if χ(s, t) is the characteristic function of the zero set in R2

and
∫ ∫

χ(s, t)dsdt > 0, then, by Tonelli’s theorem,
∫
χ(s, t)dt > 0 for all s ∈ E ⊂ R

with E of positive (one-dimensional) measure. This implies that f(s, ·) = 0 for s ∈ E
by the one-dimensional result applied with s fixed, and, by the one-dimensional result
applied with t fixed, we deduce that f(s, t) ≡ 0.)

Lemma 4.3. Suppose that s ∈ R, and that {0} 6= V is a closed subspace of Hs
Γ

.
Let χ ∈ D1,Γ and define g ∈ D(Γ∞) by g(x) = χ(x) exp(ikd · x) for x ∈ Γ∞. Then
PV ∗g 6= 0 for almost all d ∈ Sn := {d ∈ Rn : |d| = 1}, indeed for all except finitely
many d if n = 2.

Proof. We prove the result by contradiction. Where g(x) := χ(x) exp(ikd · x) for
x ∈ Γ∞, suppose that PV ∗g = 0 for all d in some subset of Sn of positive surface
measure, which implies that PV ∗(χeξ) = 0 for all ξ in some Ξ ⊂ {ξ ∈ Γ∞ : |ξ| ≤ k}
which has positive Lebesgue measure. Then, for all v ∈ V and all ξ ∈ Ξ, it follows
from (84) that

(2π)(n−1)/2v̂(ξ) = 〈χeξ, v〉H−s(Γ∞)×Hs(Γ∞) = 〈PV ∗(χeξ), v〉H−s(Γ∞)×Hs(Γ∞) = 0,
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so that v̂ = 0 (and hence v = 0) since v̂ is entire. Thus V = {0}, a contradiction. In
the case n = 2 we achieve the same contradiction just assuming that PV ∗g = 0 for
infinitely many d ∈ Sn.

Remark 4.4. Regarding the application of the above lemmas, it is important to
note that any closed subspace W ⊂ H−s(Γ∞) can be written (uniquely) as W =
V ∗ := (V a)⊥ for some closed subspace V ⊂ Hs(Γ∞) and that V 6= {0} if W 6= {0}.
Explicitly, V = j−1(W ), where j : Hs(Γ∞) = Hs(Rn−1) → H−s(Γ∞) = H−s(Rn−1)
is the unitary isomorphism introduced above (11).

Lemma 4.3 implies that, for any nonzero V ± (even where V ± is only one-
dimensional), the solutions of SD(V −) and SN(V +) are nonzero for almost all in-
cident plane waves.

Theorem 4.5. Let V − 6= {0}(V + 6= {0}), and let us be the solution to SD(V −)
(SN(V +)), with gD given by (67) (gN given by (68)), where ui is the plane wave (57).
Then, for almost all plane wave directions d ∈ Sn (all except finitely many if n = 2),
it holds that us 6= 0.

Proof. If ui is given by (57) and gD and gN by (67) and (68), then gD = −P+
∗ g

and gN = −ikdnP
−
∗ g, where g is as given in Lemma 4.3 and dn is the component of d

in the xn direction. It follows from Lemma 4.3 that gD 6= 0 and gN 6= 0 for almost all
d ∈ Sn (all except finitely many if n = 2), and the result follows.

The above result can be strengthened, using Lemma 4.2, in the case V ± = H
±1/2

Γ
,

indeed in the case that V ± satisfies (69), provided in this latter case that Γ◦ 6= ∅.
Theorem 4.6. Suppose that ui is C∞ in a neighborhood of Γ, and let us be the

solution of SD-w (SN-w). Then, if Γ is not −1/2-null and ui(x) 6= 0 for all x ∈ Γ

(not 1/2-null and ∂ui

∂xn
(x) 6= 0 for x ∈ Γ), it holds that us 6= 0. In particular, these

conditions on ui are satisfied by the incident plane wave (57) (provided dn 6= 0 for
the Neumann problem SN-w), and by the incident cylindrical/spherical wave (58)
(provided yn 6= 0 for the Neumann problem SN-w). Further, if Γ◦ 6= ∅, and V ±

satisfies (69), then the above statements hold with SD-w and SN-w replaced by SD(V −)
and SN(V +), respectively.

Proof. If v ∈ H±1/2

Γ
, then χv ∈ H±1/2

Γ
for all χ ∈ D(Γ∞), so that the first part

of this result follows from Lemma 4.2. Clearly the conditions on ui are satisfied by

(57) and (58) (recalling that the Hankel function H
(1)
ν (t) 6= 0 for t > 0 and ν = 0, 1).

If Γ◦ 6= ∅ and (69) holds, then V ± ⊃ H̃±1/2(Γ◦) 6= {0}, and if v ∈ H̃±1/2(Γ◦) ⊂ V ±,

then χv ∈ H̃±1/2(Γ◦) ⊂ V ± for all χ ∈ D(Γ∞), so that the rest of the result also
follows from Lemma 4.2.

The following theorem summarizes, and/or follows immediately from the results
in, Theorems 4.1, 4.5, and 4.6. We defer discussion of examples illustrating this
theorem until section 8.

Theorem 4.7. Γ is −1/2-null if and only if cap(Γ) = 0, which holds if and only
if W 1

0 (D) = W 1(Rn). If Γ is −1/2-null, which holds in particular if n = 3 and
dimH(Γ) < 1, then the solution to SD-w and to SD(V −) is us = 0. If Γ is not
−1/2-null, equivalently cap(Γ) > 0, which holds in particular if dimH(Γ) > n−2, and

certainly if Γ
◦

is nonempty, then (i) if ui satisfies the conditions of Theorem 4.6 for
the Dirichlet case, in particular if ui is the incident plane wave (57) or the cylindri-
cal/spherical wave (58), then the solution us to SD-w does not vanish, and nor does
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the solution to SD(V −) as long as V − satisfies (69) and Γ◦ is nonempty; (ii) if ui is
the plane wave (57) and V − 6= {0}, then the solution us to SD(V −) is nonzero for
almost all incident directions d (all but finitely many directions d if n = 2).

Similarly, if Γ is 1/2-null, in particular if m(Γ) = 0, then the solution to SN-

w and to SN(V +) is us = 0. If Γ is not 1/2-null, in particular if Γ
◦

is nonempty
(though this is not necessary; see Example 8.3), then (i) if ui satisfies the conditions
of Theorem 4.6 for the Neumann case, then the solution us to SN-w does not vanish,
and nor does the solution to SN(V +) as long as V + satisfies (69) and Γ◦ is nonempty;
(ii) if ui is the plane wave (57) and V + 6= {0}, then the solution us to SN(V +)
is nonzero for almost all incident directions d (all but finitely many directions if
n = 2).

5. Do all our formulations have the same solution? We focus in this section
on the formulations D(V −), N(V +), SD(V −), and SN(V +) introduced in section 3.2
with V ± satisfying the physical selection principle (69), and on the standard formu-
lations introduced in section 3.1, addressing the question of the section title. We will
show that either the formulations SD(V −) and SN(V +) satisfying (69) coincide for
all choices of V + and V − satisfying (69), or, in each case, the cardinality of the set of
distinct formulations is that of the continuum. Further we show that, in the specific
case of plane wave incidence, for almost all directions of incidence, there are, in both
the sound-soft and sound-hard cases, infinitely many distinct solutions us to these
formulations.

The main results of the section are Theorems 5.5 and 5.6. For their proof we
shall appeal to a number of preliminary results. The first, an approximation lemma,
is used to prove Lemma 5.2 and is a special case of [19, Lemma 3.22].

Lemma 5.1. Suppose that N ∈ N and x1, . . . ,xN ∈ Rn are distinct. Then there
exists a family (vj)j∈N ⊂ C∞(Rn) such that for all j ∈ N, vj(x) = 0 if |x− xi| < 1/j
for some i ∈ {1, . . . , N}; for all φ ∈ Hs(Rn) with |s| ≤ 1/2, ‖vjφ− φ‖Hs(Rn) → 0 as
j →∞.

Lemma 5.2. If |s| ≤ 1/2 and H̃s(Γ◦) 6= Hs
Γ

, then the quotient space Hs
Γ
/H̃s(Γ◦)

is an infinite-dimensional separable Hilbert space.

Proof. It is standard that the quotient space Hs
Γ
/H̃s(Γ◦) is a Hilbert space (e.g.,

[19, section 2.1]), and it is separable as Hs(Rn) ⊃ Hs
Γ

is separable.

Suppose now that |s| ≤ 1/2 and H̃s(Γ◦) 6= Hs
Γ
. We show first that for every

v ∈ Hs
Γ
\ H̃s(Γ◦) there exists a set K ⊂ Γ with at least countably many points such

that each point x ∈ K has the following property:

(85) for all ε > 0 there exists χ ∈ D(Bε(x)) with χv ∈ Hs
Γ
\ H̃s(Γ◦).

Suppose this is not true. Then, for some v ∈ Hs
Γ
\ H̃s(Γ◦) the set X of points

x ∈ Γ with this property is finite. Choose a sequence (v`)
∞
`=1 ⊂ C∞(Rn) as follows:

set v` ≡ 1 for ` ∈ N if X = ∅; if X = {x1, . . . ,xN}, for distinct x1, . . . ,xN ∈ Γ,
choose (v`) to have the properties of Lemma 5.1. For every x ∈ K− := Γ \ X
there exists ε(x) > 0 such that χv ∈ H̃s(Γ◦) for all χ ∈ D(Bε(x)(x)). Now, for
each ` ∈ N, {Bε(x)(x) : x ∈ K−} is an open cover for supp(v`v) which has a finite
subcover {Bε(yj)(yj) : j ∈ {1, . . . ,M}} for some finite subset {y1, . . . ,yM} ⊂ K−.
Let χ1, . . . , χM be a partition of unity for supp(v`v) such that χj ∈ D(Bε(yj)(yj)) for
j = 1, . . . ,M ; such a partition of unity exists by [27, Theorem 2.17]. Then χjv`v ∈
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H̃s(Γ◦) for j = 1, . . . ,M , so that v`v =
∑M
j=1 χjv`v ∈ H̃s(Γ◦). But this implies,

taking the limit `→∞, since H̃s(Γ◦) is closed, that v ∈ H̃s(Γ◦), a contradiction.

Now suppose that v ∈ Hs
Γ
\ H̃s(Γ◦) and let K = {x1,x2, . . .} ⊂ Γ with distinct

points xj be such that each point x ∈ K has the property (85). Let

W := {χv + H̃s(Γ◦) : χ ∈ D(Rn)}.

Then W is a linear subspace of Hs
Γ
/H̃s(Γ◦). Further, for every N ∈ N, choosing

ε > 0 such that ε < |xj − x`|/3 for j, ` = 1, . . . , N , and χj ∈ D(Bε(xj)) with

χjv ∈ Hs
Γ
\ H̃s(Γ◦) for j = 1, . . . , N , it is clear that

{χ1v + H̃s(Γ◦), . . . , χNv + H̃s(Γ◦)} ⊂W

is linearly independent, for if w :=
∑N
j=1 αjχjv ∈ H̃s(Γ◦) for some α1, . . . , αN ∈ C,

then, for ` ∈ {1, . . . , N}, choosing χ ∈ D(Rn) such that χ = 1 in a neighborhood

of Bε(x`) and supp(χ) ⊂ B2ε(x`), we see that H̃s(Γ◦) 3 χw = α`χχ`v = α`χ`v, so

α` = 0 since χ`v 6∈ H̃s(Γ◦). Thus dim(W ) ≥ N for each N , so that Hs
Γ
/H̃s(Γ◦) is

infinite-dimensional.

The following lemma uses cardinal arithmetic from ZFC set theory [30].

Lemma 5.3. Let H be a separable Hilbert space of dimension at least two. Then
the cardinality of the set of closed subspaces of H is c, the cardinality of R.

Proof. Suppose H is a separable Hilbert space. Then its cardinality is at least c if
its dimension is at least two, for if v1, v2 ∈ H are orthogonal, {α(cos(θ) v1 +sin(θ) v2) :
α ∈ C} is a distinct closed subspace of H for each 0 ≤ θ < π. Further, H has a
countable orthonormal basis, so that the cardinality of H itself is no larger than that
of the set of sequences of complex numbers, which is c, as |CN| = (2ℵ0)ℵ0 = 2ℵ0 = c.
Finally, since there is an injection H → R, and each closed subspace V is characterized
by a countable set of orthonormal basis vectors in H, the cardinality of the set of closed
subspaces of H is no larger than |RN| = c.

Lemma 5.4. If H̃±1/2(Γ◦) 6= H
±1/2

Γ
, then the set of closed subspaces V ± satisfy-

ing (69) has cardinality c.

Proof. H
±1/2

Γ
/H̃±1/2(Γ◦) is unitarily isomorphic to W, the orthogonal comple-

ment of H̃±1/2(Γ◦) in H
±1/2

Γ
, so the set of closed subspaces of W has cardinality c

by Lemmas 5.2 and 5.3. The result follows as there is a one-to-one correspondence

between the set of closed subspaces of W and the closed subspaces V ± of H
±1/2

Γ
that

satisfy (69), given by L 7→ H̃±1/2(Γ◦)⊕ L, for L a closed subspace of W.

We are now ready to state and prove the main theorems in this section.

Theorem 5.5. If H̃−1/2(Γ◦) = H
−1/2

Γ
and V − satisfies (69), then V − = H

−1/2

Γ
,

so that there is only one formulation D(V −), and one formulation SD(V −) with V −

satisfying (69). Further, in this case SD(V −) and SD-w have the same unique solu-

tion. If H̃−1/2(Γ◦) 6= H
−1/2

Γ
then the set of subspaces V − satisfying (69) has cardi-

nality c. Further, if ui is the incident plane wave (57), then
(a) if V1 6= V2 are any two subspaces V − and, for j = 1, 2, usj is the solution to

SD(Vj), it holds that us1 6= us2 for almost all incident directions d ∈ Sn (all but finitely
many d if n = 2);
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(b) for almost all d ∈ Sn (all but countably many d if n = 2) there are infinitely
many distinct solutions us to the set of scattering problems SD(V −) with V − satisfying
(69).

Proof. The first sentence is clear, and the second is a restatement of a result

in Corollary 3.31. If H̃−1/2(Γ◦) 6= H
−1/2

Γ
, the fact that the set of subspaces V −

satisfying (69) has cardinality c is Lemma 5.4.
To see (a), suppose that V1 6= V2 are any two such subspaces and, for j = 1, 2, let

usj be the solution to SD(Vj), given explicitly by (78) as usj = −Sφj , φj is the unique

solution of (79), i.e., Sjφj = Pjg, where g := γ±(χui), and Sj , V
∗
j , and Pj denote

S, V +
∗ , and PV +

∗
, respectively, when V − = Vj . Now, for j = 1, 2, Sj : Vj → V ∗j is

an isomorphism, so that, if V1 ⊂ V2, V ∗2 = S2(V1) ⊕W , where W is the nonempty
orthogonal complement of S2(V1) in V ∗2 . Let P denote orthogonal projection onto W
in H1/2(Γ∞). Then, by Lemma 4.3 and Remark 4.4, Pg 6= 0 for almost all d ∈ Sn
(all but finitely many d if n = 2), which implies that φ2 6∈ V1, so that φ1 6= φ2. In the
general case that V1 6= V2, it holds for j = 1, 2 that Vj = V ⊕Wj for some orthogonal

subspaces V , W1, and W2 of H
−1/2

Γ
with at least one of W1 and W2 nontrivial. Then

the argument just made shows that, if Wj is nontrivial, then φj 6∈ V , which implies
that φ1 6= φ2 for almost all d ∈ Sn (all but finitely many d if n = 2). But if φ1 6= φ2,
then us1 6= us2 by (28).

If {Vj : j ∈ Z} is a countably infinite set of subspaces V − satisfying (69), with
Vi 6= Vj for i 6= j, then, since a countable union of sets of measure zero has measure
zero, and a countable union of finite sets is countable, statement (b) follows from
(a).

The proof of the following corresponding theorem for the sound-hard case is es-
sentially identical to that of Theorem 5.5 for the sound-soft case and is omitted.

Theorem 5.6. If H̃1/2(Γ◦) = H
1/2

Γ
and V + satisfies (69), then V + = H

1/2

Γ
,

so that there is only one formulation N(V +), and one formulation SN(V +), with
V + satisfying (69). Further, SN(V +) and SN-w have the same unique solution. If

H̃1/2(Γ◦) 6= H
1/2

Γ
, then the set of subspaces V + satisfying (69) has cardinality c.

Further, if ui is the incident plane wave (57), then
(a) if V1 6= V2 are any two subspaces V + and, for j = 1, 2, usj is the solution to

SN(Vj), it holds that us1 6= us2 for almost all incident directions d ∈ Sn (all but finitely
many d if n = 2);

(b) for almost all d ∈ Sn (all but countably many d if n = 2) there are infinitely
many distinct solutions us to the set of scattering problems SN(V +) with V + satisfying
(69).

5.1. When is H̃±1/2(Γ◦) = H
±1/2

Γ
? To complete the picture from Theorems

5.5 and 5.6, we examine the following question: for which screens Γ does it hold

that H̃±1/2(Γ◦) = H
±1/2

Γ
? Many of our results are expressed in terms of the ±1/2-

nullity of Borel subsets of Γ∞, which was defined below (7) and related to other set
properties in Theorem 4.1. Our starting point is the following two theorems. These,
when combined with Theorem 4.1, also lead to explicit examples of distinct subspaces
V ± satisfying (69).

Theorem 5.7 (see [32, Proposition 2.11]). Suppose that Γ◦ ⊂ Fj ⊂ Γ and

Fj is closed for j = 1, 2. Then H̃±1/2(Γ◦) ⊂ H
±1/2
Fj

⊂ H
±1/2

Γ
for j = 1, 2, and

H
±1/2
F1

= H
±1/2
F2

if and only if the symmetric difference F1 	 F2 is ±1/2-null.
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Theorem 5.8 (see [19, Theorem 3.12]). Suppose that Γ◦ ⊂ Γj ⊂ Γ for j = 1, 2,

with Γj open. Then H̃±1/2(Γ◦) ⊂ H̃±1/2(Γj) ⊂ H±1/2

Γ
for j = 1, 2, and H̃±1/2(Γ1) =

H̃±1/2(Γ2) if and only if Γ1 	 Γ2 is ∓1/2-null.

Applying Theorems 5.7 and 5.8 with F1 = Γ◦, F2 = Γ, and Γ1 = Γ◦, Γ2 = Γ
◦
, we

obtain the following.

Corollary 5.9. Let Γ ⊂ Γ∞. Then the following hold:

(i) H
±1/2

Γ◦
= H

±1/2

Γ
if and only if Γ \ Γ◦ is ±1/2-null.

(ii) If Γ
◦ \ Γ◦ is not (∓1/2)-null, then H̃±1/2(Γ◦) 6= H

±1/2

Γ
. If H̃±1/2(Γ

◦
) =

H
±1/2

Γ
, then H̃±1/2(Γ◦) = H

±1/2

Γ
if and only if Γ

◦ \ Γ◦ is (∓1/2)-null.

The next theorem provides sufficient conditions on Γ◦ ensuring that H̃±1/2(Γ◦) =

H
±1/2

Γ
. Here, and henceforth, when we say that the open set Ω ⊂ Rn is C0 except at

countably many points P ⊂ ∂Ω, we mean that its boundary ∂Ω can at each point in
∂Ω \ P be locally represented as the graph (suitably rotated) of a C0 function from
Rn−1 to R with Ω lying only on one side of ∂Ω. (In more detail we mean that Ω
satisfies the conditions of [26, Definition 1.2.1.1], but for every x ∈ ∂Ω\P rather than
for every x ∈ ∂Ω.) Examples of such sets Ω include prefractal appoximations to the
Sierpinski triangle (Figure 1). That the theorem holds when Γ◦ is C0 is well-known
(e.g., [41, Theorem 3.29]), and that it holds in the generality stated here follows from
[19, Theorem 3.24].

Theorem 5.10. If Γ◦ is C0, or is C0 except at countably many points P ⊂ ∂Ω

with P having only a finite set of limit points, then H̃±1/2(Γ◦) = H
±1/2

Γ◦
.

By combining the results in Corollary 5.9 and Theorems 5.10 and 4.1, we can
derive the following corollary, which explores the case where Γ

◦
is C0, except perhaps

at countably many points, but where Γ◦ $ Γ
◦
. We illustrate this corollary with

examples where Γ is open, so that Γ◦ = Γ and Γ◦ = Γ, but Γ◦ 6= Γ
◦
, in Examples 8.5

and 8.6.

Corollary 5.11. Suppose that Γ◦ $ Γ
◦

and that Γ
◦

is C0, or C0 except at a
countable set of points P that has only finitely many limit points. Then

(i) if Γ
◦ \ Γ◦ has interior points, then H̃±1/2(Γ◦) $ H

±1/2

Γ
;

(ii) if Γ
◦ \ Γ◦ is countable, or Γ

◦ \ Γ◦ ⊂ ∂Ω, where Ω ⊂ Γ∞ is a Lipschitz open

set, then H̃±1/2(Γ◦) = H
±1/2

Γ
;

(iii) if H̃1/2(Γ◦) = H
1/2

Γ
or m(Γ

◦ \ Γ◦) = 0, then H̃−1/2(Γ◦) = H
−1/2

Γ
;

(iv) H̃1/2(Γ◦) = H
1/2

Γ
if and only if cap(Γ

◦ \ Γ◦) = 0;

(v) if d := dimH(Γ
◦ \Γ◦) < n−2, then H̃1/2(Γ◦) = H

1/2

Γ
, while H̃1/2(Γ◦) $ H

1/2

Γ
for d > n− 2.

6. Well-posedness of standard formulations. In this section we investigate
for which screens Γ the standard formulations SD-cl, SN-cl, D-st, and N-st are well-
posed. Since we know already that these formulations have at least one solution
(Corollary 3.15 and Theorems 3.29 and 3.30), we need only consider the question of
uniqueness. By Corollary 3.13 it is enough to consider this question for D-st and N-st.

We noted in Remark 3.22 that D(V −) with V − = H̃−1/2(Γ◦) is equivalent to
D-st, augmented by the additional constraints (62) and (63), and that N(V +) with

V + = H̃1/2(Γ◦) is equivalent to N-st augmented by (65) and (66). Since D(V −) and
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N(V +) are well-posed (Theorem 3.29), asking whether D-st has more than one solu-
tion is equivalent to asking whether (62) and (63) are superfluous, i.e., whether D(V −)
remains well-posed if (62) and (63) are deleted. Similarly, asking whether N-st has
more than one solution is equivalent to asking whether (65) and (66) are superfluous,
i.e., whether N(V +) remains well-posed if (65) and (66) are deleted.

Theorem 6.1. Equation (63) is superfluous in D(V −) if and only if V − = H
−1/2

Γ
.

Similarly, (66) is superfluous in N(V +) if and only if V + = H
1/2

Γ
. Equation (62) is

superfluous in D(V −) if and only if (V +
∗ )⊥∩H1/2

Γ
= {0}. Similarly, (65) is superfluous

in N(V +) if and only if (V −∗ )⊥ ∩ H−1/2

Γ
= {0}. In particular, if V ± satisfies (69),

then (62) is superfluous if ∂Γ is 1/2-null, and (65) is superfluous if ∂Γ is −1/2-null.

If V ± = H̃±1/2(Γ◦), then (62) is superfluous if and only if ∂Γ is 1/2-null, and (65)
is superfluous if and only if ∂Γ is −1/2-null.

Proof. If v ∈ W 1,loc(D) and satisfies (1) in D, so that v ∈ W 1,loc(D; ∆), then

[v] ∈ H1/2

Γ
and [∂nv] ∈ H−1/2

Γ
. Thus (63) and (66) are superfluous if V ± = H

±1/2

Γ
. If

also v satisfies (61), then PV +
∗

[v] = 0, i.e., [v] ∈ (V +
∗ )⊥, so that [v] ∈ (V +

∗ )⊥ ∩H1/2

Γ
.

Thus (62) is superfluous if (V +
∗ )⊥ ∩ H1/2

Γ
= {0}. Similarly, if v satisfies (64), then

[∂nv] ∈ (V −∗ )⊥ ∩H−1/2

Γ
, so (65) is superfluous if (V −∗ )⊥ ∩H−1/2

Γ
= {0}.

Conversely, suppose that V1 6= V2, where V1 = V − and V2 = H
−1/2

Γ
. Then, by

Theorem 5.5(a), there exists an incident wave direction d such that us1 6= us2, where
usj is the solution to SD(Vj) for j = 1, 2. Since V1 ⊂ V2, us2 satisfies all the conditions
of SD(V −) except for (63). So v := us1 − us2 6= 0 is a solution to D(V −) with gD = 0

and (63) deleted. Thus uniqueness fails for D(V −) if (63) is deleted and V − 6= H
−1/2

Γ
.

Similarly, arguing using Theorem 5.6(a), uniqueness fails for N(V +) if (66) is deleted

and V + 6= H
1/2

Γ
.

Next, suppose that (V +
∗ )⊥ ∩ H1/2

Γ
6= {0}, choose a nonzero ψ ∈ (V +

∗ )⊥ ∩ H1/2

Γ
,

and set v := Dψ. Then, by Theorem 2.1, except that (62) is not satisfied as [v] = ψ,
v satisfies D(V −) with gD = 0. Thus uniqueness fails for D(V −) if (62) is deleted

and (V +
∗ )⊥ ∩ H1/2

Γ
6= {0}. Similarly, uniqueness fails for N(V +) if (65) is deleted

and (V −∗ )⊥ ∩H−1/2

Γ
6= {0}, arguing in this case by defining v := Sφ, where 0 6= φ ∈

(V −∗ )⊥ ∩H−1/2

Γ
.

If V ± = H̃±1/2(Γ◦), then (recall (45)) V ∓∗ = (H
∓1/2
(Γ◦)c)⊥ and (V +

∗ )⊥ ∩ H∓1/2

Γ
=

H
∓1/2
∂Γ , so that {0} = (V +

∗ )⊥ ∩H∓1/2

Γ
if and only if ∂Γ is ∓1/2-null. If V ± satisfies

(69), then V ± ⊃ H̃±1/2(Γ◦) and, as noted below (12), V ∓∗ ⊃ (H
∓1/2
(Γ◦)c)⊥, so that

(V +
∗ )⊥ ∩H∓1/2

Γ
⊂ H∓1/2

∂Γ , so that {0} = (V +
∗ )⊥ ∩H∓1/2

Γ
if ∂Γ is ∓1/2-null.

By applying Theorem 6.1 with V ± = H̃±1/2(Γ◦), and recalling Theorem 4.1, and
the results of section 5.1, we can now clarify when the standard scattering and BVP
formulations are well-posed.

Theorem 6.2. (a) Problems SD-cl and D-st are well-posed if and only if H̃−1/2(Γ◦)

= H
−1/2

Γ
and ∂Γ is 1/2-null. In particular, any of the following conditions is sufficient

to ensure that SD-cl and D-st are well-posed:
(i) Γ is open and C0, or C0 except at a countable set of points that has only

finitely many limit points.
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(ii) Condition (i) holds for Γ◦, and cap(Γ \ Γ◦) = 0. The latter condition holds,
when n = 2, for example, if Γ\Γ◦ is countable and, when n = 3, for example,
if dimH(Γ \ Γ◦) < 1 or if Γ \ Γ◦ ⊂ ∪Mj=1∂Ωj with each Ωj ⊂ Γ∞ a Lipschitz
open set.

(iii) Condition (i) holds for Γ
◦
, and m(∂Γ) = 0.

On the other hand, SD-cl and D-st are not well-posed if Γ
◦ \ Γ◦ is not 1/2-null, or if

Γ \ Γ◦ is not −1/2-null, in particular if dimH(Γ \ Γ◦) > n− 2.

(b) Problems SN-cl and N-st are well-posed if and only if H̃1/2(Γ◦) = H
1/2

Γ
and

∂Γ is −1/2-null. In particular, SN-cl and N-st are well-posed if Γ is a Lipschitz
open set, or if Γ is C0 except at a countable set of points that has only finitely many
limit points and also ∂Γ ⊂ ∪∞j=1∂Ωj with each Ωj ⊂ Γ∞ a Lipschitz open set. On
the other hand, SN-cl and N-st fail to be well-posed if cap(∂Γ) > 0, in particular if
dimH(∂Γ) > n− 2.

Proof. The first sentences of (a) and (b) follow from the remarks before Theo-

rem 6.1 and Theorem 6.1 applied with V ± = H̃±1/2(Γ◦). The remainder of (b) follows
from Theorems 5.10 and 4.1(a), (d), (f), and (g). Part (a)(i) follows from Theorems
5.10 and 4.1(f)–(h), part (a)(ii) additionally from Theorem 4.1(d), and part (a)(iii)
from Corollary 5.11(iii) and Theorem 4.1(e). The remainder of (a) follows from Corol-
lary 5.9, from Theorems 5.10 and 4.1(d).

Remark 6.3. We note that if D-st is well-posed, then its solution coincides with
that of D(V −), and that if N-st is well-posed, then its solution coincides with that of

N(V +), this for all V ± satisfying (69) (which means in fact for V ± = H̃±1/2(Γ◦) =

H
±1/2

Γ
), as a consequence of Theorems 3.29 and 3.30. Similarly, as long as (∆+k2)ui =

0 in a neighborhood of Γ, if SD-cl is well-posed, then its solution coincides with that
of SD-w, and if SN-cl is well-posed, then its solution coincides with that of SN-w, by
Corollaries 3.31 and 3.32.

A further case of Theorem 6.1 worthy of note is V ± = H
±1/2

Γ
. In this case, recent

results in [19] reveal that the question of whether or not (62) and (65) are superfluous
can be expressed in terms of properties of the space Hs

0(Ω) (defined in (16)).

Theorem 6.4. If V ± = H
±1/2

Γ
, then (62), (63), and (66) are superfluous in

D(V −) and N(V +). Further (65) is superfluous in N(V +) if and only if H
1/2
0 (Γ

c
) =

H1/2(Γ
c
), which holds if ∂Γ is −1/2-null (equivalently if cap(∂Γ) = 0), and certainly

if ∂Γ ⊂ ∪Mj=1∂Ωj, with each Ωj ⊂ Γ∞ a Lipschitz open set.

Proof. If V ± = H
±1/2

Γ
, then the fact that (63) and (66) are superfluous was

stated in Theorem 6.1. Further, recalling (45), V ∓∗ = (H̃∓1/2(Γ
c
))⊥ so that (V ∓∗ )⊥ ∩

H
∓1/2

Γ
= H̃∓1/2(Γ

c
) ∩ H∓1/2

∂Γ
. Then (63) and (66) and superfluous if and only if

{0} = (V ∓∗ )⊥∩H∓1/2

Γ
, which holds if and only if {0} = H̃∓1/2(Γ

c
)∩H∓1/2

∂Γ
, and, by [19,

Corollary 3.29], this holds if and only if H
±1/2
0 (Γ

c
) = H±1/2(Γ

c
). Further, since [19,

Corollary 3.29] H
−1/2
0 (Γ

c
) = H−1/2(Γ

c
), we conclude that (62) is always superfluous.

Finally, we note that [19, Corollary 3.29] proves that also H
1/2
0 (Γ

c
) = H1/2(Γ

c
) (so

that (65) is superfluous) if ∂Γ is −1/2-null; by Theorem 4.1 this holds if and only if
cap(∂Γ) = 0, which certainly holds if ∂Γ ⊂ ∪Mj=1∂Ωj , with each Ωj ⊂ Γ∞ a Lipschitz
open set.
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7. Dependence on domain and limiting geometry principles. In sec-
tion 3.2 we introduced novel families of formulations for the screen scattering prob-
lems, each family member well-posed by Theorems 3.29 and 3.30 and Corollaries 3.31
and 3.32. If we constrain these formulations by our physical selection principle (69)

and H̃±1/2(Γ◦) = H
±1/2

Γ
, then these formulations collapse onto single formulations.

By Theorem 5.10 this happens, in particular, if Γ is C0 or is C0 except at a countable
set of points having only finitely many limit points.

However, for an arbitrary screen Γ (simply a bounded subset of Γ∞), the results of

section 5.1 make clear that, in general, H̃±1/2(Γ◦) 6= H
±1/2

Γ
, even if we constrain Γ fur-

ther, by requiring that Γ is open or closed. And if indeed H̃±1/2(Γ◦) 6= H
±1/2

Γ
, then, by

Theorems 5.5 and 5.6, there are infinitely many distinct formulations (with cardinality
c) satisfying (69), and, at least for the case of plane wave incidence and almost all in-
cident directions, infinitely many corresponding solutions to the scattering problems.

One approach to selecting the “physically correct” solution from this multitude
is to think of Γ as the limit of a sequence of screens (Γj)j∈N, where each screen Γj
is sufficiently regular so that the correct choice of solution is clear. This is a natural
approach for recursively generated fractal structures. For example, the open set Γ
whose boundary is the Koch snowflake is usually generated as the limit of a sequence
Γ1 ⊂ Γ2 ⊂ . . . (see Figure 4), where each Γj is a Lipschitz open set. Likewise the closed
set Γ which is the Sierpinski triangle is usually generated as the limit of a sequence
of closed sets Γ1 ⊃ Γ2 ⊃ . . . (see Figure 1), where, for each j, Γ◦j is C0 (indeed
Lipschitz) except at a finite set of points. Our first theorem (cf. [19, Theorem 4.3 and
Proposition 4.5]) deals with these and related cases.

Theorem 7.1. (a) Suppose that Γj ⊂ Γ∞ is open for j ∈ N, that Γ1 ⊂ Γ2 ⊂ . . . ,
and that Γ = ∪∞j=1Γj is bounded. Further (as usual) let D := Rn \ Γ. Let us denote

the solution to SD(V −) with V − = H̃−1/2(Γ), and usj the solution to SD(V −) with

V − = H̃−1/2(Γj). Then, for every χ ∈ D(Rn),

(86) ‖χ(us − usj)‖W 1(Rn) → 0 as j →∞.

Similarly, if us denotes the solution to SN(V +) with V + = H̃1/2(Γ), and usj the

solution to SN(V +) with V + = H̃1/2(Γj), then, for every χ ∈ D(Rn), ‖χ(us −
usj)‖W 1(D) → 0 as j →∞.

(b) Suppose that Γj ⊂ Γ∞ is compact for j ∈ N, that Γ1 ⊃ Γ2 ⊃ . . . , and that Γ is

given by Γ = ∩∞j=1Γj. Let us denote the solution to SD(V −) with V − = H
−1/2
Γ , and

usj the solution to SD(V −) with V − = H
−1/2
Γj

. Then (86) holds for every χ ∈ D(Rn).

Similarly, let us denote the solution to SN(V +) with V + = H
1/2
Γ , and usj the solution

to SN(V +) with V + = H
1/2
Γj

. Then, for every χ ∈ D(Rn) and every open Ω ⊂ Γ∞

with Γ ⊂ Ω, ‖χ(us − usj)‖W 1(D̃) → 0 as j →∞, where D̃ := Rn \ Ω.

Proof. Part (a). In the first case, by Corollary 3.31, us = −S[∂nu] and usj =

−S[∂nuj ], where [∂nu] ∈ V − is the unique solution of (80) with V − = H̃−1/2(Γ),

and [∂nuj ] the unique solution with V − = H̃−1/2(Γj). Since, by Theorem 2.2, aS is
coercive and, by [19, Proposition 3.33],

H̃±1/2(Γ) =

∞⋃
j=1

H̃±1/2(Γj),
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it follows from Céa’s lemma (cf. [19, (8)]) that ‖[∂nu]−[∂nuj ]‖H̃−1/2(Γ) → 0 as j →∞,

and then (86) follows from Theorem 2.1(ii). The rest of part (a) follows similarly, using
Corollary 3.32 and the coercivity of aT from Theorem 2.2.

Part (b). In the first case, arguing as in part (a), us = −S[∂nu] and usj =

−S[∂nuj ], where [∂nu] ∈ V − is the unique solution of (80) with V − = H
−1/2
Γ , and

[∂nuj ] the unique solution with V − = H
−1/2
Γj

. Since aS is coercive and (e.g., [19,

Proposition 3.34])

H
±1/2
Γ =

∞⋂
j=1

H
±1/2
Γj

,

it follows from [19, Lemma 2.4] that ‖[∂nu] − [∂nuj ]‖H−1/2(Γ∞) → 0 as j → ∞, and
then (86) follows from Theorem 2.1(ii). The rest of part (b) follows similarly, using
Corollary 3.32 and the coercivity of aT , and noting that, if Ω ⊂ Γ∞ is open and
Γ ⊂ Ω, then Γj ⊂ Ω for all j sufficiently large.

Remark 7.2. We note that, if usj → us in any of the senses indicated in the above
theorem, then also, by elliptic regularity arguments, usj → us uniformly on compact
subsets of D. To see this, let F ⊂ D be any such compact subset, choose χ ∈ D(D)
with χ = 1 in a neighborhood of F , and let vj := χ(us−usj). Then (∆ +k2)vj = fj ∈
L2

comp(Rn), which implies that (53) holds with ui and f replaced by vj and fj . From
this, noting also that ‖fj‖L2(Rn) → 0 as j → 0 and supp(fj) ⊂ supp(χ), we see that,
uniformly for x ∈ F , |us(x)− usj(x)| = |vj(x)| → 0 as j →∞.

Theorem 7.1 and Remark 7.2 suggest the following limiting geometry criteria for
selecting physically appropriate solutions for bounded screens Γ that are open and
closed, respectively.2

Definition 7.3 (limiting geometry solution for an open screen). If Γ ⊂ Γ∞ is
bounded and open, we call the scattered field us a limiting geometry solution for Γ for
sound-soft (sound-hard) scattering if there exists a sequence (Γj)j∈N of open subsets

of Γ∞ such that (i) Γ1 ⊂ Γ2 ⊂ . . . and Γ = ∪∞j=1Γj; (ii) for j ∈ N, H̃±1/2(Γj) =

H
±1/2

Γj
, so that the formulations SD(V −)(SN(V +)) satisfying (69) collapse to a single

formulation with a well-defined unique solution usj ; and (iii) for x ∈ D := Rn \ Γ,
us(x) = limj→∞ usj(x).

Definition 7.4 (limiting geometry solution for a closed screen). If Γ ⊂ Γ∞ is
compact, call the scattered field us a limiting geometry solution for Γ for sound-
soft (sound-hard) scattering if there exists a sequence (Γj)j∈N of compact subsets

of Γ∞ such that (i) Γ1 ⊃ Γ2 ⊃ . . . and Γ = ∩∞j=1Γj; (ii) for j ∈ N, H̃±1/2(Γ◦j ) =

H
±1/2
Γj

, so that the formulations SD(V −)(SN(V +)) satisfying (69) collapse to a single

formulation with a well-defined unique solution usj ; and (iii) for x ∈ D := Rn \ Γ,
us(x) = limj→∞ usj(x).

The existence and uniqueness of such limiting geometry solutions is the subject
of the following corollary, which is a consequence of Theorem 7.1 and Remark 7.2.

2We note that this general approach, defining the solution to a BVP for an irregular domain
Ω by taking the limit of the solutions for a sequence (Ωj)∞j=1 of regular domains, is familiar from

potential theory, dating back to Wiener [55] (and see [37, p. 317], [11]). In that context the approx-
imating sequence Ωj approximates Ω in the sense that Ω1 ⊂ Ω2 ⊂ . . . with Ω = ∪∞j=1Ωj , just as in
Definition 7.3.
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Corollary 7.5. (a) For every bounded open screen Γ ⊂ Γ∞ there exists a unique
limiting geometry solution for sound-soft (sound-hard) scattering by Γ, and this so-

lution is the unique solution us to SD(V −)(SN(V +)) with V − = H̃−1/2(Γ)(V + =

H̃1/2(Γ)).
(b) For every compact screen Γ ⊂ Γ∞ there exists a unique limiting geometry

solution for sound-soft (sound-hard) scattering by Γ, and this solution is the unique
solution us to SD-w (SN-w), equivalently the unique solution to SD(V −)(SN(V +))

with V − = H
−1/2
Γ (V + = H

1/2
Γ ).

Proof. Part (a) follows from Theorem 7.1(a) and Remark 7.2, provided there
exists a sequence (Γj) satisfying the conditions of Definition 7.3. One such sequence
can be constructed as follows. For j ∈ N and ` ∈ Zn−1 let Γ`,j := {x ∈ Γ∞ : `i <
2jxi < `i + 1 for i = 1, . . . , n − 1}, and let Ij := {` ∈ Zn−1 : Γ`,j ⊂ Γ}. Then Γj ,
defined to be the interior of the set ∪`∈IjΓ`,j , satisfies the required conditions. In

particular, Γj is C0 except at a finite number of points, so that H̃±1/2(Γj) = H
±1/2

Γj

by Theorem 5.10.
Similarly, part (b) follows from Theorem 7.1(b) and Remark 7.2, provided there

exists a sequence (Γj) satisfying the conditions of Definition 7.4. One such sequence
can be constructed as follows. Let Jj := {` ∈ Zn−1 : Γ ∩ Γ`,j 6= ∅}. Then Γj :=
∪`∈JjΓ`,j satisfies the required conditions.

Remark 7.6. The limiting geometry principles in Definitions 7.3 and 7.4 provide
criteria for selecting physically relevant solutions when Γ is either compact, or bounded
and open. Other cases can also be considered. For example, suppose that Γ = F ∪Ω,
where F , Ω ⊂ Γ∞ have disjoint closures, F is compact with empty interior, and Ω is
bounded and open. We can construct a limiting geometry solution for Γ◦ according
to Definition 7.3, which corresponds by Corollary 7.5(a) to computing the solution to

SD(V −) or SN(V +) with V ± = H̃±1/2(Γ◦), but this solution ignores the component
F since Γ◦ = Ω. Alternatively, we can construct a limiting geometry solution for Γ =
F ∪Ω according to Definition 7.4, which corresponds by Corollary 7.5(b) to computing

the solution to SD(V −) or SN(V +) with V ± = H
±1/2

Γ
, but this ignores the difference

between Ω and Ω, which is important if H̃±1/2(Ω) 6= H
±1/2

Ω
(cf. Examples 8.5 and 8.6

below).
It may be that a more appropriate notion of a limiting geometry solution in

this case can be constructed by thinking of Γ as the limit of a sequence of screens
Γj := Fj ∪ Ωj with F1 ⊃ F2 . . . ,Ω1 ⊂ Ω2 . . . , each Fj compact, each Ωj open and
bounded, and F = ∩∞j=1Fj , Ω = ∪∞j=1Ωj . And we might conjecture that the limiting
geometry solutions this gives rise to are the solutions to SD(V −) or SN(V +) with

V ± = H
±1/2
F + H̃±1/2(Ω), which spaces satisfy H̃±1/2(Γ◦) $ V ± $ H

±1/2

Γ
if F is not

±1/2-null and H̃±1/2(Ω) 6= H
±1/2

Ω
. But we leave full analysis of these and other cases

to future work.

Remark 7.7. For a bounded screen Γ ⊂ Γ∞ with H̃±1/2(Γ◦) 6= H
±1/2

Γ
, there

are infinitely many (with cardinality c) distinct formulations SD(V −) and SN(V +)
satisfying (69) (Theorems 5.5 and 5.6). Definition 7.3 gives physical meaning to the

solutions for V ± = H̃±1/2(Γ◦) as the limiting geometry solutions for the open set Γ◦.

Similarly, Definition 7.4 gives physical meaning to the solutions for V ± = H
±1/2

Γ
as

the limiting geometry solutions for the closed set Γ. But what physical meaning, if
any, do the other solutions have?
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Fig. 1. The first four prefractal approximations to the Sierpinksi triangle.

If Γ0 is open and Γ◦ ⊂ Γ0 ⊂ Γ, then V ± = H̃±1/2(Γ0) satisfies (69) and the corre-
sponding solutions are limiting geometry solutions for Γ0 in the sense of Definition 7.3:
further, by Theorem 5.8 and Corollary 5.9, V ± is different to both H̃±1/2(Γ◦) and

H
±1/2

Γ
if Γ0 \ Γ◦ and Γ

◦ \ Γ0 are both not ∓1/2-null. Similarly, if Γ0 is closed and

Γ◦ ⊂ Γ0 ⊂ Γ, then V ± = H
±1/2
Γ0

satisfies (69) and the corresponding solutions are
limiting geometry solutions for Γ0 in the sense of Definition 7.4: further, by The-

orems 5.7 and 5.8, V ± is different to both H̃±1/2(Γ◦) and H
±1/2

Γ
if Γ◦0 \ Γ◦ is not

∓1/2-null and Γ \ Γ0 is not ±1/2-null.
It may also well be the case—see Remark 7.6—that solving SD(V −) or SN(V +)

with some V ± intermediate between H̃±1/2(Γ◦) and H
±1/2

Γ
is of physical interest as a

limiting geometry solution in some sense different from that of Definitions 7.3 or 7.4.

8. Scattering by fractals and other examples. In this final section we il-
lustrate the results of the previous sections by some concrete examples, including a
number of examples where the screen is fractal or has a fractal boundary.

Our first three examples consider scattering by screens that are compact sets
with empty interior. While the standard formulations SD-w and SN-w are physically
relevant in this case, and in particular are limiting geometry solutions in the sense of
Definition 7.4, the formulations SD-cl and SN-cl lack boundary conditions: equations
(59) are empty. In Examples 8.1 and 8.2 the screen has zero surface measure and the
incident field fails to see the screen for sound-hard scattering, while Example 8.3 is
a screen with empty interior but positive surface measure where the scattered field,
defined as a limiting geometry solution by Definition 7.4, is nonzero for both sound-
soft and sound-hard scattering.

Example 8.1 (scattering by a Sierpinski triangle and its prefractal approxima-
tions). Suppose that n = 3 and Γ ⊂ Γ∞ is a Sierpinski triangle, the compact set
defined by Γ = ∩∞j=1Γj with Γ1 ⊃ Γ2 ⊃ . . . the standard sequence of (closed) prefrac-
tal approximations to Γ; the first four of these is shown in Figure 1. It is clear that
Γ◦ = ∅, indeed that m(Γ) = 0; further [24, Example 9.4] dimH(Γ) = log 3/ log 2 > 1.

Thus, by Theorem 4.1(d) and (e), Γ is 1/2-null, i.e., H
1/2
Γ = {0}, while Γ is not −1/2-

null, i.e., H
−1/2
Γ 6= {0}. Each prefractal Γj is C0 except at finitely many points, in

the terminology of Theorem 5.10, and Γ◦j is a union of finitely many Lipschitz open
sets.

As V + ⊂ H
1/2

Γ
= {0}, the family of formulations SN(V +) for the sound-hard

scattering problem collapses to a single formulation with the trivial solution us = 0.
By Corollary 7.5(b), this is also the solution to SN-w and the limiting geometry
solution in the sense of Definition 7.4. Let usj denote the solution to SN-w with Γ
replaced by the prefractal Γj . By Theorems 5.6 and 5.10, usj is also the solution to

SN(V +) for V + = H
1/2
Γj

= H̃1/2(Γ◦j ), and (assuming ∆ui+k2ui = 0 in a neighborhood
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Fig. 2. The first four prefractal approximations to the standard two-dimensional middle-third
Cantor set (or Cantor dust).

of Γ) usj also satisfies SN-cl by Lemma 3.14; further SN-cl is well-posed by Theorem
6.2(b). Thus all the formulations we have discussed are well-posed and have the same
unique solution for the prefractal Γj . By Theorem 7.1 and Remark 7.2, usj → 0 as

j →∞ uniformly on compact subsets of D := R3 \ Γ, and locally in W 1 norm.

As H̃−1/2(Γ◦) = {0} 6= H
−1/2
Γ , there are, by Lemma 5.4, infinitely many (with

cardinality c) distinct formulations SD(V −) for the sound-soft scattering problem
that satisfy (69). We have shown in Theorem 5.5 for the case of an incident plane
wave (57) that, for almost all incident directions d, there are infinitely many distinct
solutions to these formulations. By Corollary 7.5(b), the solution us to the particular

formulation SD(V −) with V − = H
−1/2
Γ is the limiting geometry solution in the sense

of Definition 7.4, and this is also the unique solution of SD-w. This solution us is, by
Theorem 4.6, nonzero if ui is C∞ in a neighborhood of Γ and ui(x) 6= 0 for x ∈ Γ, for
example, if ui is an incident plane wave. Let usj denote the solution to SD-w with Γ
replaced by Γj . Equivalently, by Theorems 5.5 and 5.10, usj is the solution to SD(V −)

for V − = H
−1/2
Γj

= H̃−1/2(Γ◦j ), and (assuming ∆ui+k2ui = 0 in a neighborhood of Γ)

usj also satisfies SD-cl by Lemma 3.14; further SD-cl is well-posed by Theorem 6.2(a).
By Theorem 7.1 and Remark 7.2, usj → us as j → ∞ uniformly on compact subsets

of D := R3 \ Γ, and locally in W 1 norm.

In the case of sound-soft scattering and n = 3, some of the results of the following
example can be found in [19, Example 4.4] for the case when the wavenumber k is
complex with =(k) > 0.

Example 8.2 (scattering by a Cantor set or Cantor dust). Suppose that n = 2
or 3 and, for j ∈ N, let Γj := Cj , where

Cj :=
{

(x̃, 0) : x̃ ∈ En−1
j−1

}
⊂ Γ∞

with R ⊃ E0 ⊃ E1 ⊃ . . . the standard recursive sequence generating the one-
dimensional “middle-λ” Cantor set for some 0 < λ < 1 [24, Example 4.5]. Where
α = (1 − λ)/2 ∈ (0, 1/2), explicitly E0 = [0, 1], E1 = [0, α] ∪ [1 − α, 1], E2 =
[0, α2] ∪ [α − α2, α] ∪ [1 − α, 1 − α + α2] ∪ [1 − α2, 1], . . . , so that Ej ⊂ R is the
closure of a Lipschitz open set that is the union of 2j open intervals of length lj = αj ,
while E2

j ⊂ R2 is the closure of a Lipschitz open set that is the union of 4j squares

of side-length lj . Figure 2 visualizes E2
0 , . . . , E

2
3 in the classical “middle third” case

α = λ = 1/3.
Define the compact set Γ ⊂ Γ∞ by Γ = ∩∞j=1Γj . If n = 2, Γ is the (one-

dimensional) middle-λ Cantor set, with [24, Example 4.5] dimH(Γ) = log(2)/ log(1/α)
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> 0. If n = 3, then Γ is the associated two-dimensional Cantor set (or Cantor dust)
with [24, Example 4.5, Corollary 7.4] dimH(Γ) = 2 log(2)/ log(1/α) ∈ (0, 2). Thus, by
Theorem 4.1(e), Γ is not −1/2-null if n = 2, or if n = 3 and α > 1/4, but is −1/2-null
if n = 3 and α < 1/4; a more detailed analysis [32, Theorem 4.5] establishes that Γ is
−1/2-null also for n = 3 and α = 1/4. For both n = 2 and 3, m(Γ) = 0 and Γ◦ = ∅,
so that Γ is 1/2-null by Theorem 4.1(e).

The second paragraph of Example 8.1 applies verbatim also in this case: in par-

ticular, the solution to the sound-hard scattering problem SN(V +) with V + = H
1/2
Γ

is again us = 0.
The third paragraph of Example 8.1 also applies verbatim if n = 2, or n = 3

and α > 1/4: in particular, us, the solution to SD(V −) with V − = H
−1/2
Γ , or

equivalently to SD-w, is nonzero as long as ui is C∞ in a neighborhood of Γ and
is nonzero everywhere on Γ. The statements in the third paragraph about usj and
its convergence to us apply also when n = 3 and α ≤ 1/4, but, since Γ is −1/2-null
in this case, every V − = {0} so that the formulations SD(V −) collapse to a single
formulation with the trivial solution us = 0. By Corollary 7.5(b) this is also the
solution to SD-w and is also the limiting geometry solution of Definition 7.4.

Our next example is a screen with empty interior but positive surface measure
which is not 1/2-null. Our “Swiss cheese” construction follows that of Polking, who
used it in [47, Theorem 4] to construct explicitly a compact set F ⊂ Rn with empty
interior that is not n/2-null.

Example 8.3 (scattering by a Swiss cheese screen). By a Swiss cheese screen we
mean, for n = 2, 3, a compact subset Γ of Γ∞ constructed as follows: take a bounded
open set Ω ⊂ Γ∞, and sequences (xj)

∞
j=1 ⊂ Ω and (rj)

∞
j=1 ⊂ (0,∞), and define

Γj := Fj for j ∈ N, where

Fj := Ω \
j⋃

m=1

Brm(xm),

and set Γ := ∩∞j=1Γj . If the sequence (xm)∞m=1 is dense in Ω, then Γ◦ is empty.
But Γ need not be empty: indeed, if the radii rm are sufficiently small and decrease
sufficiently rapidly, then Γ has positive measure, since

m(Γ) ≥ m(Ω)− 2(π/2)n−1
∞∑
j=1

rn−1
m for n = 2, 3.

The condition m(Γ) > 0 is necessary (Theorem 4.1(e)) but is not sufficient to ensure
that Γ is not 1/2-null. But if the radii are small enough and decrease sufficiently
rapidly, then, indeed, Γ is not 1/2-null. It is shown in [32, Theorem 4.6] that for every
open Ω ⊂ Γ∞ there exists ε > 0 such that Γ is not 1/2-null provided

∑∞
m=1 rm ≤ ε

if n = 3, provided each rm < 2 and
∑∞
m=1[log(2/rm)]−1 ≤ ε if n = 2. The choice

rm = 6ε/(πm)2 works for n = 3, and the choice rm = 2 exp(−π2m2/(6ε)) if n = 2.
So let us assume that (xm) is chosen to be dense in Ω, so that Γ◦ is empty, and also

that the radii (rm) are chosen so that Γ is not 1/2-null, which implies (Theorem 4.1(e))
that Γ is not −1/2-null, that m(Γ) > 0, and that Γ is nonempty. Let us also assume
that Ω is a Lipschitz open set. This implies that Γj is in the algebra of subsets of Rn
generated by the Lipschitz open sets so that, by Theorem 4.1(f), ∂Γj is ±1/2-null.
Further, it ensures that Γ◦j = Γj and that Γ◦j is C0 except at a finite number of points.

With the above assumptions, the third paragraph of Example 8.1 applies verba-
tim to this case. The comments in the second paragraph of Example 8.1 about the
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Fig. 3. The irregular screen, consisting of a countable number of circles, of Example 8.4, this
an example of a non-Lipschitz (indeed non-C0) screen for which the classical formulations remain
well-posed and equivalent to the weak formulations and to the standard BIEs (4).

well-posedness and equivalence of all formulations for the sound-hard problem when Γ

is replaced by Γj also apply here. But, as H
1/2
Γ 6= {0} = H̃1/2(Γ◦) for this Swiss cheese

screen, there are, by Lemma 5.4, infinitely many (with cardinality c) distinct formula-
tions SN(V +) for the sound-hard problem that satisfy (69). Further, by Theorem 5.6,
for the case of an incident plane wave (57) and for almost all incident directions d,
there are infinitely many distinct solutions to these formulations. By Corollary 7.5(a),

the solution us to the particular formulation SN(V +) with V + = H
1/2
Γ is the limiting

geometry solution in the sense of Definition 7.4, and this is also the unique solution
of SN-w. This solution is nonzero, by Theorem 4.6, as long as ui is C∞ in a neigh-
borhood of Γ and ∂ui/∂xn is nonzero everywhere on Γ. By Theorem 7.1(b), usj → us,

uniformly on compact subsets of D and locally in W 1 norm, as j →∞.

Our remaining four examples consider screens Γ that are non-C0 open sets. In
Example 8.4 the screen is not C0 but its boundary is sufficiently well-behaved so that
SD-w, SD(V −) subject to (69), and SD-cl all have the same unique solution in the
sound-soft case, and SN-w, SN(V +) subject to (69), and SN-cl all have the same unique
solution in the sound-hard case. In Examples 8.5 and 8.6 the classical formulations
SD-cl and SN-cl both fail to be well-posed. In each case Γ is an interval for n = 2, a
square for n = 3, and the sound-hard scattered field for Γ in the limiting geometry
sense, equivalently the solution to our new formulation SN(V +) with V + = H̃1/2(Γ),
is different from the scattered field for Γ, which satisfies SN-w. In Example 8.6 the
same effects are seen for the sound-soft case.

Example 8.4 (an irregular screen where all formulations are well-posed and co-
incide). Suppose that n = 3 and, for j ∈ N, let sj := (2j + 1)/(2j(j + 1)),
rj := 1/(2j(j + 1)), xj := (sj , 0, 0), and (see Figure 3)

Γ := Γ∞ ∩
∞⋃
j=1

Brj (xj), so that ∂Γ = {0} ∪

Γ∞ ∩
∞⋃
j=1

∂Brj (xj)

 .

Then Γ is not C0, but is C0 except at the countable set of points {0}∪{(1/(j+1), 0, 0) :
j ∈ N}, which has the single limit point 0. Clearly also ∂Γ ⊂ ∪∞j=1∂Ej with each Ej

a Lipschitz open subset of Γ∞. Thus H̃±1/2(Γ) = H
±1/2

Γ
by Theorem 5.10, and also

∂Γ is ±1/2-null by Theorem 4.1(e)–(g).
The solution us to the sound-hard scattering problem SN-w is, by Theorem 5.6,

also the solution to SN(V +) for V + = H̃1/2(Γ) = H
1/2

Γ
, and (assuming ∆ui+k2ui = 0

D
ow

nl
oa

de
d 

03
/2

8/
18

 to
 1

28
.4

1.
9.

15
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCATTERING BY FRACTAL SCREENS 713

in a neighborhood of Γ) us also satisfies SN-cl by Lemma 3.14; further SN-cl is well-
posed by Theorem 6.2(b). The solution us to the sound-soft scattering problem SD-w

is, by Theorem 5.5, also the solution to SD(V −) for V − = H̃−1/2(Γ) = H
−1/2

Γ
,

and (assuming ∆ui + k2ui = 0 in a neighborhood of Γ) us also satisfies SD-cl by
Lemma 3.14; further SD-cl is well-posed by Theorem 6.2(a).

Example 8.5 (scattering by a solid screen with a Cantor set or dust removed).
Suppose that n = 2 or 3 and let Γ0 := {x = (x1, . . . , xn−1, 0) ∈ Γ∞ : 0 < xm < 1,m =
1, . . . , n − 1}. For j ∈ N, let Γj := Γ0 \ Cj , where Cj is as defined in Example 8.2,
so that Γj is a Lipschitz open set. Let Γ := ∪∞j=1Γj = Γ0 \ C, where C := ∩∞j=1Cj
is the screen studied in Example 8.2, i.e., the middle-λ Cantor set for n = 2, the
corresponding Cantor dust for n = 3.

We note that Γ◦ = Γ and that C \∂Γ0 ⊂ Γ
◦ \Γ ⊂ C. Since m(Γ

◦ \Γ) ≤ m(C) = 0

and Γ
◦

= Γ0 is a Lipschitz open set, H̃−1/2(Γ◦) = H
−1/2

Γ
by Corollary 5.11(iii).

Further H̃±1/2(Γ
◦
) = H

±1/2

Γ
by Theorem 5.10. As noted in Example 8.2, C is −1/2-

null if n = 3 and α = (1 − λ)/2 ≤ 1/4, so that Γ
◦ \ Γ◦ ⊂ C is −1/2-null, and

H̃1/2(Γ◦) = H
1/2

Γ
by Corollary 5.9. As also noted in Example 8.2, if n = 2, then

dimH(C) > 0 so that dimH(Γ
◦ \Γ◦) > dimH(C \∂Γ0) > 0 since dimH(∂Γ0) = 0, while

if n = 3 and α > 1/4, then dimH(C) > 1 so that dimH(Γ
◦ \ Γ◦) > dimH(C \ ∂Γ0) > 1

since dimH(∂Γ0) = 1. Thus, by Corollary 5.11(iii), H̃1/2(Γ◦) 6= H
1/2

Γ
if n = 2, or if

n = 3 and α > 1/4.

Since H̃−1/2(Γ◦) = H
−1/2

Γ
, the formulations SD(V −) for sound-soft scattering by

Γ that satisfy (69) collapse onto a single formulation with a single unique solution us,
and this solution, by Corollary 7.5(a), is also the unique solution of SD-w, and the
limiting geometry solution in the sense of Definition 7.3. In particular, if usj denotes
the solution, when Γ is replaced by Γj , to SD-w or SD-cl (all formulations have the
same solution for the screen Γj , as in the other examples above), usj → us, uniformly

on compact subsets of D and locally in W 1 norm as j →∞, by Theorem 7.1(a).

Since Γ0 is Lipschitz, Γ0 = Γ
◦
, and H̃−1/2(Γ

◦
) = H

−1/2

Γ
, us is also the unique

solution to (any of the formulations) for sound-soft scattering by Γ0, including SD-w
and SD-cl. Thus the limiting geometry solution for sound-soft scattering by the screen
Γ = Γ0 \ C is the same as the solution for the screen Γ0: the fractal “hole” C in Γ
does not have any effect.

Similar remarks apply in the sound-hard case if n = 3 and α ≤ 1/4, for then

H̃1/2(Γ◦) = H
1/2

Γ
, and the limiting geometry solution of Definition 7.3 for Γ is just

the solution for scattering by the square screen Γ0. But if n = 2, or n = 3 and

α > 1/4, then H̃1/2(Γ◦) 6= H
1/2

Γ
so that, by Lemma 5.4, there are infinitely many

(with cardinality c) distinct formulations SN(V +) that satisfy (69). Further, by The-
orem 5.6, for an incident plane wave (57) and almost all incident directions d, there
are infinitely many distinct solutions to these formulations. By Corollary 7.5(a), the

solution us to the formulation SN(V +) with V + = H̃1/2(Γ) is the solution that is the
limiting geometry solution in the sense of Definition 7.3. In particular, if usj denotes
the solution, when Γ is replaced by Γj , to SN-w or SN-cl (all formulations have the
same solution for the screen Γj), u

s
j → us, uniformly on compact subsets of D and

locally in W 1 norm as j →∞, by Theorem 7.1(b).

Let ũs denote the solution to SN(V +) with V + = H
1/2

Γ
, equivalently, by Corol-

lary 3.32, the solution to SN-w. As Γ0 is Lipschitz, Γ0 = Γ
◦
, and H̃1/2(Γ

◦
) = H

1/2

Γ
,
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ũs is also the unique solution to (any of the formulations) for sound-hard scattering
by Γ0. We expect, generically, that us 6= ũs, and have shown that this is true in
Theorem 5.6 for plane wave incidence for almost all incident directions. Thus, at
least for plane wave incidence and almost all incident directions, the limiting geome-
try scattered field for Γ = Γ0 \ C is different from that for Γ0: the fractal hole C has
an effect, this surprising given that m(C) = 0 and that Γ = Γ0, so that the domain
D in which (1) holds is the same for both screens.

Example 8.6 (scattering by a solid screen with a Swiss cheese set removed).
Suppose that n = 2 or 3 and let Γ0 be defined as in the previous example. For
j ∈ N, let Γj := Γ0 \ Fj , where Fj is as defined in Example 8.3, making the specific
choice Ω = Γ0 so that Fj ⊂ Γ0. Let Γ := ∪∞j=1Γj = Γ0 \ F , where F := ∩∞j=1Fj is

the Swiss cheese screen studied in Example 8.2. Then Γ = Γ0 ∩
⋃∞
j=1Brj (xj) with

(xj) ⊂ Γ0 and (rj) ⊂ (0,∞), and Γj = Γ0 ∩
⋃j
m=1Brm(xm) for j ∈ N. We choose

(xj) and (rj) as in the second paragraph of Example 8.3, in other words so that
(xj) is dense in Γ0, which implies that Γ = Γ0, and so that F is not 1/2-null. This

implies that m(F ) > 0, and also that Γ
◦ \ Γ◦ = F \ ∂Γ0 is not 1/2-null (for otherwise

F ⊂ ∂Γ0 ∪ (F \ ∂Γ0) is 1/2-null by Theorem 4.1(f) and (h)), and so Γ
◦ \ Γ◦ is not

−1/2-null. Thus H̃±1/2(Γ◦) 6= H
±1/2

Γ
by Corollary 5.9.

The behavior in the sound-hard scattering case is essentially identical to that
exhibited, for n = 2, and for n = 3 with α > 1/4, in the previous example, as,

once again, H̃1/2(Γ◦) 6= H
1/2

Γ
. We will not repeat the detail here. The difference

between this example and the previous one is in the sound-soft case. In this example,
by Lemma 5.4, there are infinitely many (with cardinality c) distinct formulations
for the scattering problem SD(V −) that satisfy (69). Further, by Theorem 5.5, for
an incident plane wave (57) and almost all incident directions d, there are infinitely
many distinct solutions to these formulations. By Corollary 7.5(a), the solution us

to the formulation SD(V −) with V − = H̃−1/2(Γ) is the limiting geometry solution
in the sense of Definition 7.3. In particular, if usj denotes the solution, when Γ is
replaced by Γj , to SD-w or SD-cl (all formulations have the same solution for Γj),
usj → us, uniformly on compact subsets of D and locally in W 1 norm as j → ∞, by
Theorem 7.1(b).

Let ũs denote the solution to SD(V −) with V − = H
−1/2

Γ
, equivalently, by Corol-

lary 3.31, the solution to SD-w. As Γ0 is Lipschitz, Γ0 = Γ
◦
, and H̃−1/2(Γ

◦
) = H

−1/2

Γ
,

ũs is also the unique solution to (any of the formulations) for sound-soft scattering
by Γ0. For plane wave incidence for almost all incident directions, us 6= ũs, by Theo-
rem 5.5, so that the limiting geometry scattered field for Γ = Γ0 \ F is different from
that for Γ0: the Swiss cheese hole F has an effect. We note that m(F ) > 0, which is
suggestive that removing F should have an effect. But on the other hand Γ = Γ0, so
that the domain D in which (1) holds is the same for the screen Γ as for the screen
Γ0. Speaking colloquially, the hole F in Γ provides no “clear passageway” through
which a wave can propagate.

Our final example is an open set which is the interior of a Jordan curve, but which
is not C0, so that Theorem 5.10 does not apply. This is representative of the many
examples for which there remain open questions.

Example 8.7 (scattering by a Koch snowflake). Let n = 3 and let Γ ⊂ Γ∞ be
the open set that is the interior of a Koch snowflake curve, defined by Γ = ∪∞j=1Γj ,
where Γj is the interior of the jth prefractal approximation to the Koch snowflake
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Fig. 4. The first four prefractal approximations to the Koch snowflake.

curve; see [24, Figure 0.2(b), Example 9.5] and Figure 4. Then [24, Example 9.5]
dimH(∂Γ) = log(4)/ log(3) > 1 and m(∂Γ) = 0, so that ∂Γ is 1/2-null but is not
−1/2-null (Theorem 4.1). Thus the formulations SN-cl and N-st are not well-posed
in this case (Theorem 6.2(b)). These formulations do have solutions, namely, the
solutions of the well-posed formulations SN(V +) and N(V +), respectively, for any V +

satisfying (69), in particular for V + = H̃1/2(Γ) and V + = H
1/2

Γ
(Theorem 3.30 and

Corollary 3.32), but uniqueness does not hold.

An open problem in this case is whether or not H̃1/2(Γ) = H
1/2

Γ
. If this does hold,

then the formulations for sound-hard scattering, SN(V +) with V + satisfying (69),
collapse to a single formulation, but if this does not hold, then there are infinitely
many of these formulations (with cardinality c), with infinitely many distinct solutions

(Theorem 5.6). In particular the solution to SN(V +) with V + = H̃1/2(Γ) is the
limiting geometry solution in the sense of Definition 7.3, and in particular it is the
limit as j → ∞ of usj , the solution to SN-w, or equivalently SN-cl, for the Lipschitz

open set that is the jth prefractal Γj . The solution for V + = H
1/2

Γ
is the limiting

geometry solution for the closed von Koch snowflake Γ in the sense of Definition 7.4,
equivalently the solution to SN-w (Corollary 7.5). It is an open question whether
these solutions are the same: all we can currently say is that they are the same if

H̃1/2(Γ) = H
1/2

Γ
, and that if H̃1/2(Γ) 6= H

1/2

Γ
, then these solutions are different for

plane wave incidence for almost all incident wave directions (Theorem 5.6).
Similar remarks apply for sound-soft scattering. It is also an open problem

whether or not H̃−1/2(Γ) = H
−1/2

Γ
. SD-cl and D-st are well-posed if and only if equal-

ity holds (Theorem 6.2), and this also determines whether the formulations SD(V −)
and D(V −) with V − satisfying (69) collapse to a single formulation, or whether there
are infinitely many formulations with cardinality c (Theorem 5.5). Similarly to the

sound-hard case the solution to SD(V −) with V − = H̃−1/2(Γ) is the limiting geometry
solution in the sense of Definition 7.3, and in particular it is the limit as j →∞ of usj ,
the solution to SD-w, or equivalently SD-cl, for the Lipschitz open set that is the jth

prefractal Γj . The solution for V − = H
−1/2

Γ
is the limiting geometry solution for the

screen Γ in the sense of Definition 7.4, equivalently the solution to SN-w (Corollary
7.5). We do not know whether these solutions are the same: this depends on whether

or not H̃−1/2(Γ) = H
−1/2

Γ
(Theorem 5.5).

Acknowledgment. The authors are grateful to A. Moiola (Reading, UK) for
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