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Abstract  

Background: Neuroimaging studies revealed structural and functional changes in 

medication-overuse headache (MOH), but it remains unclear whether similar changes 

could be observed in other chronic pain disorders. 

Methods: In this cross-sectional study, we investigated functional connectivity (FC) 

with resting state functional magnetic resonance imaging (fMRI) and white matter 

integrity using diffusion tensor imaging (DTI) to measure fractional anisotropy (FA) and 

mean diffusivity (MD) in patients with MOH (N=12) relative to two control groups: 

patients with chronic myofascial pain (N=11) and healthy controls (CN; N=16).  

Results: In a data-driven approach we found hypoconnectivity in the fronto-parietal 

attention network in both pain groups relative to CN (i.e. MOH<CN and MYO<CN ). In 

contrast, hyperconnectivity in the saliency network (SN) was detected only in MOH, 

which correlated with FA in the insula. In a seed-based analysis we investigated FC 

between the periaqueductal grey (PAG) and all other brain regions. In addition to 

overlapping hyperconnectivity seen in patient groups (relative to CN), MOH had a 

distinct connectivity pattern with lower FC to parieto-occipital regions and higher FC to 

orbitofrontal regions compared to controls. FA and MD abnormalities were mostly 

observed in MOH, involving the insula.   

Conclusions: Hyperconnectivity within the SN along with associated white matter 

changes therein suggest a particular role of this network in MOH. In addition, 

abnormal connectivity between the PAG and other pain modulatory (frontal) regions in 

MOH are consistent with dysfunctional central pain control.  

Introduction  



 

Medication-overuse headache (MOH) affects 1-2% of the general population and 

causes significant social and financial burden (1, 2). MOH is defined as headache that 

develops or significantly worsens during overuse of acute pain medication (3). During 

medication overuse, pain thresholds in cephalic and extracephalic regions were found 

to be reduced in animal and human studies, probably because of drug-induced latent 

sensitization of the trigeminovascular system (4, 5), which was reversible after 

detoxification.  Alterations in central modulation of trigeminal nociceptive input have 

been proposed in the pathophysiology of MOH. These may involve an imbalance 

within descending pain modulating systems towards pain facilitation (6-8).  

Metabolic and structural alterations have been described in MOH, including 

hypometabolism in the orbitofrontal cortex (OFC) in a PET-study (9) and grey matter 

(GM) increases in the striatum, thalamus and the midbrain (10). After detoxification 

the GM increase in the midbrain including the periaqueductal grey (PAG), which is 

involved in descending pain modulation, was reversible in patients who improved 

clinically, whereas other GM changes were not (11). Hypometabolism in the OFC 

persisted after detoxification, whereas other hypometabolic regions such as thalamus 

and ventral striatum/insula returned to normal. Persistent structural GM changes and 

hypometabolism in OFC after detoxification have been related to patients’ 



 

dependence on the analgesic compound or predisposition to medication overuse 

relapse (9, 11).  

It is assumed that the human brain is highly active in the absence of explicit input or 

output (12). Resting state functional magnetic resonance imaging (RS-fMRI) examines 

spontaneous low frequency fluctuations in the blood oxygenation level dependent 

(BOLD) signal in absence of external tasks or stimuli and can provide a measure of 

functional connectivity (FC) between various brain regions (13) and networks (14). 

Resting-state networks, i.e. spatially distinct areas of the brain that show synchronous 

BOLD signal fluctuations at rest, have been consistently identified using various 

methodological approaches (14, 15), including the default-mode network (DMN), 

fronto-parietal attention network (FPN), sensorimotor network (SMN), or saliency 

network (SN), which comprised of the bilateral insulae and dorsal anterior cingulate 

cortex (ACC). One study has examined resting state FC in MOH and reported decreased 

FC between the precuneus and fronto-parietal regions within the DMN and increased 

FC between precuneus and hippocampal/temporal areas (16). Increased FC between 

the PAG and both nociceptive and somatosensory regions was found in patients with 

episodic migraine between the attacks (17). Attack frequency correlated negatively 

with FC between the PAG and prefrontal regions, anterior cingulate cortex and 

thalamus, probably reflecting impaired pain modulation. The PAG is functionally and 



 

anatomically connected with forebrain structures involved in pain processing (18, 19) 

and is probably involved in the pathophysiology of migraine and MOH (11, 17, 20).  

White matter (WM) changes have been documented in migraine and other chronic 

pain conditions. These microstructural alterations are inferred from diffusion tensor 

imaging (DTI) indices, such as fractional anisotropy (FA), which quantifies the degree of 

preferential restriction in water diffusion, and mean diffusivity (MD), which measures 

the overall magnitude of water diffusion (21). Patients with episodic migraine showed 

lower FA in the thalamocortical tract, trigeminothalamic tract and (in patients without 

aura) ventrolateral PAG (22), as well as reduced FA in the visual-motion processing 

network (23). Yet, whole-brain WM alterations have not been investigated in patients 

with MOH.  

In the present study we performed a multi modal imaging approach to investigate FC 

and WM changes in patients with MOH compared to healthy controls (CN), as 

functional and structural changes are probably interrelated. A group of patients with 

chronic myofascial pain (MYO) without evidence for comorbid MOH was also studied 

as a second control group, to investigate which changes might be attributable to 

chronic pain rather than specifically to MOH. Myofascial pain is a common widespread 

musculoskeletal pain syndrome that is thought to be associated with central 



 

sensitization (26). In myofascial pain, e.g. fibromyalgia, FC differences have been 

described within the SN and FPN (24, 25).  For the FC analysis, we applied a data-driven 

approach on the network level: the independent component analysis (ICA). We 

hypothesized altered FC in the SN of MOH and MYO and hypoconnectivity in the FPN 

in MOH compared to controls, based on previous studies (24, 25, 27). Next, we 

performed a seed-based analysis to investigate correlations between the 

spontaneously fluctuating BOLD signal in the seed region (PAG) and all other brain 

regions, similar as in (17).  We hypothesized altered FC to somatosensory regions in 

MOH. Functional hyperconnectivity indicates a stronger coupling within a neural 

network or between a seed region and the rest of the brain in one than in the other 

group, as a result of more similar spontaneously fluctuating fMRI signal time courses. 

WM changes were examined on the whole-brain level using tract based spatial 

statistics (TBSS), and local between-group WM differences were further explored and 

linked to clinical symptom scores. TBSS provides measures of FA and MD to determine 

deviations in WM (microstructural) integrity and membrane density, respectively. We 

hypothesized to find altered WM integrity in frontal brain regions, such as the OFC and 

insular cortex, as it is known that these regions show structural changes in MOH (10).   

 



 

Material and Methods 

Participants 

The study was approved by the ethics committee of the Canton Zurich. Participants 

gave written and informed consent. The present study included 12 patients with MOH, 

evolving from episodic migraine, according to diagnostic criteria of the International 

Headache Society (3) (mean age: 44.4 range: 31-65 years, 9 women), 16 healthy 

controls (CN, mean age: 42.4, range: 31-61 years, 7 women), free from any pain, and 

11 patients with chronic MYO (mean age: 38.3, range: 24-56 years, 8 women). Subjects 

did not differ with respect to age and sex. A list with the full demographics and clinical 

data is provided in Table 1.  

 

Clinical assessment 

Participants were excluded if they had evidence of structural lesions in the MRI, 

cardiovascular disease, any signs of neurological disease -other than the studied 

disorder or severe psychiatric disorders-, and standard contradictions for MRI. All MYO 

patients were evaluated in a multidisciplinary setting involving neurologists, 

psychologists and orthopaedists. The diagnosis of MYO was established according to 



 

published clinical criteria (26). All patients with MYO had normal nerve conduction 

studies, somatosensory evoked potentials and thermography. Inflammatory 

rheumatologic disease was excluded by laboratory tests. In all participants depression 

and anxiety were assessed using the Hospital Anxiety and Depression Scale (HADS) 

questionnaire (28). Pain intensity during scan was assessed using a visual analogue 

scale (VAS), ranging from 0 (no pain) to 10 (strongest pain). Duration of pain disorder 

(years) and headache days per month in MOH were also recorded.   

 

Functional imaging 

Whole-brain resting-state fMRI data were acquired with a T2*-weighted echo planar 

imaging (EPI) single-shot sequence and an eight-channel head coil. The following 

recording parameters were used: TR/TE: 2s/35 ms, EPI factor: 53, flip angle: 78°, 

number of slices: 30, voxel resolution: 3 x 3 x 4 mm, scan order: ascending, scan 

duration: 6:30 minutes. MR-compatible headphones and cushions were used to 

minimize subjects’ head motion. Participants were instructed to lie still, fixate on a 

white cross on dark background, to be relaxed, but to remain awake. 

 



 

FMRI pre-processing 

Pre-processing and statistical analysis of the fMRI data was performed with SPM8.  For 

each participant, we applied realignment (head motion correction), normalisation, co-

registration (of the functional images to the T1-weighted images), and smoothing. In 

brief, images were realigned using rigid body transformations (29) to the first scan to 

correct for head motion (3 translation and 3 rotation parameters), followed by slice-

timing correction by temporally aligning all slices to the same reference time point 

(first slice). We chose to perform realignment first to minimize the effect of inter-slice 

movement (30). Data were then normalized to the Montreal Neurological Institute 

(MNI) brain template. The normalized functional images were smoothed with an 

isotropic Gaussian kernel of 8 mm with full width at half maximum. FC by Independent 

Component Analysis (ICA) 

FMRI data were decomposed into intrinsic functional networks using spatial ICA using 

the GIFT toolbox V3.0a (http://mialab.mrn.org/software/gift). Spatial ICA applied to 

fMRI data aims to separate spatially independent patterns from their linearly mixed 

BOLD signals via maximization of mutual independence among components (31). We 

limited the number of independent components (ICs) to 25, similar to previous pain-

related FC studies (25, 32, 33). ICA is capable of extracting scanner or physiological 

http://mialab.mrn.org/software/gift


 

noise and motion artefacts from the dataset (34),  i.e. all non-neuronal ICs (e.g. 

respiration or head motion) were removed. To validate the stability of the resultant 

ICs, we employed ICASSO (35) (100 runs with random initiation) on the pre-processed 

data matrix for our model order of k = 25 (ICs). In doing so, 1 IC from was removed 

from subsequent analysis, as the stability Index Iq was below 0.8 (out of 1). From the 

pool of remaining neuronal ICs (estimated across participants), we selected 

functionally relevant ICs using spatial correlation with previously defined templates, so 

that the final set of ICs consisted of the following (pain-related) networks: DMN, FPN, 

SN, SMN, posterior DMN (precuneus and posterior cingulate), anterior DMN (medial 

prefrontal cortex), inferior temporal, and visual network. Additionally, it was ensured 

that all remaining ICs had a similarity below 0.2 (1 = identical), which estimated from a 

cluster merging similarity dendrogram to minimize the chance of overlapping 

networks. Similar networks have been described in a study using a model of sustained 

deep tissue pain (32). Group ICA differences were reported at p < 0.05 (using 

Bonferroni correction for multiple comparisons). We also extracted network-based FC 

strength (using GIFT) and correlated this parameter with structural markers. For 

simplicity, we focus on FC-FA interactions.FC by seed-to-whole-brain analysis 

Seed-to-whole-brain FC (bandwidth 0.01 – 0.1 Hz) was examined by spatiotemporal 

cross-correlations using CONN toolbox (v13o, http://www.nitrc.org/projects/conn/). 



 

WM, cerebrospinal fluid (CSF), and the six motion parameters were used as covariates 

of no interest. Only the WM and CSF signals were removed to avoid any bias 

introduced by removing the global signal (i.e., GM) (36, 37). This approach should 

'normalize' the distribution of voxel-to-voxel connectivity values as effectively as 

including the global signal as a covariate of no interest, but without the potential 

problems of the latter method. Although we did not record respiration and cardiac 

responses, it has been demonstrated that non-neuronal physiological noise (e.g., 

cardiac and respiratory signal) can successfully be removed by the “CompCor” 

algorithm (36), as implemented in the Conn toolbox. As centrally involved in pain 

processing, the seed was placed in the mid-PAG region (MNI coordinates: x = -1, y = -

28, and z = -6). Similar MNI coordinates for the PAG have been used in another FC 

study in pain patients (17). We first estimated FC maps on the single subject level. For 

second-level analysis, we then applied a univariate ANOVA to test for the main effect 

of group. Between-group comparisons were then performed using post-hoc unpaired 

two-tailed t-tests. The statistical threshold was first set to p < 0.001 (uncorrected, t > 

3.2), as used in other fMRI studies to pain (38, 39). We then applied an additional 

cluster extent correction of k ≥ 24 voxels to correct for multiple comparisons using the 

False Discovery Rate (FDR) correction (40) in order to achieve p < 0.05 (corrected). 

Patient-specific depression anxiety, depression, pain intensity (VAS), and headache 



 

frequency (MOH only) values were linked to FC strength using Pearson’s correlations. 

To limit the number of multiple comparisons, FC strength was first extracted from the 

PAG-related FC and then masked by the regions showing FC group differences for the 

contrasts: MOH > CN, MOH < CN, MYO > CN,  and MYO < CN.  

 

 

 

Structural imaging 

The T1-weighted volume sequences of the whole brain were acquired using a three-

dimensional MPRAGE (Magnetization Prepared Rapid Gradient Echo) sequence (time 

of repetition (TR): 8.7 ms, echo time (TE): 2.3 ms, flip angle: 8.0°, voxel-size 0.86 × 0.86 

× 1.0 mm, axial slice orientation, matrix size 256 × 256) on a 3T Philips Achieva scanner 

(Philips Healthcare, Best, The Netherlands), equipped with an eight-channel head coil 

as used in previous studies (10, 11). 

Diffusion tensor imaging (DTI) 

A 32-directional DTI scan was performed in all participants with the following 

parameters: number of slices: 60, TR: 10’331 ms, TE: 55 ms, field of view: 224 x 120 x 



 

224, duration: 7.1 min, number of diffusion b0-values: 2, slice thickness: 2 mm, gap: 0 

mm, voxel resolution: 3.6 x 3.6 mm, flip angle: 90°, and b-value = 1000 s/mm2.  

DTI pre-processing  

DTI data were processed and analyzed using FMRIB Software Library (FSL) software 

5.0.7 (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain Software 

Library; http://www.fmrib.ox.ac.uk/fsl) according to the default TBSS pipeline. Diffusion 

data were corrected for eddy-currents using the FMRIB's Diffusion Toolbox (FDT). 

Brains were extracted from non-brain tissues using the “bet” procedure (41). FA and 

MD images were created using “dtifit”procedure by fitting a diffusion tensor model at 

each voxel. 

 

DTI analysis and statistics 

Voxelwise statistical analysis of the FA data was carried out using TBSS (42), 

implemented on FSL (43). All subjects’ FA data were non-linearly registered to an 

FMRIB58_FA standard-space image (FMRIB Centre, University of Oxford, Department 

of Clinical Neurology, John Radcliffe Hospital, Headington, Oxford, UK; 

http://www.fmrib.ox.ak.uk/FMRIB58_FA.html) and nonlinear transformed into MNI 

space. The mean image of all aligned FA images was created and thinned to provide a 

http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ak.uk/FMRIB58_FA.html


 

skeletonized mean FA image, which represents the center of all tracts common to the 

group. A threshold of FA at 0.2 was used to exclude GM or CSF and control for high 

inter-individual variability. Each aligned FA image of all participants was then projected 

onto this skeleton and the resulting data fed into voxelwise cross-subject statistics. 

Similar steps were carried out using the “tbss_non_FA” script to obtain mean 

diffusivity (MD) images which were also projected onto the mean FA skeleton. A 

quality control was performed by visual inspection of all FA images. Voxelwise 

statistical analysis on FA and MD was performed via a permutation-based inference for 

nonparametric statistical thresholding (5000 permutations) using FSL’s “randomize” 

tool and two-sample t-tests (CN versus MON, CN versus MYO, MOH versus MYO). Age, 

gender and total intracranial volume (TIV) were included as “covariates of no interest” 

in all TBSS analyses to attenuate any potential confounding effect on the variable of 

interest. TIV was used as variable of no interest as TIV was shown to influence FA and 

MD (44). The resulting statistical maps were thresholded at p < 0.05 (family-wise error 

(FWE) corrected) using the threshold-free cluster enhancement (TFCE) method (45). 

Results were also evaluated at a TFCE uncorrected statistical level (p < 0.001), as used 

in other TBSS-related DTI studies in headache that have applied the TFCE method (46, 

47). Regions were labeled anatomically by mapping the statistical map to JHU-WM 

Tractography and JHU ICBM-DTI-81 WM labels atlases. The association between 



 

disease duration, pain intensity, HADS-anxiety (HADS-A) and depression (HADS-D) 

scores to FA and MD values (in clusters with significant between-group differences) 

was examined at p < 0.001 (uncorrected). Further, we looked at interactions between 

FA, MD, and FC values using Pearson’s correlations. 

 

Statistical analysis on demographical and clinical data 

Chi-square (χ2) test was used to analyze categorical data (e.g. gender) whereas one-

way analysis of variance (ANOVA) followed by Tukey’s post-hoc comparisons was 

applied for continuous variables (e.g. age, headache duration and frequency, anxiety 

and depression scores).  The level of statistical significance was set at p < 0.05. 

 

Results 

Demographics and clinical characteristics 

Data on demographics are provided in Table 1. HADS-A and HADS-D scores did not 

differ between MOH and MYO (p > 0.05) but between CN and MYO (p < 0.001 both for 

HADS-A and HADS-D) and CN and MOH (p < 0.001 both for HADS-A and HADS-D). 

There was a significant difference between MOH and MYO in pain duration (p = 0.002). 



 

Pain intensity, assessed by VAS, did not differ during the MR examination between 

patients (MOH: 4.2 ± 2.1; MYO: 5.5 ± 1.7; p = 0.14). All patients were in pain (VAS > 0) 

during the MRI. Medication in MOH and MYO is summarized in Table 2. All patients 

with MOH took triptans to treat their migraine attacks. Eleven MOH patients had 

migraine without aura, and 1 migraine with aura. In the MYO group 2 patients had 

episodic tension-type headache and 1 patient episodic migraine without aura. 

 

fMRI: independent-component analysis 

Head motion parameters during fMRI did not differ between groups with respect to 

rotation and translation values (all p’s > 0.1, unpaired two-tailed t-tests). In none of the 

examined groups, total displacement exceeded 1mm or 1°, respectively, along the 

fMRI run. Hence, all subjects could be included in the subsequent FC analyses. We first 

applied the ICA to examine group differences on the network level (Figure 1 and Table 

3). As shown in Figure 1, significant FC increases were seen in the SN (MOH > CN and 

MOH > MYO) and connected inferior temporal network (MOH > CN, MOH > MYO). In 

contrast, significant FC decreases (MOH < CN and MYO < CN) were seen in the bilateral 

FPN (including the PAG).  

 



 

 

fMRI: Seed-to-voxel analysis (seed: PAG) 

The within-group seed-to-voxel analysis  (Figure 2) showed that the CN group 

demonstrated FC between the PAG and dorsal ACC (label A), thalamus, posterior insula 

and visual areas, similar to recent FC studies using the PAG as seed region (17, 19). FC 

between PAG and the supplementary motor area (SMA, label B) was detected in both 

the CN and MYO groups, which was not significant in MOH. In contrast, the MOH 

group exhibited FC of the PAG with the parietal cortex (including the precuneus and 

posterior cingulate cortex (label C), and rostral anterior cingulate cortex (ACC, label D). 

Further, both patient groups as well as the CN group showed FC between the PAG and 

surrounding midbrain regions. Between group differences are summarized in Table 4, 

Figures 3 and 4. Both patient groups showed higher FC between the PAG and left 

inferior frontal gyrus (IFG) and left cerebellar regions than CN (Figure 4 B and D). MOH 

had lower FC to regions including the visual cortex, precuneus and temporal regions 

and higher FC to precentral regions and OFC. In contrast, MYO had decreased FC to 

pre- and postcentral regions compared to CN and MOH (Figures 3 and 4). The direct 

comparison of both patients groups (Figure 4) revealed significant differences for the 

contrast MOH > MYO only, with higher PAG-mediated FC to the pre- and postcentral 



 

gyri (BA 3/4/6, Figure 4, label 1), left subgenual ACC/caudate nucleus (Figure 4, label 

2), and the right temporo-parietal junction (TPJ) (Figure 4, label 3). 

Correlation of FC strength with clinical parameters  

No significant correlations were found between (PAG mediated) FC strength and 

clinical values on p < 0.001 (uncorrected).  

DTI: Whole-brain WM analysis 

No significant differences were found on total mean FA across groups (CN [mean, SD]: 

0.335, 0.011; MOH [mean, SD]: 0.334, 0.012; MYO [mean, SD]: 0.335, 0.009; p = 0.999) 

and MD (CN [mean, SD]: 0.513 × 10-3mm2/s, 0.013 ×10-3 mm2/s; MOH [mean, SD]: 

0.507 × 10-3 mm2/s, 0.015 × 10-3 mm2/s, MYO [mean, SD]: 0.512 X 10-3 mm2/s, 0.012 

×10-3 mm2/s ; p = 0.611). No significant group differences were detected at p < 0.05, 

corrected with FWE. Significant group differences (p < 0.001, uncorrected) are reported 

in Table 5. Compared with CN, MOH had significantly reduced FA in the right parietal 

operculum (OP, Figure 5A, bottom panel) and increased FA in the left insula compared 

to CN (Figure 5A, top panel), On the other hand, patients with MYO showed increased 

FA in right insula relative to CN (posterior part, Figure 5A, top panel).  

MD was significantly decreased in MOH compared to CN in the left insula (Figure 5B, 

top panel), There were no significant changes in MD in MYO (relative to CN). The 



 

comparison ‘MOH versus MYO’ did not reveal any significant differences in FA values.  

Decreased MD values were found in MOH relative to MYO in several clusters located 

cerebellum (mostly right inferior and middle cerebellar peduncle and adjacent 

pontomedullary area), left lingual gyrus, pallidum, and fusiform gyrus (Table 5).  

 

DTI: Correlation of DTI with clinical parameters  

We then examined the correlations of FA and MD values with clinical scores.  After 

controlling for age, gender and TIV within MOH group, we found no significant 

correlation, which survived p < 0.001 (uncorrected).  

 

DTI-fMRI: Correlation of network-based FC with FA 

We next calculated if group FC differences (e.g. MOH > CN) were linked to group 

differences in FA. We found that FC of the SN was paralleled by higher FA values of the 

insular cortex for MOH > CN (right insular cortex, r = 0.86, p < 0.001, Figure 6; left 

insular cortex: r = 0.58, p = 0.008, not shown) and across all patients (right insular 

cortex: r = 0.43, p = 0.04, results not shown). 

 

Discussion 



 

In the present study we found changes in FC and WM integrity in patients with MOH 

and MYO. On the network level, hypoconnectivity in the FPN was detected in both pain 

groups.  In contrast, hyperconnectivity within the SN and inferior temporal network 

were features only in MOH (relative to CN and MOH). Both pain groups had increased 

FC of the midbrain PAG with lateral frontal and cerebellar regions, whereas 

hyperconnectivity with orbitofrontal regions was only found in MOH. In contrast, MYO 

had lower FC between PAG and sensorimotor cortex.  Using DTI, increased FA was seen 

in the insula (both pain groups) and decreased FA in right OP (MOH only). MD changes 

were found in the left insula in MOH. In MOH, insular WM changes correlated with FC 

of the SN. 

Our findings provide evidence that FC and WM alterations in MOH cannot be solely 

attributed to neuronal processes linked to chronic pain. 

Functional connectivity: ICA results 

FC alterations (relative to CN) have been reported in migraine patients without aura 

(27), MOH (16), and fibromyalgia (24, 25). In the study by Russo et al. (27) FC was 

lower in the right FPN (= executive-working memory network) in patients with 

migraine without aura, including the middle frontal gyrus and dorsal ACC. In our study 

we found bilateral hypoconnectivity in the FPN in both pain (MOH and MYO) groups 



 

compared to CN, suggesting a disturbed functionality of the executive network in 

chronic pain disorders, which is consistent with the notion of impaired executive (and 

memory) function in chronic pain (50). However, executive function was normal in 

patients with episodic migraine without aura (27).  

Further we observed disturbed, saliency-related, functional communication in MOH, 

reflected by hyperconnectivity within the SN for MOH relative to CN and MYO. In 

addition, in the left insula we found increased FA and decreased MD (see below) in 

MOH. In MOH, FC strength of the SN was associated with FA in the insular cortex, 

suggesting that hyperconnectivity could ultimately lead to structural changes in parts 

of the SN, at least in the insular cortex. The insula and ACC are key structures within 

pain processing systems and have been related to attentional and perceptive aspects 

of pain (51). The ACC is involved in descending pain modulation, being functionally and 

anatomically connected with the PAG (18, 19). A previous study found increased FC 

between ACC and anterior insula in high frequency compared to low frequency 

migraine (52). Morphometric studies found decreased GM in the bilateral insula in 

MOH, not reversible after detoxification (10, 11) and decreased cortical thickness in 

cingulate cortex and insula in high frequency vs. low frequency migraine (52). Hence 

consistent functional and structural alterations within the SN are demonstrated in 

MOH. In contrast, a recent study on episodic migraine without aura reported 



 

decreased interhemispheric FC in the ACC and decreased FA in the corpus callosum 

(52, 53). In our study, MYO did not show significantly different FC relative to CN in the 

saliency regions, which was unexpected, as increased FC between insula and ACC has 

been reported in chronic pain (24).  

Nevertheless, our results are in agreement to studies demonstrating a link between FC 

strength and structural markers of neuronal integrity such as FA (54, 55). 

 

Functional connectivity: Seed-based results 

The investigation of PAG-mediated FC analysis was motivated by the observation that 

the PAG shows (a) reversible structural alterations in MOH (10, 11) and (b) has 

disturbed FC to several brain areas within nociceptive and somatosensory processing 

pathways in episodic migraine (17).  The PAG is organized in distinct longitudinal 

columns that receive selective input from forebrain regions including OFC and 

cingulate cortex as well as sensory neurons from trigeminal nucleus and dorsal horn 

(18).  It is a substantial component of the descending pain modulatory network, and 

exerts an inhibitory or excitatory control on nociceptive input via the rostral 

ventromedial medulla, which in turn projects to spinal and medullary dorsal horns 

(56). In the present study only one midbrain seed including right and left ventrolateral 



 

PAG was selected, because the FC between them was very high, consistent with 

previous studies (17, 19). Both patient groups showed increased FC between the PAG 

and left frontal and cerebellar regions, which suggests an association with chronic pain 

states rather than a pattern specific for MOH. The dorsolateral prefrontal cortex is 

considered a part of pain processing matrices (51). The cerebellum is often reported in 

studies on chronic pain, and is functionally connected to the PAG (19, 57). In addition, 

PET studies reported hypermetabolic activity of the cerebellum in patients MOH 

before medication withdrawal (9).  

Patients with MOH had a distinct pattern of FC between PAG (relative to MYO) in 

several regions implicated in the pathophysiology of migraine and MOH:   Stronger FC 

to the bilateral OFC and weaker FC to occipital and mid cingulate regions. The OFC 

shows hypometabolism in MOH that persisted after withdrawal and GM volume in OFC 

predicted treatment response (9, 11). Dysfunction of OFC has been implicated in 

maladaptive decision making in dependence related disorders, and MOH has been 

discussed in this context (58).  

Cortical spreading depression (CSD), the pathophysiological correlate of migraine aura, 

starts in visual cortex (59). Clinically “silent” CSDs probably occur in migraine without 

aura and the vulnerability for recurrent CSDs was found increased in an animal model 



 

of MOH (20, 60). Decreased connectivity between PAG and occipito-parietal regions 

might reflect dysfunction of these regions with increased susceptibility for CSD and 

disturbed interplay with pain modulation in the brainstem.  

In MYO, connectivity between PAG and SMN was decreased. Alterations in resting 

state activity in the SMN have been described in a model of myofascial pain.  

Specifically, connectivity of the SMN is disrupted after continuous painful stimulation, 

and shifted to the SN (32).  

Comparing PAG-related connectivity between MOH and MYO, we found decreased FC 

to the SMN in MYO, similar as in the comparison with controls. In addition, we 

observed increased FC between the PAG and the right TPJ and left subgenual ACC in 

MOH compared to MYO. The right TPJ is involved in the processing of social 

interactions and in the empathy for pain (61, 62). The subgenual ACC – which projects 

to the ventromedial striatum and the accumbens area - is involved in reward 

processing and addiction (63, 64). We conclude that these FC increases in MOH may be 

the result of a disturbed interplay between nociceptive and cognitive control brain 

regions. 

DTI results  



 

WM changes in patients with chronic pain conditions might occur due to both 

(progressive) maladaptive plasticity over pain chronic manifestation (65).  The notion 

of maladaptive plasticity in pain regions is in line with our findings of both increased FA 

in the insular cortex in MOH and MYO, as well as decreased FA in right parietal 

operculum (MOH only). Several factors may contribute to decreased FA, including 

increased branching, more crossing fibers or axons, edema, changes to protein 

filaments, cell membrane disruption and/or decreased myelin. Prolonged nociceptive 

activity may be related to central sensitization that contributes to chronic pain 

manifestation and the initiation of central neuroinflammatory processes (66, 67).  

It is known that the OP, posterior insula (and cingulate cortex) receive a large 

proportion of  the spinothalamic cortical input in primates via the central ascending 

nociceptive pathway and have been implicated in response to painful stimulation (51). 

Group differences (MOH < CN) in the OP region are hence fully in line to recent 

interpretation of the medial and parietal opercular regions as somatosensory regions 

devoted to the processing of spinothalamic inputs (51, 68).  

The insula has been implicated in the perception of pain (51) both in acute and chronic 

pain conditions. From a functional point of view, posterior and mid insular cortex are 

predominantly associated with the sensory aspect of pain (69-71), whereas anterior 



 

insula has been implicated to the cognitive-affective dimension of pain which is 

sensitive to contextual manipulations (72, 73). A recent combined structural and FC 

analysis of insular subdivisions (74) further supported that anterior insular part is 

predominantly connected to (pre)frontal regions (e.g. OFC and ventrolateral 

prefrontal), whilst the posterior insular part is strongly connected to somatosensory 

regions. Mid insula integrates sensory and cognitive emotional information (75) and 

displays widespread connections with parietal and temporal regions, the IFG, OFC and 

premotor cortex (76). According to the same insular subdivision system, we found 

increased FA in the mid insular part in MOH and in right posterior insular part in 

patients with MYO.   

 

Limitations of the study 

In contrast to previous studies on episodic migraine, patients with MOH were not 

scanned in pain free intervals but experienced headaches during scans. This approach 

was chosen, as most patients had almost daily headaches. The group MYO was also 

not pain free during scans. Also, abstinence from acute pain medication was not 

requested, as this might induce acute withdrawal headaches. An influence of chronic 

medication use on FC and DTI measures (such as FA and MD) is unknown to date but 



 

cannot be fully excluded. Pain duration differed between patient groups. As pain 

duration was not associated with changes in FC or WM integrity an effect on group 

comparisons was considered unlikely.  

DTI findings are reported at p < 0.001 uncorrected (for multiple comparisons), as the 

sample size was rather small, similar as in previous studies (46, 47). However, 

structural and functional changes overlapped in the insula showing a significant 

correlation between functional and structural measures. All statistical comparisons for 

fMRI survived a threshold of p < 0.05 (corrected), which underlines the robustness of 

these findings.  

Interpretation 

Chronic pain may be associated with changes in resting state FC and white matter 

tracts, independent from the underlying etiology. Hyperconnectivity (relative to 

controls) within the saliency network along with associated white matter changes 

therein suggest a particular role of this network in MOH. Further, in MOH regions 

related to internal control, pain modulation and CSD showed impaired connectivity 

with the PAG, probably related to an imbalance between descending pain 

facilitation/inhibition. 
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Figure legends 

 

Figure 1. Summary of the functional connectivity (FC) results, using an independent 

component analysis (ICA). Statistical group comparisons are shown in a color code 



 

(white bar: p > 0.05, green bar: p < 0.05 (using Bonferroni correction for multiple 

comparisons). CN: healthy controls, MOH: medication overuse headache, MYO: 

myofascial pain. 

 

Figure 2. Within-group seed-to-voxel results. The seed was placed in in the PAG (MNI 

coordinates: -1, -28, -6). Letters correspond to the following brain regions: A = dorsal 

anterior cingulate cortex, B = supplementary motor area, C = posterior cingulate cortex 

and adjacent (posteriorly located) precuneus, D = rostral anterior cingulate cortex. The 

statistical threshold is set to p < 0.05 (FDR corrected t > 3.2). CN: healthy controls, 

MOH: medication overuse headache, MYO: myofascial pain. 

 

Figure 3. Seed-to-voxel results comparing healthy to pain groups. The seed was placed 

in centrally in the PAG (MNI coordinates: -1, -28, -6). Labels indicate different brain 

regions. The statistical threshold is set to p < 0.05 (FDR corrected, t > 3.2). MOH: 

medication overuse headache, MYO: myofascial pain, CN: healthy controls.  

 

Figure 4. Seed-to-voxel results comparing medication overuse pain (MOH) to 

myofascial (MYO) pain. The seed was placed in centrally in the PAG (MNI coordinates: -

1, -28, -6). Labels indicate different brain regions. The statistical threshold for MOH > 



 

MYO is set to p < 0.05 (FDR corrected, t > 3.2). 1: caudate nucleus, 2: postcentral gyrus, 

and 3: right temporo-parietal junction. 

 

Figure 5. Summary of the diffusion tensor imaging (DTI) group results. Displayed are 

the group differences between CN and MOH, CN and MYO. Statistical threshold is set 

to p < 0.001 (uncorrected)). CN: healthy controls, MOH: medication overuse headache, 

MYO: myofascial pain.(A) Differences in functional anisotropy (FA) of the right insular 

cortex and parietal operculum (OP) for the contrast MOH – CN and MYO – CN. (B) 

Differences in mean diffusivity (MD) of the left insular cortex and posterior cingulum 

for the contrast MOH – CN and MYO – CN. 

 

Figure 6. Interaction between functional connectivity (FC) strength and structural 

(neuronal) integrity. In MOH, FC of the SN was positively linked to functional anisotropy 

(FA) of the right (A) and left (B) insular cortex at p < 0.001. 

 

 

 

 

 



 

 

 

 

 

 

Table legends 

 

Table 1: Demographics and clinical characteristics. Groups did not differ with respect to 

age or gender. Anxiety (HADS-A) and depression scores (HADS-D) were not different 

between MOH and MYO. a HC vs. MOH; MOH vs. MYO, b HC vs. MOH; HC vs. MYO; 

MOH vs. MYO, c HC vs. MOH; HC vs. MYO. HADS-A: anxiety. HADS-D: depression. CN: 

healthy controls, MOH: medication overuse headache, MYO: myofascial pain.  

 

Table 2: Medication dosages for the MYO and MOH groups. MOH: medication overuse 

headache, MYO: myofascial pain.  

 

Table 3: ICA results. Significant group differences are indicated by * (p < 0.05, using 

Bonferroni correction for multiple comparisons). CN: healthy controls, MOH: 

medication overuse headache, MYO: myofascial pain.  



 

 

Table 4: Seed-to-voxel group differences. The seed was placed in the central PAG. All results 

are shown at p < 0.05 (corrected for multiple comparisons using FDR correction). CN: healthy 

controls, MOH: medication overuse headache, MYO: myofascial pain. Table 5: DTI results. 

Results are displayed at p < 0.001 (uncorrected). CN: healthy controls, MOH: medication 

overuse headache, MYO: myofascial pain. 

 

Key Findings 

 Functional connectivity identifies different networks in MOH and MYO 

 MOH and MYO demonstrate lower functional connectivity in the fronto-parietal 

attention network than controls 

 MOH show increased functional connectivity in the saliency network 

 Diffusion tensor imaging indicates disturbed white matter integrity in the 

insular cortex in  MOH and MYO as well as in the parietal operculum (MOH 

only) 

Functional connectivity strength of the saliency network was positively 

correlated to structural neuronal integrity of the insular cortex in MOH 
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