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On the basis of ab initio computer simulations, pre-melting phenomena have

been suggested to occur in the elastic properties of hexagonal close-packed iron

under the conditions of the Earth’s inner core just before melting. The extent to

which these pre-melting effects might also occur in the physical properties of

face-centred cubic metals has been investigated here under more experimentally

accessible conditions for gold, allowing for comparison with future computer

simulations of this material. The thermal expansion of gold has been determined

by X-ray powder diffraction from 40 K up to the melting point (1337 K). For the

entire temperature range investigated, the unit-cell volume can be represented

in the following way: a second-order Grüneisen approximation to the zero-

pressure volumetric equation of state, with the internal energy calculated via a

Debye model, is used to represent the thermal expansion of the ‘perfect crystal’.

Gold shows a nonlinear increase in thermal expansion that departs from this

Grüneisen–Debye model prior to melting, which is probably a result of the

generation of point defects over a large range of temperatures, beginning at

T/Tm > 0.75 (a similar homologous T to where softening has been observed in

the elastic moduli of Au). Therefore, the thermodynamic theory of point defects

was used to include the additional volume of the vacancies at high temperatures

(‘real crystal’), resulting in the following fitted parameters: Q = (V0K0)/� =

4.04 (1) � 10�18 J, V0 = 67.1671 (3) Å3, b = (K0
0 � 1)/2 = 3.84 (9), �D = 182 (2) K,

(vf/�)exp(sf/kB) = 1.8 (23) and hf = 0.9 (2) eV, where V0 is the unit-cell volume

at 0 K, K0 and K0
0 are the isothermal incompressibility and its first derivative with

respect to pressure (evaluated at zero pressure), � is a Grüneisen parameter, �D

is the Debye temperature, vf, hf and sf are the vacancy formation volume,

enthalpy and entropy, respectively, � is the average volume per atom, and kB is

Boltzmann’s constant.

1. Introduction

Although the Earth’s inner core is recognized to be made of

an iron–nickel alloy with a few percent of light elements

(Birch, 1952; Allègre et al., 1995; McDonough & Sun, 1995), its

exact structure and composition remain unknown. Seismolo-

gical models of the Earth’s inner core do not agree with

mineralogical models derived from ab initio calculations,

which predict shear-wave velocities up to 30% greater than

seismically observed values (e.g. Vočadlo, 2007; Vočadlo et al.,

2009; Belonoshko et al., 2007; Martorell, Brodholt et al., 2013).

Several proposals have been made to account for such

differences, including, for instance, unusually large composi-

tional effects, the presence of a pervasive partial melt

throughout the inner core, crystal alignment, defects and grain

boundaries, and anelasticity (e.g. Antonangeli et al., 2004;

Vočadlo, 2007; Belonoshko et al., 2007). Another possible
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explanation for the observed low shear wave velocities was

proposed by Martorell, Vočadlo et al. (2013), who reported a

dramatic nonlinear reduction in the elastic constants of

hexagonal close-packed (h.c.p.) iron under a hydrostatic

pressure of 360 GPa, just before melting (T/Tm > 0.96, where T

is the temperature and Tm is the melting temperature). This

was attributed to ‘pre-melting’ effects, thought to be asso-

ciated with the formation of defects in the structure. Although

melting is commonly classified as a first-order phase transition

from solid to liquid without critical phenomena, experimental

studies indicate the possibility of premonitory effects in the

physical properties of a crystal at temperatures close to the

melting point, so called pre-melting phenomena (Mair et al.,

1976). Comparison of the melting curve of iron (Sola & Alfè,

2009) with the slope of the geotherm suggests that the Earth’s

entire inner core is very close to melting, with a value of T/Tm =

0.988 at the centre of the inner core (Martorell, Vočadlo et al.,

2013). Thus, the core does indeed lie in a range of T/Tm where

the velocities might be expected to be strongly decreased near

melting. Pre-melting softening has been suggested for Fe7C3, a

proposed candidate component of the Earth’s inner core, just

prior to melting at inner core conditions (Li et al., 2016). As in

the case of pure iron, the calculated sound-wave velocities

agreed with seismological data; however, in the case of Fe7C3,

the density was found to be too low (by �8%) compared to

geophysical profiles (Dziewonski & Anderson, 1981).

To date, the computer calculations reported by Martorell,

Vočadlo et al. (2013) and Li et al. (2016) are the only results on

pre-melting of a metal that are directly applicable to the

Earth’s inner core, although computer simulations of another

h.c.p. metal, Mg, have also suggested that pronounced changes

in density and elastic moduli occur just prior to melting at

T/Tm > �0.97 (Bavli, 2009; Bavli et al., 2011). In the context of

planetary cores, it is therefore essential to systematically

investigate such phenomena not only for a range of pressures

and temperatures (P�T) at inner core conditions, but also for

iron alloyed with both nickel and light elements in a multi-

component system. However, measuring the pressure depen-

dence of pre-melting effects at such conditions and to the

required precision is extremely challenging. Pre-melting

effects have been observed or are suggested to occur in a

range of physical properties in other metals. For example, the

shear modulus of tin has been experimentally shown to

decrease by more than 50% at temperatures within about 1%

of its melting point (Nadal & Le Poac, 2003). Also, experi-

ments have shown enhanced temperature dependence close to

melting in the elastic modulus (C44) of aluminium (Gordon &

Granato, 2004, and references therein), in the electrical

conductivities of lead (Pokorny & Grimvall, 1984) and of iron

(Secco & Schloessin, 1989), and in the thermal expansion of

sodium single crystals (Adlhart et al., 1974).

In light of this, we aim to investigate to what extent pre-

melting behaviour may occur in the physical properties of

metals by a combination of ab initio computer simulations and

experiments at accessible conditions. We also wish to deter-

mine to what extent changes in elastic moduli with tempera-

ture are correlated with changes in the unit-cell parameters,

since the latter are more easily measured as a function of

pressure and temperature. Here, we report precise measure-

ments at atmospheric pressure of the unit-cell parameters and

the thermal expansion coefficient of a face-centred cubic

(f.c.c.) metal, pure gold, from low temperatures (40 K) up to

the melting point, approaching Tm in much finer temperature

steps than have been reported previously (Simmons &

Balluffi, 1962; Touloukian et al., 1975). Gold is an ideal test

material since it crystallizes in a simple monatomic (i.e. with

one atom in the primitive unit cell) f.c.c. structure (space

group Fm�33m); it is chemically inert and has a relatively low

melting temperature (1337.33 K; Hieu & Ha, 2013). The

pressure–volume–temperature equation of state for gold has

been extensively studied and several equation of state (EoS)

models have been proposed (e.g. Anderson et al., 1989;

Jamieson et al., 1982; Tsuchiya, 2003; Heinz & Jeanloz, 1984;

Shim et al., 2002; Yokoo et al., 2009). Furthermore, pre-melting

effects have been suggested to occur in the elastic properties

of noble metals, such as gold and palladium, which exhibit

large departures from linearity at elevated temperatures

(Yoshihara et al., 1987; Collard & McLellan, 1991).

Precise measurements of the temperature dependence of

the lattice parameter of Au, up to melting, have been made by

Simmons & Balluffi (1962) during their determination of the

equilibrium concentration of vacancies in Au by differential

dilatometry. In this method (e.g. Siegel, 1978; Wollenberger,

1996; Kraftmakher, 1998), the relative changes in the bulk

volume of a crystalline sample (�VB /VB) and also in its unit-

cell volume (�VC /VC) are determined, ideally from the same

specimen under exactly the same temperature conditions.

Since the number of atoms in the sample must be conserved, it

can be readily shown that the vacancy concentration,

Nvac/Natoms, is given by (�VB/VB) – (�VC /VC). Differential

dilatometry thus provides an absolute method for the deter-

mination of vacancy concentrations, but such experiments are

not without their difficulties, in particular with regards to the

measurement of �VB /VB to the required accuracy. Large

specimens are generally required; for example, Simmons &

Balluffi (1962) employed a gold bar of 99.999% purity and size

12.7 � 12.7 � 500 mm to measure the relative change in its

length, �L/L, to �1 � 10�5. Such measurements would be

extremely difficult to perform sufficiently well at high pres-

sure.

Because of the experimental difficulties inherent in differ-

ential dilatometry, an alternative approach to determining the

formation parameters of thermally induced defects is to do

this via a detailed analysis of the temperature dependence of

the thermal expansion of the material at high temperatures. In

some of the earliest work in this area, Lawson (1950) proposed

that the anomalous thermal expansion observed in a number

of substances (especially AgBr and AgCl) just below their

melting points was the result of pre-melting phenomena

associated with thermally generated defects. For NaCl,

Merriam et al. (1962) assumed that the high-temperature

thermal expansion was governed by two terms: a ‘normal’

component (assumed to vary linearly with temperature) and

an ‘anomalous’ component from the thermally generated
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defects, which increased exponentially with temperature.

More recently, Wang and Reeber have applied a similar

though more elaborate approach to ionic crystals (Wang &

Reeber, 1994) and to both body-centred cubic (Wang &

Reeber, 1998) and f.c.c. metals (Wang & Reeber, 2000). In this

method, described in detail in x3.4, the behaviour of the unit-

cell volume of the ‘real’ crystal is modelled in terms of that

expected from a ‘perfect’ (i.e. defect-free) crystal, modified by

a term describing the contribution to the thermal expansion

from thermally induced vacancies. Provided that the

assumptions inherent in determining the properties of the

‘perfect’ crystal are valid, this method therefore provides a

route whereby quantities such as the vacancy formation

enthalpy can be determined from a single set of thermal

expansion measurements.

2. Methods

For a successful determination of any pre-melting effects on

the density and thermal expansion of Au we need to measure

precisely the unit-cell parameters up to the melting point, with

fine temperature spacing as the melting point is approached.

The measurements (on Au from ESPI Metals, 99.999% purity)

were performed using a PANalytical X’Pert Pro powder

diffractometer. This instrument, operating in Bragg–Brentano

parafocusing reflection geometry, is equipped with an incident

beam Ge(111) Johansson geometry focusing monochromator,

producing a Co K�1 incident beam, and can be fitted with

environmental stages covering the range from 40 to 1373 K

(with a readily achievable temperature resolution of 1 K). The

X-ray tube was operated at 40 kV and 30 mA. In the incident

and diffracted beam optics, variable width divergence and

anti-scatter slits were used, together with a 10 mm wide beam

mask in the incident beam, in order to illuminate a constant

10 � 8.5 mm area of the sample; 0.04 radian Soller slits were

present in both the incident and diffracted beams to reduce

the axial divergences and an ‘X’Celerator’ position-sensitive

detector was used. Data collections were performed over a 2�
range of 40–151� below 298 K and 40–154� above 298 K, with

collection times of �105 min and �55 min at each tempera-

ture, respectively. After the experiments reported here, the

zero 2� angle of the diffractometer was determined using an Si

standard (NBS SRM640). Diffraction data between 40 and

300 K were obtained using an Oxford Cryosystems PheniX-FL

low-temperature stage (a modified version of the standard

PheniX stage; Wood et al., 2018), and data between 298 and

1373 K were collected using an Anton Paar HTK1200N

heated stage. The powdered Au sample was dispersed on top

of MgO (Aldrich 99.99%), which helps to constrain the

specimen displacement and 2� offset in the Rietveld refine-

ments and also provides a reservoir for Au when it melts. The

MgO was fired overnight at 1073 K in air before use. Before

the X-ray measurements were collected, the sample (MgO +

Au dispersed across the top) was annealed for 300 min at

773 K in the diffractometer (in the Anton Paar HTK1200N

heated stage) in order to reduce the full width at half-

maximum of the diffraction peaks from Au.

Below 298 K, in the PheniX-FL cold stage, the sample was

held in helium exchange gas at atmospheric pressure. The

sample was initially cooled at 2 K min�1 to 80 K and then at

1 K min�1 to 40 K; subsequent increases in temperature were

made manually at 2 K min�1 and the sample was then allowed

to equilibrate for at least 10 min before the diffraction

patterns were collected. Measurements were made on

warming at intervals of 10 K from 40 to 200 K and intervals of

20 K from 200 to 300 K. Above 298 K, measurements were

performed in air and the sample was heated at 5 K min�1, after

which it was equilibrated for a time which varied from 25 min

(at 323 K) to 6 min (at 413 K) and above. Measurements were

made at intervals of 20 K between 200 and 1273 K, 10 K

between 1273 and 1313 K, and 2 K up to the point where all of

the gold was molten (1339 K). The temperature control was

better than �0.1 K throughout the entire analysis. The

intensities of the diffraction patterns were converted from

variable to fixed divergence slit geometry using the software

supplied by the manufacturer, after which the data were

analysed by Rietveld refinement using the GSAS suite of

programmes (Larson & Von Dreele, 2000; Toby, 2001). In

addition to the cell parameters of Au and MgO, the isotropic

atomic displacement parameters, scale factor, sample shift and

profile shape parameters were varied during the fitting

procedure. In total, 23 variables were included in the refine-

ment, with �6660 data points in each diffraction pattern, the

effective step size being �0.017� in 2�.

Owing to a small offset between the data collected using the

high- and low-temperature stages, the high-temperature

results were scaled to match the low-temperature volumes, by

minimizing the residuals of a second-order polynomial passing

through the 200–280 K (cold-stage) and 313–393 K (hot-stage)

data. The resulting scaling factor used for the high-tempera-

ture data is 0.99984. This scaling has minimal effect on the

fitted values of the variable parameters in the models used to

describe the thermal expansion.

3. Results and discussion

3.1. Lattice parameters of gold as a function of temperature

A typical diffraction pattern of Au, collected at room

temperature, is presented in Fig. 1.

Au diffraction patterns at high 2� angles and at four

different temperatures approaching melting are shown in

Fig. 2. Au peaks are present in the diffraction pattern at

1337 K but disappear at 1339 K, indicating that the gold

melted between 1337 and 1339 K. This is in perfect agreement

with the melting temperature reported in the literature

(1337.33 K; Hieu & Ha, 2013), demonstrating the accuracy of

the heating stage thermometry. Given the very small amount

of Au still present at 1337 K (Fig. 2), we did not include this

point in the subsequent analysis of the data.

The evolution of the unit-cell volume of gold as a function

of temperature is reported in Fig. 3, and the lattice parameters

and unit-cell volumes are tabulated in Table S1. Our results

appear to be in excellent agreement with those of Simmons &
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Balluffi (1962) for gold of nominally the same purity; for

example, at 1333 K the change in lattice parameters relative to

its value at 293 K found in the present study (0.018153)

corresponds exactly to that tabulated by Simmons & Balluffi

(0.01815).

3.2. A simple model of the thermal expansion above room
temperature

The high-temperature behaviour of gold was modelled

using several approaches. The temperature evolution of the

volume above room temperature can be expressed, according

to Fei (1995), as

V Tð Þ ¼ VTr
exp

RT
Tr

� Tð Þ dT

" #
; ð1Þ

where VTr
is the volume at a chosen reference temperature Tr

(300 K in this case) and �ðTÞ is the volumetric thermal

expansion coefficient, given by a linear expression of the form

� Tð Þ ¼ a0 þ a1T: ð2Þ

The resulting values for the data from 298 to 1335 K, fitted in

EoSFit7 (Angel et al., 2014), are VTr
= 67.854 (2) Å3, a0 =

3.62 (2) � 10�5 K�1 and a1 = 1.88 (3) � 10�8 K�2 and are in

fairly good agreement with the values VTr
= 67.85 Å3 (fixed),

a0 = 3.179 (139) � 10�5 K�1 and a1 = 1.477 (310) � 10�8 K�2

reported by Hirose et al. (2008). The volumetric thermal

expansion coefficient, �, at ambient conditions (300 K and

1 bar; 1 bar = 105 Pa) is predicted to be 4.18 (2) � 10�5 K�1

using equation (2), and is higher than that reported by Hirose

et al. (2008) (3.62 � 10�5 K�1), but is in excellent agreement

with the value quoted by Simmons & Balluffi (1962)

(equivalent to 4.17 � 10�5 K�1 for the volumetric expansion

coefficient), and is in good agreement with other values

determined both experimentally (4.28 � 10�5 K�1; Toulou-

kian et al., 1975; Anderson et al., 1989) and from theoretical

calculations (4.52 � 10�5 K�1; Tsuchiya, 2003). At 1335 K, the

expansion coefficient on this model is 6.13 (2) � 10�5 K�1.

3.3. Grüneisen–Debye models of thermal expansion

A more physically meaningful parameterization of experi-

mental V(T) dependency, covering the entire temperature

range, can be obtained using the Grüneisen approximations

for the zero-pressure equation of state, in which the effects of

thermal expansion are considered to be equivalent to elastic

strain induced by thermal pressure (e.g. Wallace, 1998). This
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Figure 2
X-ray powder diffraction patterns of gold (black markers) and MgO (red
markers) at high 2� angles, at different temperatures approaching
melting. Note that the gold peaks disappear at 1339 K, indicating that
gold melted between 1337 and 1339 K, in perfect agreement with the
melting temperature reported in the literature.

Figure 3
Unit-cell volume of gold as a function of temperature showing the entire
temperature range. The error bars are smaller than the symbols. The solid
line represents the fit of the data to a second-order Grüneisen
approximation to the zero-pressure equation of state [equation (3)].

Figure 1
X-ray powder diffraction pattern of gold (+ MgO) at 298 K, collected with
the sample in the hot stage. Observed (red points) and calculated patterns
(green line) and their differences (purple lower trace) are also shown.
The tick markers show the position of the Bragg reflections from top
down: MgO (red) and Au (black).



approach allows investigation of the dynamics of the material

by enabling evaluation of the Debye temperature. The second-

order approximation, derived on the basis of a Taylor series

expansion of (PV) to second order in �V, is commonly

reported as being more appropriate for the fitting and extra-

polation of higher-temperature data (Vočadlo et al., 2002;

Lindsay-Scott et al., 2007; Trots et al., 2012; Hunt et al., 2017)

and takes the form (Wallace, 1998)

V Tð Þ ¼ V0 þ
V0U

Q� bU
; ð3Þ

where

Q ¼
V0K0

�
ð4Þ

and

b ¼
ðK00 � 1Þ

2
: ð5Þ

In equations (3)–(5), V0 is the hypothetical volume at T = 0 K,

� is a Grüneisen parameter, assumed to be pressure and

temperature independent, and K0 is the isothermal incom-

pressibility at T = 0 K and P = 0 GPa. K00 is its first pressure

derivative, also evaluated at T = 0 K and P = 0 GPa.

In cases when the behaviour of V(T) is more complex, a

third-order Grüneisen approximation (see Wood et al., 2004)

can be employed, which takes the form

V Tð Þ ¼ V0 þ
V0U

Q� bU þ cU2
; ð6Þ

where

c ¼
�
� 0=ð12K0V0Þ

��
2K0 K000 � ðK

0
0Þ

2
þ 6K00 � 5

�
: ð7Þ

K000 is the second derivative of the isothermal incompressibility

with respect to pressure, at T = 0 K and P = 0 GPa.

The internal energy, U(T), required in equations (3) and (6)

can be calculated using the Debye model to describe the

energy of thermal vibrations:

U Tð Þ ¼ 9NkBT
T

�D

� �3 Z�D=T

0

x3

expðxÞ � 1

� �
dx; ð8Þ

where N is the number of atoms in the unit cell (in this case N =

4), kB is Boltzmann’s constant and �D is the Debye tempera-

ture.

The solid line in Fig. 3 shows the result obtained from fitting

equation (3) to the data by weighted nonlinear least squares,

with resulting values for the four fitted constants of Q =

4.110 (8) � 10�18 J, V0 = 67.1657 (4) Å3, b = 4.28 (4) and �D =

173 (2) K.

The Debye temperature of Au determined from equation

(3), 173 (2) K, is in very good agreement with values reported

in the literature, which range from 165 to 170 K, from calori-

metric data and derived from elastic measurements (e.g.

Neighbours & Alers, 1958, and references therein; Anderson

et al., 1989).

An estimate of the first pressure derivative of the incom-

pressibility K00 can be obtained directly from the coefficient b

in equation (3) (see Table 1). The resulting value, K00 = 9.57 (8),

is, however, higher than published values for K00, which range

between 5 and 6.2 (Anderson et al., 1989; Jamieson et al., 1982;

Tsuchiya, 2003; Heinz & Jeanloz, 1984; Shim et al., 2002;

Yokoo et al., 2009). The incompressibility itself can also be

estimated from equation (3), provided the Grüneisen para-

meter is known. Grüneisen parameter values reported in the

literature are between 2.95 and 3.215 (Anderson et al., 1989;

Jamieson et al., 1982; Tsuchiya, 2003; Heinz & Jeanloz, 1984;

Shim et al., 2002; Yokoo et al., 2009). If we apply the minimum

value of � (2.95) in the present case, we obtain a value of K0 =

180.5 (4) GPa, which is in very good agreement with the

values of 180 GPa at 0 K and 167.5 GPa at 300 K reported by

Yokoo et al. (2009), whereas using the maximum value of 3.215

we obtain K0 = 196.7 (4) GPa.

Although equation (3) provides a good basis within which

to assess the behaviour of the material, the theory suffers from

several deficiencies. In particular, a harmonic approximation is

used to calculate U(T). Also, a limitation of the approach is

that Q and b are assumed to be temperature independent,

whereas in reality the Grüneisen parameter has some

temperature dependence (e.g. Vočadlo et al., 2002). These

deficiencies in the model can be reflected in the fitted values of

the four parameters, which should therefore be treated care-

fully. However, it can be seen that equation (3) provides an

excellent fit up to about 1200 K, above which point the

calculated curve is not sufficiently steep (see Fig. 4). In an

effort to improve the fit we tried including the electronic

contribution to the heat capacity, Cel, using a linear term for

Cel(T); however, this led to an essentially identical fit and did

not improve the agreement at high temperatures. The
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Table 1
Volumetric thermal expansion parameters of gold.

Polynomial model [equations (1)–(2)]
VT300

(Å3) 67.854 (2)
�0 (K�1) 3.62 (2) � 10�5

�1 (K�2) 1.88 (3) � 10�8

Second-order Grüneisen approximation [equation (3)]
Q (J) 4.110 (8) � 10�18

b 4.28 (4)
�D (K) 173 (2)
V0 (Å3) 67.1657 (4)

Derived values [equations (4) and (5), assuming � = 2.95]
K0 (GPa) 180.5 (4)
K0
0 9.57 (8)

Third-order Grüneisen approximation [equation (6)]
Q (J) 3.97 (2) � 10�18

b 2.8 (2)
�D (K) 188 (2)
V0 (Å3) 67.1678 (3)
c (J�1) �0.44 (5) � 1019

Derived values [equations (4), (5) and (7) assuming � = 2.95]
K0 (GPa) 174.4 (9)
K0
0 6.6 (4)

K0K0
0 0 �100 (12)



deviation from the model at high temperatures may arise from

the failure of the harmonic Debye approximation as anhar-

monicity becomes progressively more important (Vočadlo et

al., 2002) or may arise from other contributions to the heat

capacity, such as the formation of defects; these possibilities

are discussed below.

To account for possible anharmonicity and for the insuffi-

cient curvature in the region immediately below melting (Tm),

we also employed a third-order Grüneisen approximation (see

Wood et al., 2004) [equation (6)]. For the purpose of

comparison, and in order to examine the most suitable method

for describing the behaviour of the perfect crystal of Au at

high temperatures, the values of the fitted variable parameters

in the various equations employed are reported in Table 1.

The differences between observed and calculated volumes,

employing either the second- or third-order Grüneisen

approximations [equations (3) and (6)], are also displayed in

Fig. 5.

The third-order approximation appears to provide a better

fit of the data up to 1300 K, where the maximum volume

residuals are less than 0.005 Å3, as opposed to the second-

order approximation which displays deviations up to 0.01 Å3

(Fig. 5). At temperatures close to melting, however, both

models fail to represent the observed data, where a distinct

systematic deviation of up to 0.02 and 0.01 Å3 (twice the

maximum deviations below 1300 K) is observed for the

second- and third-order approximations, respectively.

By fitting equation (6) to the data for V(T) we obtained

values of the constants Q = 3.97 (2) � 10�18 J, V0 =

67.1678 (3) Å3, b = 2.8 (2), �D = 188 (2) K and c = �0.44 (5) �

1019 J�1. Although the third-order Grüneisen approximation

appears to provide a better fit to the data (see Figs. 4 and 5), a

Debye temperature of 188 (2) K is obtained through this

approach, which is high compared to the more commonly

reported values of 165–170 K (Anderson et al., 1989; Jamieson

et al., 1982; Tsuchiya, 2003; Heinz & Jeanloz, 1984; Shim et al.,

2002; Yokoo et al., 2009); if the parameter b in equation (6) is

fixed at 3/2, corresponding to a value of K00 = 4, an even higher

Debye temperature of 216 (2) K is obtained.

The limitations of equation (6) are also reflected in the

numerically large fitted value of the parameter c =�0.44 (5)�

1019 J�1; by substituting the values of Q ¼ ðV0K0Þ=� and K00 =

6.6 [from equation (5)] in the relationship c ¼ ½� 0=ð12K0 V0Þ� �

½2K0 K000 � ðK
0
0Þ

2
þ 6K00 � 5� we obtain K0 K000 = �100 (12).

Even if we fix K00 = 4, we obtain K0 K000 = �188 (2), which is

much higher than the value resulting from the implied values

of K000 in many of the commonly used isothermal equations of

state for Au. For example, by fitting a third-order Birch–

Murnaghan equation to the data reported by Hirose et al.

(2008) we obtained K000 =�0.04, which corresponds to K0 K000 =

�6.5 (fixing K0 at 167 GPa). In particular, our resulting

K0 K000 = �188 (2) value is much higher than that required by

the third-order Birch–Murnaghan equation, where K0 K000 ¼

�½ð3� K0Þð4� K0Þ þ 35=9� ¼ �3:9 for K00 = 4 (e.g. Angel,

2000). Thus, although Fig. 5 appears to show that the third-

order Grüneisen approximation does a better job in fitting the

data, analysis of the fitted parameters above gives a contrary

conclusion, i.e. the fitted parameters give a poorer repre-

sentation of the true material properties.

3.4. The effect of thermally induced vacancies on the thermal
expansion

At very high homologous temperatures, a further disad-

vantage of the Grüneisen–Debye model discussed above is the

fact that it does not consider the presence of thermally

generated defects in a material. These defects can produce a

significant contribution to the thermal expansion, especially as

the temperature approaches the melting point where the
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Figure 5
Differences between measured and calculated volumes as a function of
temperature, when employing a second-order (filled symbols) or a third-
order (open symbols) Grüneisen approximation [equations (3) and (6)].

Figure 4
Unit-cell volumes of gold in the high-temperature region expanded to
show the possible pre-melting zone. The error bars are smaller than the
symbols. The solid and dashed lines represent the fits of the data to
second-order and third-order Grüneisen approximations to the zero-
pressure equation of state [equations (3) and (6)].



defect concentration is greatest (e.g. Lawson, 1950; Merriam et

al., 1962; Simmons & Balluffi, 1962; Gilder & Wallmark, 1969;

Siegel, 1978; Wollenberger, 1996; Kraftmakher, 1998).

Although in some circumstances the formation of interstitials

has been found to have a significant effect on the physical

properties of f.c.c. metals (e.g. Gordon & Granato, 2004), in

our estimation of the contribution from thermally induced

defects to the thermal expansion of Au, we have assumed that

only the formation of monovacancies is significant, as it is

generally considered that in simple close-packed structures

the formation of vacancies will dominate over formation of

interstitials as the energy required is much lower (e.g. Kraft-

makher, 1998; Simmons & Balluffi, 1962).

The thermal expansion of a crystal at high temperature can

therefore be treated as having contributions both from the

perfect crystal and from its thermal defects. Here we use the

formalism reported by Wang & Reeber (2000) whereby a

quasi-harmonic model [in this case the Grüneisen–Debye

model employed earlier, equation (3), rather than the

summation over Einstein oscillators used by Wang and

Reeber] represents the thermal expansion of the perfect

crystal, and the contributions from lattice defects at high

temperature (here termed the real crystal) are described by

the thermodynamic theory of point defects. The expected

volume contribution from such defects is expressed as follows:

�V Tð Þ ¼ Vp Tð Þ exp
vf

�
exp

sf

kB

� �
exp

�hf

kBT

� �� �
� 1

� 	
; ð9Þ

where Vp(T) is the volume of a perfect crystal, vf , hf and sf are

the formation volume, enthalpy and entropy of the point

defect, respectively, � is the average volume per atom, and kB

is Boltzmann’s constant; vf=� and sf are assumed to be

constants.

If we use the Grüneisen approximations for the zero-pres-

sure equation of state with the Debye approximation of the

internal energy [equations (3)–(5)] to describe the volume for

a perfect crystal, Vp(T), the volume of the real crystal is

V Tð Þ ¼ Vp Tð Þ exp
vf

�
exp

sf

kB

� �
exp

�hf

kBT

� �� �� 	
: ð10Þ

In fitting equation (10) to the data for V(T) we obtained Q =

4.04 (1) � 10�18 J, V0 = 67.1671 (3) Å3, b = 3.84 (9), �D =

182 (2) K, ðvf=�Þ expðsf=kBÞ = 1.8 (23) and hf = 0.9 (2) eV. The

enthalpy of formation obtained matches the values reported in

the literature, which range from 0.6 to 0.962 eV (see Wollen-

berger, 1996; Kraftmakher, 1998, and references therein). The

incompressibility and its pressure derivative, estimated from

equations (3) and (4), assuming � = 2.95, resulted in the

following values: K0 = 177.5 (5) GPa and K00 = 8.7 (2).

The observed and calculated volumes and their differences,

taking into account the contribution from lattice defects, are

displayed in Fig. 6. An excellent fit to the data over the entire

range, particularly near melting, is clearly visible, with

maximum volume residuals less than 0.005 Å3. In particular, at

temperatures above 600 K the residuals are not systematic

with temperature, unlike those displayed when using the

second- or third-order Grüneisen approximations (see Fig. 5).

The volume difference between the real and perfect Au

crystals [i.e. the difference in the fitted values of equations (10)

and (3)] is reported in Fig. 7. The presence of defects in Au has

a clear effect above 800 K, and the difference between the real

and perfect crystals reaches almost 0.1% at Tm. Although this

difference in volume is minor, it should be noted that �V

becomes significant at roughly the same temperature where
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Figure 6
Unit-cell volume of gold expanded in the high-temperature region to
show the possible pre-melting region. The error bars are within the
symbols. The solid red line represents the fit of the data to equation (10)
(real crystal) and the dashed line is the perfect crystal component [i.e.
Vp(T)]. Differences between measured and calculated volumes including
the defect contribution to the volume of the real crystal as a function of
temperature are shown in the insets.

Figure 7
Difference in volume (�V) between a real and a perfect Au crystal
[equation (9)] as a function of temperature (bottom x axis) and
homologous temperature, T/Tm (top x axis). The difference in volume
is also reported as a percentage on the right.



deviations from linearity were observed in the elastic prop-

erties of gold (Collard & McLellan, 1991).

The quality of fit of the model to the measured data is also

reflected in the thermal expansion. Fig. 8 shows the volumetric

thermal expansion coefficient of Au obtained from

� Tð Þ ¼
1

V Tð Þ

� �
dV

dT

� �
; ð11Þ

where T is the temperature and dV/dT is the rate of volume

change at T. Given the variable spacing of the data points (20–

2 K spacing, see Table S1), we chose a fixed window of 20 K,

through which we fitted a first- or second-order polynomial to

derive the experimental values. The thermal expansion is

reported at the mid-point of the window. The order of the

polynomial was 1 when the data spacing was 20 K; otherwise it

was 2.

It can be seen that the fit resulting from equation (10)

corresponds well to the data points shown in the figure,

whereas equation (3) systematically underestimates the

expansion coefficient above �800 K.

Au is considered to be one of the most favourable metals for

studies of vacancy formation. The equilibrium vacancy

concentration at the melting point, as determined previously,

ranges from 7 � 10�4 (differential dilatometry) to 4 � 10�3

(specific heat) – see e.g. Table 11 of Kraftmakher (1998).

Siegel (1978) reported an equilibrium total vacancy concen-

tration at the melting temperature of 7 � 10�4, with a

monovacancy formation enthalpy of 0.94 eV and a mono-

vacancy formation entropy of 0.7kB. In fitting the data for

V(T) to equation (10) we obtained ðvf=�Þ expðsf=kBÞ = 1.8 (23)

and hf = 0.9 (2) eV. To calculate the vacancy concentration

from our results it is then necessary to assume a value for

vf=�, the ratio of the vacancy formation volume to the atomic

volume. Emrick (1980) quotes a value of vf=� = 0.52 for close

to room temperature but suggests that this might rise to vf=� =

0.65 at higher temperatures, a value that is also given by

Seeger (1973). For vf=� = 0.52 and vf=� = 0.65 we obtain

values of sf = 1.26kB and 1.03kB, respectively. With these

values, we can calculate the vacancy concentration from

(Wollenberger, 1996)

Nvac=Natoms ¼ exp
sf

kB

� �
exp

�hf

kBT

� �
: ð12Þ

At the melting temperature, we obtain Nvac=Natoms = 1.5 �

10�3 (for vf=� = 0.52) and Nvac=Natoms = 1.2� 10�3 (for vf=� =

0.65), which is in fair agreement with the results of Simmons &

Balluffi (1962) from differential dilatometry [7.2 (6) � 10�4]

and within the range of values for gold compiled by Kraft-

makher (1998), determined by a variety of methods (7 � 10�4

to 40 � 10�4). The expected temperature dependence of the

vacancy concentration as determined in the present study and

found previously by a variety of methods is shown in Fig. 9.

3.5. Thermal expansion and heat capacity of gold

A further check on the reliability of our thermal expansion

model is provided by considering the relationship between

thermal expansion and heat capacity.

research papers

J. Appl. Cryst. (2018). 51, 470–480 Martha G. Pamato et al. � The thermal expansion of gold 477

Figure 9
Temperature dependence of vacancy concentrations in gold, determined
by a variety of methods. The letters indicate that the vacancy
concentration was determined from differential dilatometry (DD;
Simmons & Balluffi, 1962); calorimetry of quenched samples (QC;
DeSorbo, 1960; Pervakov & Khotkevich, 1960); linear extrapolation of
thermal expansivity (L; Gertsriken & Slyusar, 1958); specific heat (C;
Kraftmakher & Strelkov, 1966); dilatometry of quenched samples (QD;
Fraikor & Hirth, 1967); electron microscopy of quenched samples (QM;
Cotterill, 1961; Siegel, 1966a,b).

Figure 8
Volumetric thermal expansion coefficient of gold as a function of
temperature. The open data points were obtained by numerical
differentiation of the data reported in Table S1 and Fig. 2 [equation
(11)], selecting a 20 K window (see text). The red solid line represents the
calculated real crystal model [equation (10)] and the dashed black line is
the perfect crystal component thereof [i.e. Vp(T), see text for details].
Measured values reported in the literature (filled symbols) are also
plotted for comparison.



The volumetric or isochoric heat capacity (CV) is the change

in internal energy with temperature, at constant volume

(Poirier, 2000):

CV ¼
@U

@T

� �
V

: ð13Þ

The assumption of the Debye model for internal energy

[equation (8)] therefore gives a molar heat capacity of

CV ¼ 9nNAkB

T

�D

� �3 Z�D=T

0

x4 exp xð Þ

exp xð Þ � 1½ �
2

� 	
dx; ð14Þ

where n is the number of atoms per formula unit and NA is

Avogadro’s number. Experimental measurements of heat

capacity are usually made at constant pressure and the

isobaric heat capacity (CP) is related to the isochoric heat

capacity by

CP

CV

� �
¼ 1þ � th�T; ð15Þ

where �th is the thermal Grüneisen parameter. In general, the

heat capacity of a system can be represented as the sum of

various contributions (Safonova et al., 2016):

CV ¼ Cqh þ Cah þ Cel þ Cvac þ Cint; ð16Þ

where Cqh is the Debye heat capacity [equation (14)], Cah is

the contribution to the heat capacity arising from the anhar-

monicity of vibrational motion of atoms, Cel is the electronic

heat capacity, and Cvac and Cint are contributions from equi-

librium point defects, namely vacancies and interstitial atoms,

respectively.

In their estimation of contributions to the specific heat from

lattice defects, Cordoba & Brooks (1971) assumed that only

the formation of monovacancies and divacancies is significant;

the contribution to C from the monovacancies is given by

Cvac ¼ N exp

�
sf

kB

�
h2

f

kBT2
exp

�
�hf

kBT

�
; ð17Þ

where hf is the enthalpy of formation for a monovacancy and

sf is the entropy of formation (Cordoba & Brooks, 1971).

In our analysis we did not include the electronic contribu-

tion to the specific heat as it is small and did not improve the fit

at high temperatures. Balcerzak et al. (2014) reported that the

electronic contribution amounts to 0.3% and up to 3.5% of the

total specific heat at 100 and 1300 K, respectively, but

according to Cordoba & Brooks (1971) the electronic contri-

bution is only 0.1% at 1330 K.

Anharmonicity is usually considered as a plausible reason

for the nonlinear increase in high-temperature specific heat

and thermal expansion of metals. However, almost all theo-

retical calculations of the anharmonicity predict these

contributions to be approximately linear. Therefore, it seems

unlikely that a nonlinear anharmonicity contribution to the

specific heat is much larger than the linear term (Kraftmakher,

1998). According to Cordoba & Brooks (1971), the contri-

bution to the heat capacity from anharmonic lattice vibrations

only becomes significant at temperatures considerably above

the Debye temperature, where the anharmonic contribution

appears to be positive. However, these authors concluded that,

within the uncertainties in the parameters used in calculating

the excess heat capacity, the contribution could be zero or

slightly negative.

For our measurements, the volumetric thermal expansion

coefficient (�), Debye temperature (�D) and thus CV are

obtained directly from the fit of equation (10) to the data. We

assume the Grüneisen parameter in equation (4) (�) and the

thermal Grüneisen parameter (�th) to be the same.

The derived values of CP for our data, including the effect of

the thermal defects Cvac, are plotted in Fig. 10 and are

compared with experimental data taken from the literature

(e.g. Anderson et al., 1989; Shim et al., 2002; Tsuchiya, 2003;

Yokoo et al., 2009); a remarkably good agreement between

calculated and experimental values is observed even at the

highest temperatures. However, Balcerzak et al. (2014) report

calculated specific heat values that are different by up to 3%

from the experimental results, where for T near Tm, the

calculated specific heat is slightly higher than the experimental

one. The same tendency has been observed by Yokoo et al.

(2009).

4. Conclusions

We have experimentally determined the unit-cell volume of

Au from 40 K up to the melting point by X-ray powder
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Figure 10
Calculated isobaric heat capacity of gold at ambient pressure. Measured
values reported in the literature are also plotted for comparison: open
circles from Anderson et al. (1989); crosses from Barin & Knacke (1973)
as reported by Yokoo et al. (2009); open triangles from Hultgren et al.
(1973) as reported by Shim et al. (2002); and open squares from
Touloukian et al. (1975) as reported by Tsuchiya (2003). The red solid line
represents our calculated real crystal model and the dashed black line
indicates our perfect crystal model; for temperatures below about 800 K
the heat capacity curves calculated from the two models are effectively
identical.



diffraction. Over the temperature range investigated, the

behaviour of the material may be adequately described by a

Grüneisen approximation to the zero-pressure equation of

state representing the thermal expansion of the ‘perfect

crystal’, combined with the thermodynamic theory of point

defects to include the contributions from lattice defects at high

temperatures (‘real crystal’). Au shows a nonlinear increase in

thermal expansion prior to melting, which is likely to be a

result of the thermally induced generation of point defects

above 800 K. This takes the form of a smooth trend that

departs from the Grüneisen–Debye model over a large

temperature range, beginning at T/Tm ’ 1000/1337 ’ 0.75,

which is very similar to the temperature range where devia-

tions from linearity have been observed in the elastic moduli

(Collard & McLellan, 1991).
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Vočadlo, L. (2007). Earth Planet. Sci. Lett. 254, 227–232.
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