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1.  Introduction

Long-distance collective migration of cells is a 
biological process important for the establishment 
and maintenance of multicellular organisms. This 
orchestrated movement is vital during wound healing, 
embryonic development and immune responses. 
Defects during this collective behavior of cells can 
result in serious health problems, including vascular 
diseases, tumor formation, and cancer metastasis. 
These are some of the reasons why the study of the 
mechanisms by which a population of cells migrate 
in a coordinated manner is of extreme importance for 
better understanding many birth defects and diseases 
[1–3].

It is well known that many types of cells respond 
to chemotactic signals that drive the collective motion 
of individual cells or cellular aggregates [4–6]. Cell 
chemotaxis has been the subject of intense study dur-
ing the past years, and thus many details related to the 
response of individual cells to chemicals are currently 
known [7]. However, the response of a collective of 
interacting cells to chemical signals is poorly under-
stood [8]. The complexity of the problem is enhanced 
by the fact that in many cases these aggregates are com-

posed of different subpopulations of cells having dif-
ferent chemotactic responses, and therefore, different 
motility properties.

In developmental biology, two of the most studied 
examples of collective chemotactic behavior in differ-
ent subpopulations of cells are related to the motion 
of the multicellular microorganism Dictyostelium 
discoideum, and the motion of neural crest (NC) cells 
[9–12]. In regard to the Dictyostelium discoideum cells, 
their different stages of development are characterized 
by the cooperative motion of two main types of cells 
(prestalk and prespore cells) with different chemotac-
tic and mobility properties. Systematic experiments of 
chemotactic behavior under adjustable and controlled 
conditions have been performed in order to study the 
response of groups of Dictyostelium discoideum cells 
to temporally stable gradients of ′3 , ′5 -cyclic adeno-
sine monophosphate (cAMP) [13–15]. Although 
many experimental studies removed any chemicals 
released by the cells themselves, few others consid-
ered the interplay between the relay of self-produced 
cAMP signals and cells response towards stable exter-
nal cAMP gradients [15]. These studies have been 
complemented by various theoretical approaches, 
most of which consider homogeneous groups of cells 

M Pineda and R Eftimie

Modelling the collective response of heterogeneous cell populations to stationary gradients and chemical signal relay

Printed in the UK

066003

PBHIAT

© 2017 IOP Publishing Ltd

14

Phys. Biol.

PB

1478-3975

10.1088/1478-3975/aa89b4

6

1

13

Physical Biology

IOP

16

November

2017

Modelling the collective response of heterogeneous cell 
populations to stationary gradients and chemical signal relay

M Pineda1 and R Eftimie2

1	 Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE,  
United Kingdom

2	 Division of Mathematics, University of Dundee, Dundee DD1 4HN, United Kingdom

E-mail: m.pineda@ucl.ac.uk and reftimie@maths.dundee.ac.uk

Keywords: self-propelled, cell migration, chemical gradient, chemotaxis

Supplementary material for this article is available online

Abstract
The directed motion of cell aggregates toward a chemical source occurs in many relevant biological 
processes. Understanding the mechanisms that control this complex behavior is of great relevance 
for our understanding of developmental biological processes and many diseases. In this paper, we 
consider a self-propelled particle model for the movement of heterogeneous subpopulations of 
chemically interacting cells towards an imposed stable chemical gradient. Our simulations show 
explicitly how self-organisation of cell populations (which could lead to engulfment or complete 
cell segregation) can arise from the heterogeneity of chemotactic responses alone. This new result 
complements current theoretical and experimental studies that emphasise the role of differential 
cell–cell adhesion on self-organisation and spatial structure of cellular aggregates. We also investigate 
how the speed of individual cell aggregations increases with the chemotactic sensitivity of the cells, 
and decreases with the number of cells inside the aggregates

PAPER
2017

Original content from 
this work may be used 
under the terms of the 
Creative Commons 
Attribution 3.0 licence.

Any further distribution 
of this work must 
maintain attribution 
to the author(s) and the 
title of the work, journal 
citation and DOI.

RECEIVED  
14 February 2017

REVISED  

15 August 2017

ACCEPTED FOR PUBLICATION  

1 September 2017

PUBLISHED   
16 November 2017

OPEN ACCESS

https://doi.org/10.1088/1478-3975/aa89b4Phys. Biol. 14 (2017) 066003

publisher-id
doi
mailto:m.pineda@ucl.ac.uk
mailto:reftimie@maths.dundee.ac.uk
https://doi.org/10.1088/1478-3975/aa89b4
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://crossmark.crossref.org/dialog/?doi=10.1088/1478-3975/aa89b4&domain=pdf&date_stamp=2017-11-16
https://doi.org/10.1088/1478-3975/aa89b4


2

M Pineda and R Eftimie﻿

with similar general properties (e.g. same chemotactic 
responses and same cell speeds) [14, 15]. However, as 
mentioned above, in many cases collective cell move-
ment is the result of interactions among heterogene-
ous cell populations with different signal sensing and 
signal relay capabilities (see Dictyostelium discoideum 
development that involves prespore and prestalk cells 
[12]). Similar experiments have been used to analyze 
the response to chemical gradients of neutrophils [16], 
cancer cells [17], and bacteria [18].

During embryonic development, different NC 
cells with different chemotactic responses migrate 
ventrally through the embryo, guided by migratory 
pathways [10, 11]. Chemotactic interaction between 
cells is also a very common phenomenon in different 
physiological contexts. For example, wound healing 
in the corneal epithelium is determined by the migra-
tion into the wound of interacting sub-aggregates of 
epithelial cells [19], while during tumor progression 
mutated cells move through and interact with different 
populations of healthy and immune cells [20].

In this work, we present a general particle model 
derived to investigate how a mixture of heterogeneous 
interacting cell populations, which produce, relay and 
degrade a chemical signal, respond to an external stable 
gradient of a different chemical signal [21], and form 
various aggregation patterns. In our model the cells 
are represented as self-propelled particles (SPP) that 
behave as soft disks [22, 23]. We show how the response 
of the two populations to the external chemical gra-
dient is determined by the chemotactic sensitivity of 
the cells, the mutual mechanical interaction between 
cells, and the overall chemical signal degradation rate 
[24, 25]. Our computational simulations show how 
self-organisation of cell populations (which could 
lead to engulfment or complete cell segregation) can 
arise from the heterogeneity of chemotactic responses 
alone. These results complement current studies that 
emphasise the role of differential cell–cell adhesion 
on self-organisation and spatial structure of cellular 
aggregates [5, 26]. Although this work is inspired by 
previous studies concerning the response of Dicty-
ostelium discoideum cells to external gradients [15], 
its novelty lies in the investigation of the interactions 
between multiple heterogeneous cell populations, and 
in the investigation of the importance of mechani-
cal versus chemotactic interactions on collective cell 
migration and aggregation.

This paper is organized as follows. In section  2, 
we introduce the general SPP model implemented in 
this work. In section 3, we analyze how two groups of 
mechanical and chemotactic interacting cells, with 
different chemotactic coefficients and/or average cell 
speeds, respond to an external stable chemical signal. 
In particular, we discuss how the relevant parameters 
of the model affect the response of the cells to different 
chemical gradient steepness. To this end, we introduce 
an order parameter that quantifies the global align-
ment of cells, and we investigate the changes in this 

order parameter as we vary different control param
eters of the model. We also explore how the velocity 
of single cell aggregations changes with the number 
of cells and the chemotactic sensitivity. Finally, in sec-
tion 4 we present our summary and conclusions.

2.  The self-propelled particle model

We describe a group of N cells as a self-propelled 
particle system, in which each cell behaves as a soft disk 
of radius =r 0.00750  mm. The kinetics of the system 
occurs in a two-dimensional impermeable ×L Lx y 
rectangular domain inside which the state of cell i at 
time t is characterized by its location vector ( )→r x y t, ,i  
and by the direction ( )θ ti  of its velocity vector ( )→v ti . In 
agreement with controlled chemotaxis experiments 
[27, 28], the speed ∥ ( )∥→v ti  of each cell is assumed to 
have a constant value νi. Then, the updated position of 
the ith cell is expressed as [7, 15, 22, 23]:

( ) ( ) ( )→ → →+∆ = +∆r x y t t r x y t tv t, , , , ,i i i� (1)

with
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In equation (2) the unit vector →ei gives the direction 
along which a single cell moves. The first term in 
equation  (3) represents a unitary vector pointing 
in the direction of increased chemical signal 
concentration (CT), multiplied by the chemotaxis 
sensitivity χi. Normally, it is assumed that χi decreases 
nonlinearly with CT [29–31]. However, according to the 
experimental results that motivated this work [15], we 
will assume that this term is independent of the level of 
the chemical signal. Note that arg gives the angle of the 
resulting vector.

In our model the total chemical signal CT is origi-
nated from two sources: the single cells that secrete a 
local chemical signal CI into the extracellular space, 
and an externally imposed stable gradient of a dif-
ferent chemical CE which is changing only along the 
y direction. We consider that = +C C CT I E or 
→ → →
∇ = ∇ +∇C C CT I E. After assuming that secretion, 
degradation, and diffusion of CI are much faster than 
all other processes of the model, the chemical gradient 
generated by the cells can be written as

( ) (∥ ∥/ )
→ → → → →�∑∇ = − −

≠

C r p K r r r ,I i
j i

N

i j ij1

� (4)
where K1 is a modified Bessel function of the second 

kind, /� µ= DI I , and p quantifies the response of 

the cells to the chemical gradient. The sum is over the 
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simulated cells other than cell i. The vector →rij is a unitary 
vector directed from j to i. The parameters DI and µI 
are the constant chemical diffusivity and chemical 
signal degradation rate, respectively [32]. Note that the 
parameter N is the total number of cells and the local 
chemical signal is secreted at every position ri of cells.

We assume that the external chemical signal only 
changes along the y directions and its dynamics is gov-
erned by

→
µ

∂
∂
= ∇ −

C

t
D C C ,E

E E E E
2

� (5)

with boundary conditions along the y direction: 
( )= =C y 0 0E  and ( )= =C y L CE y m. As in [15], we 

choose fixed-concentration boundary conditions to 
describe the case where the external chemical is applied 
only at the upper boundary of the domain. Assuming 
also steady state conditions (since the dynamics of the 
chemical is much faster than all other processes in the 
model), one obtains
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with the corresponding gradient given by
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where ŷy is a unitary vector point in the y direction. Note 
that the gradient of the external chemical described 
in equation (7) depends on the concentration Cm at 
the upper boundary of the domain. In supplemental 
material we plot equation  (6) (external chemical 
profile) as a function of Ly (figures S1(A)) and µE 
(S1(B)). Figure  S1(A) shows that the chemical 
profile substantially increases near the upper edge 
of the domain where ( )= =C y L CE y m. However, 
figure S1(B) reveals that the steepness of such a profile 
decreases with the chemical degradation rate µE. In 
particular, it shows that for small enough values of the 
degradation rate the external chemical profile may 
extend along the whole domain.

The second term in equation (3) is responsible for 
the repulsive soft mutual interaction between cells  
[33, 34]. To describe it, let us consider a cell i. A second 

cell j exerts a repulsive force ( ) ( ) ( )
→ →=F t f t r tij ij ij  upon cell 

i. The vector →rij is a unitary vector directed from j to i, 

and ( )f tij  is defined as
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⎨
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where ( ) ∥ ( ) ( )∥→ →= −r t r x y t r x y t, , , ,ij i j  is the distance 
between cells. The repulsive force decreases linearly 
with distance from the center of the cell, and it is zero 
for ( )>r t r2ij o (where we define r2 o to be the interaction 
radius between two cells). The parameter mij that 
appears in equation (3) controls the intensity of the 
repulsive cell–cell interactions.

The last term in equation  (3) is described by 
( ( ) ( ))→σ ζ ζ= t tcos , sini i i , a random uniformly oriented 

unitary vector, multiplied by parameter αi, which 
quantifies the noise intensity. The variable ( )ζ ti  is a 
random number drawn between 0 and π2 .

Finally, in this work we assume for simplicity 
that the chemical diffusivity and degradation rate 
are the same for both the local and external chemi-
cals: µ µ µ= =I E  and = =D D DI E . However, the 
response of the cells to the local chemical signal is dis-
tinguished from the response to the external chemi-
cal gradient by the parameter p. We also assume that 
=m mij c and α α= ∀ i j,i . With these assumptions in 

mind, we present the results of our study in the follow-
ing section.

3.  Results

As mentioned above, in this work we investigate 
how heterogeneous interacting cell subpopulations 
with distinct motility properties react towards 
externally imposed chemical signals. To achieve this, 
we divide the group of N cells into subpopulations 
A and B [24, 25]. For simplicity, let us also assume 
that both subpopulation have the same number of 
cells ( /= =N N N 2A B ), and that cells inside each 
subpopulation exhibit the same mechanical and 
chemotactic properties. However, given that the 
subpopulations may differ in cell speed and/or 
chemotactic sensitivity, we consider each cell i of 
type A or B (where cells A have lower speeds and/or 
chemotactic sensitivities compared to cells B).

Then, the system is iterated in time with a time step 
∆ = × −t 2 10 2 min. To be in line with the experiments 
of Guven et al [15] in which a uniform cell injection 
flux is considered (with the orientation of each newly 
introduced cell assumed to be initially in the y direc-
tion), we simulated equation (1) with all cells starting 
at =y 0, uniformly distributed along x axis and ori-
ented only in the y direction. However, after this initial 
step, the cells can change their orientation (in response 
to the chemical signal, the social forces, and randomly). 
Then, we proceed to characterize the collective motion 
of cells by the order parameter M defined as in [35–37]:

∥ ( )∥→∑=
=

M
N

e t
1

.
i

N

i
1

� (8)

This order parameter runs from 0 to 1 and measures 
the degree of alignment of the cells. It is approximately 
zero if the direction of the individual cells is distributed 
randomly, while for a coherent cell motion ≈M 1. 
Given that at time =t 0 all cells are aligned towards the 
y direction, the order parameter is in this case =M 1. To 
avoid any artifact induced by the collision of the cells with 
the upper wall of the domain in which ( )= =C y L CE y m, 
all simulation results are obtained before the cells reach 
that wall. (Note that in the experimental results reported 
by Guven et al [15], the cells were removed after they 
reached the upper wall of the domain.)

Phys. Biol. 14 (2017) 066003
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In the following section  we start exploring the 
collective alignment of the model when the two 
groups differ only in their chemotactic sensitivity. 
Then, we consider the case in which the groups dif-
fer in chemotactic sensitivity and cell speed. In the 
last subsection, we investigate how the speed of a 
single cell aggregation changes with relevant control 
parameters.

3.1.  Two groups of cells with different chemotactic 
sensitivity
In this section  we consider the case in which the 
two groups of cells exhibit different chemotactic 
sensitivities: each cell i belonging to the group A 
reacts to the chemical signals with a chemoattractive 

sensitivity of χ χ= = 0.75i i
A , while any cell i of the 

second group B possesses a stronger chemotactive 

sensitivity of χ χ= = 1.5i i
B . The speed of each of 

the N cells is given by εν ν= + gi o i, where ν = 0.005o  
mm −min 1 is the average speed over all cells and gi is 
an nondimensional number drawn from a Gaussian 
distribution with zero mean and unit variance. The 
constant parameter ε is small and given by −10 4 mm 

−min 1. This noise term considers the heterogeneities 
in individual cell speeds that are always present in 
many multicellular system. In the following, we 
investigate how the collective cell migration is affected 
by the dimension of the domain and the competition 
between different external gradient steepness (i.e. 
variations of Cm) and variations of p and μ.

First, let us to study the impact of the size of the 
domain (parameters Lx and Ly) on the collective 
dynamics of the system. To this end, in figure 1(A) we 
plot the order parameter M as a function of p, for three 
values of Ly, with =L 0.75x  mm. To avoid collisions 
between the cells and the upper wall, the maximum 

Figure 1.  Behavior of the system as a function of the parameter p (in units of −mm 3), for different values of Ly (in units of mm). 
(A) Order parameter M as a function of p obtained after averaging over 50 independent realizations and over the last quarter of the 
simulation (150 min < t < 200 min). (B) and (C) show spatial cell distribution on the domain at =t 200 min, with =p 0.01. We 

consider that each cell i belonging to the group A (black color) reacts to the chemical signals with a chemoattractive sensitivity of 

χ χ= = 0.75i i
A , while any cell i of the second group B (red color—or gray on black/white prints) possesses a stronger chemotactive 

sensitivity of χ χ= = 1.5i i
B . The total number of cells in the system is =N 200 (and thus = =N N N 2A B / ), and for the two cell 

subpopulations we have ν = 0.005o  mm −min 1, = =m m 1.575ij c , µ = 3 −min 1 and α α= = ∀ i j0.5 ,i . For the chemical signals 
we use =D 0.024 mm2 −min 1. In all cases =L 0.75x  mm. At =t 0 min the cells are placed at =y 0 and homogeneously distributed 
along the domain 0.01 mm < <x 0.71 mm, pointing in the y direction. Note that Cm is in units of −mm 2.

Figure 2.  Spatial cell distribution on the domain at =t 200 
min, with =L 1.5x  mm and =L 1.1y  mm. At =y 0 the cells 
are homogeneously distributed along the domain 0.01 mm 
< <x 1.46 mm, pointing in the y direction. Other conditions 
and parameters are as in figures 1(B) and (C). The less 
chemotactic NA cells are represented in black colors, while the 
strong chemotactic NB cells are shown in red colors—or gray 
on black/white prints.

Phys. Biol. 14 (2017) 066003
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simulation time is fixed at =t 200 min. Note that, at 
=t 200 min, any cell starting at =y 0 mm and mov-

ing all the time towards the y direction with a speed of 
ν = 0.005o  mm −min 1 will be at most placed at =y 1 
mm (still inside the domain). The order parameter is 
obtained after averaging over 50 independent reali-
zations and over the last quarter of the simulation 
(150 min < <t  200 min). The figure shows a transition 
between a state of high alignment in which ≈M 0.9 
and a state in which ≈M 0.1 (random cell directional-
ity). The critical value of p around which the transition 
occurs decreases with Ly. In order to shed some light on 
this behavior, we plot in figures 1(B) and (C) cell dis-
tributions on the x–y domain, at =t 200 min (the less 
chemotactic NA cells are represented in black colors, 
while the strong chemotactic NB cells are shown in red 
colors—or gray on black/white prints). All simula-
tions start at =t 0 min with two hundred uniformly 
distributed cells placed at =y 0 and pointing along 
the y direction (not shown here). In panel (B) one 
observes that for =L 1y  mm not only the formation 
of cell aggregations at different position in space occur, 

but also a complete spatial sorting of the two sub-
populations of cells emerge (with the majority of the 
less chemotactic aggregates lagging behind the strong 
chemotactic ones). In panel (C) we see that slightly 
larger values of Ly lead to undirected and engulfed 
aggregates (the stronger chemotactic cells are engulfed 
by the less chemotactic ones). Thus, increasing the size 
of the domain along the y direction promotes the for-
mation of undirected cell aggregations each of them 
containing both populations.

Figure 2 shows that the extension of the domain 
along the x direction (parameter Lx in our model) 
increases the number of cell aggregations. It also sug-
gests that small and strong chemotactic cell aggrega-
tions move faster (we will come back to this point later). 
Note that in this case, simulation conditions and param
eters are as in figure 1. From figures 1 and 2 one can con-
clude that, under our simulation conditions (i.e μ and 
D fixed), the larger the size of the domain the larger the 
number of undirected cell aggregations formed.

Now we proceed to study how the alignment of the 
cells is affected by the control parameters p, μ, and Cm. 

Figure 3.  The order parameter M as a function of p (in units of −mm 3) and degradation rate μ (in units of −min 1), for two different 
external gradient steepness Cm in −mm 2. (A) and (B) show M as a function of p , for four different values of μ. (A’) and (B’) show 
the corresponding behavior of M in the phase plane (p,μ), for two values of Cm. We consider that each cell i belonging to the group A 

reacts to the chemical signal with a chemoattractive sensitivity of χ χ= = 0.75i i
A , while any cell i of the second group B possesses a 

stronger chemotactive sensitivity of χ χ= = 1.5i i
B . The total number of cells in the system is =N 200 (and thus = =N N N 2A B / ), 

and we have ν = 0.005o  mm −min 1, = =m m 1.575ij c  and α α= = ∀ i j0.5 ,i . We consider a domain with =L 0.75x  mm and 
=L 1.0y  mm. For (A) and (B) M is obtained after averaging over 50 independent realizations and over the last quarter of the 

simulation ( < <t150 min 200     min). For (A’) and (B’) the average is obtained over 10 independent realizations. For the chemical 
signal we use =D 0.024 mm2 −min 1. At =t 0 min the cells are placed at =y 0, homogeneously distributed along the domain 0.01 
mm < <x 0.71 mm, and pointing in the y direction. Note that aggregate formation was assessed by visual inspection.

Phys. Biol. 14 (2017) 066003
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Figures 3(A) and (B) shows the order parameter M as 
a function of p, for several values of μ and Cm. These 
figures show that the critical value of p around which a 
transition occurs from an alignment state ( ≈M 0.9) to 
an undirected state ( <M 0.2) decreases with the deg-
radation rate μ and increases with the steepness Cm of 
the external gradient. Figures 3(A’) and (B’) show the 
corresponding phase plane ( µp, ) of M for =C 10m

2 
−mm 2 and =C 10m

3 −mm 2, respectively. These dia-
grams clearly show that, under our simulation condi-
tions, the collective alignment increases with Cm but 
decreases with p and μ. Typical examples of cluster dis-
tributions at =t 200 min for several values of p with 
µ = 2 −min 1 and =C 10m

2 −mm 2 are presented in 
figure 4. Figure 4(A) shows that for =p 0.002 −mm 3 
(inside the complete alignment zone of figure 3(A’)) 
all cells move approximately in a straight line along 

the y direction and that the more chemotactic ones 
are the first to reach the upper wall. It also reveals the 
formation of weakly cohesive clusters. Figure  4(B) 
shows that for =p 0.007 −mm 3 (around the trans
ition zone between aligned and unaligned motion 
of figure 3(A’)), two cell aggregations are formed, in 
which a partial sorting between the two subgroups of 
cells occurs, and the strong chemotactic cells start to 
overtake the less chemotactic ones. Finally, figure 4(C) 
shows that for =p 0.02 −mm 3 (i.e. inside the zone of 
undirected motion of figure 3(A’)) two cell aggrega-
tions can form, where the strong chemotactic cells are 
engulfed by the less chemotactic ones. As noted in fig-
ure 3, a similar dynamics occurs if parameter p is fixed 
and one increases the degradation rate μ.

The spatial cell configurations presented above 
emerge from the interplay between the cell–cell 

Figure 4.  Spatial cell distribution at =t 200 min for three values of p (in units of −mm 3), with µ = 2 −min 1 and =C 10m
2 −mm 2 

(corresponding to figures 3(A) and (A’)). We consider that each cell i belonging to the group A (black color) reacts to the chemical 

signal with a chemoattractive sensitivity of χ χ= = 0.75i i
A , while any cell i of the second group B (red color—or gray on black/white 

prints) possesses a stronger chemoattractive sensitivity of χ χ= = 1.5i i
B . All other parameters are as in figure 3.

Figure 5.  Spatial distribution of cells for two different Cm values. Here =p 0.02 −mm 3, and all other parameters are as in figure 4. 
The cells in subgroup A are shown in black color, and the cells in subgroup B are shown in red color—or gray on black/white prints.

Phys. Biol. 14 (2017) 066003
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attraction and the soft repulsion between cells. If the 
chemotactic attraction is small enough the cells tend 
to keep their initial orientation towards the y direction 
and the stronger chemotactic cells move most of the 
time in front of the less chemotactic ones (see video 
S2(A) in the supplementary material (stacks.iop.org/
PhysBio/14/066003/mmedia), and figure  4(A)). For 
moderate chemical attraction, it is common to observe 
the formation of cohesive cell aggregates. However, 
after an initial period of time, the strong chemotac-
tic cells start to migrate to the front of the aggregates 
(see video S2(B) in the supplementary material, and 
figure 4(B)). For large chemo-attraction, one observes 
the formation of strongly cohesive cell aggregates with 
the stronger chemotactic cells collected in the middle. 
These aggregates move and interact trough the chemi-
cal signal produced by themselves. Eventually, they 

merge and form a single big aggregate (see video S2(C) 
in the supplementary material, and figure 4(C)).

We would like to emphasize that the merging pro-
cess between aggregates is more frequent when the 
influence of the external chemical gradient is small. 
Under this condition, the aggregates have enough 
time to interact and merge. When the influence of the 
external gradient is large, the cells tend to move aligned 
towards the y directions and the aggregates do not have 
time to merge before reaching the upper wall of the 
domain. We note that the aggregates also merge when 
the size of the domain and/or the cell–cell attractive 
chemical interactions are large enough.

Figure 5(A) shows that for =C 10m
3, the cells or 

the partially formed cell aggregates do not have time 
to merge before they reach the upper wall. However, by 
decreasing Cm to =C 10m

2 as in figure 5(B), a single cell 

Figure 6.  Temporal evolution of the order parameter M for three system sizes N. In panels A, B, C: χ χ<i
A

i
B and <v vo

A
o
B, and we 

assume χ = 0.75i
A , χ = 1.5i

B , ν = 0.005o
A  mm −min 1, and ν = 0.01o

B  mm −min 1. In panels D, E, F: χ χ<i
A

i
B and =v vo

A
o
B, and we use 

ν ν= = 0.005o
A

o
B  mm −min 1, χ = 0.75i

A , and χ = 1.5i
B , In panels G, H, I: χ χ=i

A
i
B and <v vo

A
o
B, and we consider χ χ= = 1.5i

A
i
B , 

ν = 0.005o
A  mm −min 1, and ν = 0.01o

B  mm −min 1. In all cases the subgroup with =N N 2A /  cells is described by black curves, while 
the subgroup with =N N/2B  cells is described by red dashed curves. In all cases µ = 2.0 −min 1, =p 0.04 −mm 3, =C 10m

3 −mm 2, 
α α= = 0.05i , and = = ∀m m i j1.575 ,ij c . For the domain size we use =L 0.75x  mm and =L 1y  mm. All curves are obtained after 
averaging over 50 independent realizations. For these plots we show only the time ∈t 0.02, 100[ ] min.
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aggregate can emerge and remains inside the domain 
for very long time—shown here is =t 400 min. This 
single aggregate is the result of the collision between 
two separate aggregates due to the mutual chemical 
attraction (see the corresponding two aggregates in 
figure 4(C)).

One can associate the black and dark blue regions 
of figures 3(A’) and (B’) with the formation of slow 
moving aggregates, the yellow regions with a more or 
less independent migration of the cells towards the 
external gradient, and the transition regions with the 
formation of aggregates that most of the time move as 

a whole towards the external gradient. Aggregate for-
mation was assessed by visual inspection.

In the following section  we explore the case in 
which the two sub-populations also differ in their 
average cell speeds.

3.2.  Two groups of cells differing in cell speed  
and chemotactic sensitivity
Taking into account the common assumption that 
strongly chemotactic cells move faster [6], we assume 
that each cell i belonging to the group A reacts to the 
chemical signal with a chemoattractive sensitivity 

Figure 7.  Detailed description of the spatial distribution of cells on the domain, when =N 500 and time =t 70 min. Here we show 
the case in which the two groups differ in velocity and chemical sensitivity (corresponding to figure 6(C)). In this case the black 
arrows represent slow and less chemotactic cells, while the red arrows represent fast and highly chemotactic ones.

Figure 8.  Temporal evolution of the order parameter M for three noise intensities α, with =N 500. Parameters are as in figure 6(I). 
Again, for these plots we show only time ∈t 0.02, 100[ ] min. All curves are obtained after averaging over 50 independent realizations.

Phys. Biol. 14 (2017) 066003
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of χ χ= = 0.75i i
A  and moves with a cell speed of 

εν ν= + gi
A

o
A

i, while any cell i of the second group 

B possesses a stronger chemoattractive sensitivity 

of χ χ= = 1.5i i
B  and moves with a higher cell 

speed of εν ν= + gi
B

o
B

i. Moreover, we assume that 

ν = 0.005o
A  mm −min 1 and ν = 0.01o

B  mm −min 1. As 
before, ε = −10 4 mm −min 1, gi is a nondimensional 
number drawn from a Gaussian distribution with 
zero mean and unit variance, = =m m 1.575ij c  and 
α α= = ∀ i j0.05 ,i . First, let us mention that the 
impact of the size of the domain and the parameters 
p, μ, and Cm on this new version of the model is similar 
to the one reported in previous section. Namely, the 
global alignment of cells decreases with the size of the 
domain along the y direction, the chemo-attraction 
between cells, and the chemical degradation rate, and 
increases with the steepness of the external chemical 
signal. Therefore, in the following we report only the 
major differences between the two cases (with similar 
or different cell speeds).

In figure  6 we plot separately the temporal evo
lution of the order parameter M for each subgroup nor
malized by the total number of cells (i.e. ⩽ ⩽M0 0.5, 
with =M 0.5 representing a totally aligned state inside 
each group). We choose to use values of p and μ inside 
the zone of complete alignment of figures 3(B) and 
(B’). Figures 6(A)–(C) show M as a function of time 
for the case in which the two groups differ in average 
speed and chemotactic sensitivity. The black solid 
curves describe the time evolution of M calculated for 
the slow and less chemotactic group of cells, while the 
dashed red curves describe the temporal behavior of 
M for the fast and highly chemotactic group of cells. 
Our simulations show that, in the long run, the two 
group of cells align almost totally. This is in agreement 
with figures 3(B) and (B’) of the previous section. The 
numerical simulations also show that there is a time 
interval during which the slow and less chemotactic 
group of cells exhibits a better alignment than the fast 
and stronger chemotactic group of cells. Interestingly, 
the period of time during which this phenomenon 
occurs increases with the number of cells in the system. 
However, as figures  6(D)–(F) reveal, this phenom
enon does not exist or it is not significant when the 
two groups differ only in their chemotactic sensitivity. 
In this case, after a short time the two groups exhibit 
almost the same alignment. Figures  6(G)–(I) show 
that this interesting phenomenon occurs even when 
the two groups have the same chemotactic sensitivity, 
but differ in their average cell speed. In both cases, the 
duration of the migrating phenomenon increases with 
the number of cells in the system. In figure 7, we show 
the spatial cell distribution of =N 500 cells, for the 
case in which the two groups differ in their average cell 
speed and their chemical sensitivities (corresponding 
to figure 6(C)). It shows that at =t 70 min the fast and 
stronger chemotactic red (gray on black/white prints) 
cells collect in the middle of the aggregates, with their 
velocity vector pointing in random directions. In con-

trast, the slow and less chemotactic black cells move 
aligned towards the aggregate formed by the inner cells 
or/and the external chemical gradient (see videos S3 in 
the supplementary material, for a better understand-
ing of the corresponding cell distribution patterns). 
Finally, we would like to emphasize that for all these 
plots the time runs from 0.02 min to 100 min. This is 
the reason why the initial state in which =M 1 does 
not appear in these simulations.

We also analyze the impact of the noise parameter 
α on the cell migrating phenomenon presented above. 
Figure 8 shows the temporal evolution of M for three 
different noise intensities, when =N 500. Note that the 
time interval during which this phenomenon occurs 
increases with the noise intensity. This is due to the fact 
that the noise delays the time for cells to reach a com-
pletely aligned state, as induced by the external chemi-
cal gradient. These results also reveal that, as expected, 
the difference in the levels of alignment between the 
two groups decreases with the noise intensity.

In the following section we explore the changes in 
the speed of cell aggregations as a function of some 
model parameters.

3.3.  Speed of cell aggregations as a function  
of control parameters
In this section  we explore the speed of single 
aggregates as a function of the number of cells (N) 
and some other parameters of the system (e.g. p, μ, 
Ly). For simplicity, we assume that all cells have the 

same average speed (ν ν ν= =o
A

o
B

o) and chemical 

sensitivity (χ χ χ= =i
A

i
B , for all i). We pay attention 

to the velocity component along the y direction of 
a single aggregate (Vy). To calculate this velocity, we 
identify the center of the aggregate and measure the 
displacement of this central point during the last 
quarter of the simulation (150 min < <t 200 min). 
We assume that initially, cells are homogeneously 
distributed in a small sub-domain, with all of them 
pointing in the y direction. We denote the number of 
cells in the aggregate by N (since for these simulations 
all cells in the population form an aggregate). In the 
supplementary material we show examples of some 
aggregates used to calculate the speed (e.g. see video S4 
for an illustration of how these aggregates move over 
time and space).

In figure 9 we plot Vy as a function of the cluster size 
N, for several values of p, μ, and Ly. The figure shows 
that the velocity along the y direction decreases with 
the number of cells (since the attraction towards the 
center of the aggregate due to local chemical signals 
increases with the increase in cell numbers). Panels 
(A), (B), and (C) also show that such velocity decreases 
with the response of the cell to the chemical signal 
secreted by themselves (parameter p), the chemical 
degradation rate μ, and the extension of the domain 
along the y direction, Ly. Moreover, figure 10 shows 
that Vy increases with the chemotactic sensitivity of 
cells. Also in this case, the speed decreases with p and μ.  

Phys. Biol. 14 (2017) 066003
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These results explain why, in the case of two different 
subpopulations, the smaller and stronger chemotactic 
aggregates move faster (see for instance figure 2).

4.  Summary and discussion

In this work, we generalized a one-population self-
propelled particle system introduced in [15] to further 
describe systematically the dynamics of populations 

of distinct heterogeneous cells, and then used it to 
assess the chemotactic response of the cells to imposed 
stationary chemical gradients. First, we considered 
two cell populations that differ in their chemotactic 
sensitivity. Then, we analyzed the case in which the 
two populations also differ in their average cell speed. 
We found that the response of the two populations to 
the external chemical gradient was strongly affected 
by the response to the chemical signal secreted by the 

Figure 9.  Magnitude of the velocity component along the y direction (Vy) of a single aggregate, as a function of the population size 
N. (A) Vy versus N for three different values of p in units of −mm 3, with µ = 3 −min 1. (B) Vy versus N for three different values of μ in 
units of −min 1, with =p 0.02 −mm 3. In (A) and (B) the size of the domain is given by =L 0.6x  mm and =L 1.0y  mm. (C) Vy versus 
N for three different values of Ly in units of mm, with µ = 3 −min 1, =p 0.01 −mm 3 and =L 0.6x  mm. For all cases we consider that 
ν = 0.005o  mm −min 1, χ χ= = 1.5i , =C 10m

3 −mm 2, α α= = 0.5i , = =m m 1.575ij c  ∀ i j, . The velocity is obtained after averaging 
over 50 independent realizations.

Figure 10.  Magnitude of the velocity component along the y direction (Vy) of a single aggregate, as a function of the chemical 
sensitivity χ. (A) Vy versus χ for three different values of p in units of −mm 3, with µ = 2 −min 1. (B) Vy versus χ for three different 
values of μ in units of −min 1, with =p 0.02 −mm 3. We consider that for both cases, ν = 0.005o  mm −min 1, =N 200, =C 10m

3 −mm 2, 
α α= = 0.5i , and = = ∀m m i j1.575 ,ij c . The velocity is obtained after averaging over 50 independent realizations. For the size of 
the domain we use =L 0.6x  mm and =L 1.0y  mm.

Phys. Biol. 14 (2017) 066003
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cells themselves and the chemical signal degradation 
rate. Our simulations also revealed that the size of the 
domain inside which the cells migrate, the number of 
cells in the domain, and the intrinsic random motion 
of the cells played an important role on the collective 
migration. Beside the investigation of cell alignment 
(via changes in the order parameter M), we also 
investigated the formation of cell aggregations, and 
how the speed of single aggregates was affected by the 
main control parameters of the model.

The case when the two cell populations differ only 
in their chemotactic sensitivity predicted a number of 
interesting phenomena. First, we found that the size 
of the domain determined the number of cell aggre-
gations formed in response to the cell–cell chemical 
attraction (see figures 1 and 2). If the initial distribu-
tion of cells was homogeneous along the x direction of 
the domain, then the larger the size of the domain the 
larger the number of cell aggregations observed. More-
over, increasing the length of the domain along the y 
direction induced slow moving cell aggregations, with 
cells inside them exhibiting undirected motion. All this 
behaviour occurred in part due to the exponential dec-
rement of the external chemical signal near the upper 
wall of the domain, and the dominance of the chemical 
signal secreted by the cells themselves.

We also found that the collective alignment of 
cells decreased with: the size of the domain along the 
y direction, the response of the cells to the chemical 
signal generated by themselves, and the chemical sig-
nal degradation rate (see figures 1 and 3). Our simula-
tions also showed that small steepness of the external 
chemical gradient favours the formation of cell aggre-
gates and the undirected motion of cells, while large 
gradient steepness induced complete cell alignment 
(see figure 3). Moreover, the simulations commonly 
showed the formation of cell aggregates in which the 
fast moving cells were engulfed or partially engulfed 
by the slow moving ones. In addition, a number of 
completely segregated cellular aggregations were also 
observed (see, for instance, figures 1(B), 2, and 4, and 
the videos in the supplementary material). We also 
found that the merging process between cell aggre-
gates was more pronounced when the influence of 
the external gradient was not too strong to counter-
act the chemical aggregate–aggregate attraction (see 
figure 5).

Although not discussed in detail, we also found 
that the phenomena mentioned above occurred in 
the situation where the two subpopulations of cells 
simultaneously had different chemotactic sensi-
tivities and cell speeds (see figure 6 for an example of 
complete alignment that both versions of the model 
exhibited in the long run). However, in this work we 
only payed attention to the main difference between 
the two aforementioned cases. We found that when the 
two groups differ in cell speeds and chemotactic sen-
sitivities, there was an initial-to-intermediate period 
of time during which the slow moving cells exhibited 

a better alignment than the fast moving ones (see fig-
ure 6). This behaviour, which was not observed when 
the subpopulations differ only in chemotactic sensi-
tivity, was mainly due to the differences in cell speed 
between the two subgroups of cells. We also found that 
the intrinsic noisy behaviors of cells lead to an incre-
ment in the time interval during which this phenom
enon was observed. However, the noise also decreased 
the difference in alignment between the two subpopu-
lations (see figure 8).

Finally, we analyzed the speed of a cell aggregate 
as a function of the main control parameters of the 
model. For simplicity, we assumed that all cells pos-
sessed the same average speed and chemotactic sensi-
tivity. We generated a single aggregate and measured 
the velocity of it while moving along the y direction 
towards the external chemical gradient. We found that 
the velocity decreased with: the number of cells, the 
response of the cells to the local chemical signal gener-
ated by themselves, the chemical degradation rate, and 
the extension of the domain along the y direction (see 
figure 9). Our simulations also showed that the speed 
of aggregates increased with the chemotactic sensitiv-
ity of cells χ (see figure 10). These results allow us to 
conclude that, in our model, smaller and highly chem-
otactic cell aggregates move faster compared to larger 
or weaker chemotactic aggregates.

The model has a number of experimentally rel-
evant parameters (e.g. N, p, μ, ...), which allowed us 
study numerically, in a simple but general way, the col-
lective migration of heterogeneous cell populations. 
This study was motivated by the experimental results 
reported by Guven et al [15], which investigated the 
response of a single homogeneous population of cells 
to external chemical linear gradients and signal relay. 
Thus, in principle, we expect that some of the phenom-
ena reported in our study also occur in experiments 
performed with subpopulation of cells having differ-
ent chemotactic properties and/or cell speeds (see, for 
example, the chemotactic cell sorting reported in [1] 
for a heterogeneous population of skin fibroblasts and 
malignant fibrosarcoma cells). We also need to empha-
size that our model does not take into account the exact 
experimental conditions implemented by Guven et al 
[15]. In that experimental study the authors injected 
a uniform flux of cells, in which any newly intro-
duced cell was oriented more or less in the y-direction. 
Thus, the number of cells in their experimental setup 
increased in time, which is in contrast to our theor
etical model where we assumed a finite number of cells 
at the initial time. Furthermore, in Guven et al [15], 
once the cells reached the upper wall of the domain, 
they were removed from the experiment. That experi-
ment also considered that the external chemical gradi-
ent is a linear one, whereas in our theoretical model the 
gradient normally exhibits an exponential decay. All 
these differences could be included in our minimalis-
tic model. We will explore these aspects in our future 
research.
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Although the model investigated in this study pre-
dicted interesting and potentially verifiable collective 
phenomena in heterogeneous cell populations (as is 
the segregation of stronger/weaker chemotactic cells 
in [1]), it could be further extended in several different 
ways. Two such approaches, which focus on the incor-
poration of saturated cell chemotactic responses to 
large concentrations of chemicals (as observed exper
imentally [13]), and on the incorporation of cell–cell 
adhesive forces (which have been shown to affect cell 
aggregation and sorting [5, 38]), are also the topic of 
on-going work. Instead of considering two single 
subpopulations of cells, it could be also interesting to 
assume that each cell has a different response to the 
chemical signals. These type of cell-to-cell variations 
were recently included in a model of collective chem-
otaxis, and it was found that chemotaxis is limited by 
cell-to-cell variation in signaling [39]. While our study 
focuses on a simple model, our numerical results could 
help advance the understanding of the complex and 
orchestrated movement of heterogeneous cell popula-
tions toward external chemical signals.
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