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Abstract (196 words) 

Mutations in the m.13094T>C MT-ND5 gene have been previously described in three cases 

of Leigh Syndrome (LS). In this retrospective, international cohort study we identified 20 

clinically affected individuals (13 families) and four asymptomatic carriers.. Ten patients 

were deceased at the time of analysis (median age of death was 10 years (range: 5·4 months -

37 years, IQR= 17·9 years). Nine patients manifested with LS, one with mitochondrial 

encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), and one with Leber 

hereditary optic neuropathy. The remaining nine patients presented with either overlapping 

syndromes or isolated neurological symptoms. Mitochondrial respiratory chain activity 

analysis was normal in five out of ten muscle biopsies. We confirmed maternal inheritance in 

six families, and demonstrated marked variability in tissue segregation, and phenotypic 

expression at relatively low blood mutant loads. Neuropathological studies of two patients 

manifesting with LS/MELAS showed prominent capillary proliferation, microvacuolation 

and severe neuronal cell loss in the brainstem and cerebellum, with conspicuous absence of 

basal ganglia involvement. These findings suggest that whole mtDNA genome sequencing 

should be considered in patients with suspected mitochondrial disease presenting with 

complex neurological manifestations, which would identify over 300 known pathogenic 

variants including the m.13094T>C. 

 

Keywords:  Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes 

(MELAS); Leigh syndrome (LS); mitochondrial DNA; heteroplasmy; neuropathology    
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INTRODUCTION  

Defects in oxidative phosphorylation (OXPHOS) are an important cause of human morbidity 

and mortality, with complex I (NADH-ubiquinone oxidoreductase) deficiency recognized as 

the most commonly observed OXPHOS defect.1 Complex I (NADH: ubiquinone 

oxidoreductase) is the largest component of the oxidative phosphorylation system (OXPHOS) 

composed of 45 subunits that, in supercomplex formation with respiratory chain complexes 

III and IV, drives the generation of a transmembrane protein gradient powering adenosine 

triphosphate (ATP) synthesis.  Complex I requires 14 evolutionary conserved core subunits 

for its catalytic function: seven mtDNA-encoded NADH-dehydrogenase (ND) core subunits 

(ND1-6, ND4L) and seven nuclear DNA (nDNA) encoded subunits (NDUFV1, NDUFV2, 

NDUFS1, NDUFS2, NDUFS3, NDUFS7 and NDUFS8), in addition to 31 supernumerary 

subunits, whose exact roles are yet to be fully defined.2 The MT-ND5 gene of complex I, 

appears to be a mutational ‘hot spot’ 3 and linked to a variety of clinical phenotypes ranging 

from single organ involvement, such as isolated exercise intolerance4 or Leber hereditary 

optic neuropathy (LHON),5 to multisystem disease manifesting as renal failure and 

myopathy,6 Leigh syndrome (LS),7,8 mitochondrial encephalomyopathy, lactic acidosis and 

stroke-like episodes (MELAS),9,10 or as a combination of overlapping syndromes including 

LS/MELAS,7,11 MELAS/myoclonic epilepsy and ragged red fibres (MERRF),12 

LHON/MELAS13  and LS/MELAS/LHON.10 The limited understanding of the natural history 

of disease caused by such mutations presents significant challenges in clinical practice, 

particularly in relation to pre-symptomatic genetic testing of at-risk family relatives.   

The m.13094T>C mutation, in the MT-ND5 gene, is considered a rare pathogenic 

variant that has been previously reported in association with LS but the full phenotypic 

spectrum has remained poorly understood.14,15 We present the clinical, radiological, and 

histopathological data of 24 subjects who harbor the m.13094T>C mutation. We have also 
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studied the neuropathological changes in two patients with LS/MELAS overlap syndrome, to 

fully elucidate the spectrum of m.13094T>C-related mitochondrial disease and to offer 

guidance on management and genetic counseling.  

 

MATERIALS AND METHODS 

Study design and patients 

This retrospective, international cohort study was done at the NHS Highly Specialised 

Service-funded Mitochondrial Diagnostic Centers in Newcastle upon Tyne and London, UK. 

These included patients referred from four other countries: China, South Africa, Greece and 

Japan. Eligible participants were genetically confirmed to harbor the m.13094T>C mutation 

(p.Val253Ala) in MT-ND5 over a 17 year period (January 2000 – October 2017); their 

maternal family members were traced and examined whenever possible.  

This study was approved and performed under the ethical guidelines issued by our institution 

for clinical studies, and complied with the declaration of Helsinki. 

Clinical Presentation and Phenotypic Evaluation 

Each patient was assessed by a specialist (pediatrician, adult neurologist and/or 

ophthalmologist) at each center, and their medical records were comprehensively reviewed. 

The clinical presentation of individual patients and their family pedigree are provided in 

Supplemental data and Supplemental Figure 1. Where possible, common clinical 

syndromes described in mitochondrial disease were assigned (and agreed by all authors).  

Histopathological and Biochemical Studies 

Standard histological (hematoxylin and eosin (H&E) and modified Gomori Trichome stains), 

histochemical (cytochrome c oxidase (COX), succinate dehydrogenase (SDH), and sequential 
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COX–SDH and biochemical assessments of muscle tissue were performed as described 

elsewhere (Supplemental Table 1). Fresh tissue was fixed in 2.5% glutaraldehyde buffered 

to pH 7.4 with phosphate buffer and post-fixed in OsO4 and embedded in Epon LX-112. 

Ultra-thin sections were examined in an electron microscope (JEOL⁃1500, Japan) for Patient 

5. 

Molecular Genetics 

Extraction of total DNA was performed as per standard procedure. The whole mitochondrial 

genome was sequenced, and pyrosequencing assay was used16 to screen for and quantify the 

m.13094T>C mutation (GenBank Accession number: NC_012920.1) for 13 patients (Patients 

1, 1.1, 1.2, 2, 2.1, 2.2, 2.4, 3, 3.1, 4, 6, 8 and 8.1). The assay could reliably detect a level of 

>3% of mutant mtDNA. Restriction fragment length polymorphism (RFLP) analysis was 

performed to quantify the m.13094T>C heteroplasmy level in Patients 5, 12 and 13, with the 

sensitivity of ~5%.14 The mutant heteroplasmy level was quantified using next-generation 

sequencing (NGS) for Patients 7, 7.1, 7.2, 9 and 10 (sensitivity >10%).  

 

Neuropathological Studies 

Neuropathological investigations were performed on postmortem brain tissues from two 

patients (patients 1.2 and 8). Cresyl fast violet (CFV), H&E and Luxol fast blue with H&E 

counterstain were used on formalin-fixed paraffin-embedded tissues to determine neuronal 

population density and degree of myelination. Immunohistochemistry to determine the 

expression levels of mitochondrial respiratory chain subunits, including complex I subunit 

NADH: ubiquinone oxidoreductase subunit B8 (NDUFB8) and complex II subunit succinate 

dehydrogenase subunit A (SDHA), were performed on 5 micron thick sections as previously 

described.17 
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Statistical Analysis 

Non-parametric, continuous data were presented as median (range and inter-quartile range 

(IQR)). Correlation of mtDNA heteroplasmy level of different tissues and age of disease 

onset was examined using Spearman rank correlation test. Statistical significance was 

determined at p < 0.05. Data were managed and analyzed with IBM SPSS for Windows 

version 22. 

 

RESULTS 

Patient Cohorts 

Clinical features of 24 individuals from 13 families are summarised in Table 1. The median 

age of disease onset was 5.5 years (n=20, range: 6 weeks to 34 years, IQR= 13years; the age 

of onset not known for two patients). Four individuals were clinically unaffected; they were 

ascertained pre-symptomatically due to diagnosis in other family members. Ten patients 

(42%) were deceased, and the median age of death was 10 years (range: 5.4 months to 37 

years, IQR= 17.9 years).  

Eleven patients presented with distinctive clinical syndromes previously described in 

mitochondrial disease. However, the remaining patients (n=9) manifested with an isolated 

neurological symptom or overlapping syndromes, of which central nervous system was most 

commonly affected (Table 1). Centrally mediated respiratory failure or apnoea was 

documented in nine patients (38%) with LS, including an adult patient who presented at the 

age of 22 years (Patient 10). Refractory focal onset seizures with or without evolution to 

bilateral convulsions occurred in eight patients (35%).  
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Radiological Imaging 

Cranial magnetic resonance imaging (MRI) was available for analysis in 17 patients (Table 

2, Figure 1 and Supplemental Figure 2). The most common T2/ FLuid Attenuation 

Inversion Recovery (FLAIR)-signal abnormalities were present in the midbrain (n=12) and 

thalamus (n=9: bilateral, symmetrical changes; n=3: unilateral) followed by pons (n=10) and 

medulla (n=9). Brainstem changes in two patients (Patients 6 and 8), initially was initially 

misdiagnosed as a low-grade glioma, although gadolinium-enhancement was absent. 

Subacute cortical and subcortical signal changes were identified in six patients that were 

consistent with stroke-like lesions. Two patients had multiple cortical lesions including 

lesions within the cerebellar hemispheres (Patients 1.2 and 5), suggestive of cross cerebellar 

diaschisis. Cervical cord lesions were also identified in six patients. 

Signal abnormalities within the basal ganglia, classically seen in LS, were only 

identified in two patients (Patients 11 and 13). 

Histopathological and Biochemical Analyses 

Histopathological and histochemical evaluation was normal in most patients except minor 

changes detected in the skeletal muscle of three patients: minor ragged red fibers (n=1), lipid 

droplets and abnormal mitochondrial ultrastructure (n=1) and occasional angular atrophic 

fibers (n=1). Mitochondrial respiratory chain activity was measured in skeletal muscle tissue 

from 10 patients. One patient demonstrated isolated complex I deficiency, one patient with 

combined complex I and III deficiencies, two patients with combined complex I and IV 

deficiencies and one patient had low complex I and II activity in postmortem tissue, which 

was caused by significant delay in tissue handling. The remaining six cases demonstrated 

normal respiratory chain activity (Supplemental Table 1).  
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Molecular Genetics 

Thirteen probands were identified to harbor the m.13094T>C mutation through whole 

mtDNA sequencing after screening negative for common mtDNA point mutations including 

m.3243A>G, m.8344A>G, MTATP6, and MTATP8 genes. The mutation was identified in 

nine individuals by direct sequencing of the mtDNA point mutation through pedigree and 

segregation analysis. Maternal inheritance of the m.13094T>C mutation was confirmed in six 

family pedigrees. The m.13094T>C mutation was not detected in the blood of Patient 1 

(measured at age 37 years) with a severe, adult-onset MELAS phenotype although was 

detected at 51% in urine. Patient 2.2 was presumed an obligate carrier even though the 

m.13094T>C mutation was not detectable in blood (measured at age 74 years). There was no 

tissue sample available for testing in Patient 2.3. The asymptomatic mother of patient 3 was 

demonstrated to harbor the m.13094T>C mutation at mtDNA heteroplasmy levels of 19%, 

27% and 45% in blood, muscle, and urine respectively (measured at age 24 years). The 

quantification of mutant mtDNA heteroplasmy level was not performed in two patients due to 

no access to tissue samples (Patient 2.3) and only Sanger sequencing was performed in 

Patient 11 (the mutant load in muscle appeared higher than blood; sensitivity >25%).    

There was a statistically significant negative correlation between blood mtDNA 

heteroplasmy level and age (Spearman rho= -0.883, p<0.001; Figure 2A). Among the 

patients with mutant mtDNA load quantified in more than one tissue (n=12), the mutant 

heteroplasmy levels in muscle (65% +/- 20%; n=10) and/or urine (40% +/- 27%; n=8) were 

consistently higher than blood (24% +/- 22%; n=16) (Figure 2B). The discrepancy between 

muscle and blood mtDNA heteroplasmy ranged from 3 to 75% in seven patients; the 

discrepancy between urine and blood mtDNA heteroplasmy levels ranged from 5 to 51% in 
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seven patients. Whole exome sequencing (methods described elsewhere18) was performed to 

investigate the cause of optic neuropathy in Patient 7. This excluded other known causative 

genes (including OPA1). 

The m.13094T>C mutation load of a number of post-mortem tissues was analyzed 

from Patients 1.2 and 13 exemplifying the varied tissue segregation that is characteristic of 

this mtDNA mutation (Table 3). The m.13094T>C mutation load was specifically 

determined in brain homogenate samples from patients 1.2 and 8 demonstrating lower mutant 

load within neuronal tissues (median= 61%, range: 47-69%) compared to other tissues 

despite both manifesting with extensive neurological sequelae (Table 3).  

Muscle (Spearman rho=0.192, p= 0·62) and urine (Spearman rho= -0.80, p= 0.20) 

mutant mtDNA heteroplasmy levels did not correlate with the age of disease onset. There 

was no significant difference in mean mutant heteroplasmy level in different syndromic 

categories (p=0.122).     

 

Neuropathological Findings 

The major neuropathological findings for patients 1.2 and 8 are summarised in Supplemental 

Table 2).  In patient 1.2, posterior cerebellar cortex demonstrated multiple areas of necrotic 

lesions ranging from atrophy of the molecular layer, Purkinje cell dropout and granule cell 

loss (Figure 3A), to total necrosis of the cerebellar cortex that also affected the underlying 

white matter (Figure 3B). Concerning topographical distribution, lesions were most severe in 

the brainstem nuclei (Figure 3C and D), the thalamic and subthalamic nuclei (Figure 3E 

and F) and primary visual cortex (Brodmann area 17) (Figure 3G). At a microscopic level, 

changes such as prominent capillary proliferation, microvacuolation and severe neuronal loss 

were frequently observed in fixed cerebral and cerebellar hemispheres, and right brainstem 
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compatible with LS.  Downregulation of complex I subunit (NDUFB8) was evident in the in 

the pons and cerebellar cortex of patient 1.2, and lesioned thalamus and occipital cortex of 

patient 8 (Supplemental Figure 3). 

DISCUSSION 

In this study, we have identified marked clinical heterogeneity with a continuous spectrum of 

overlapping symptoms associated with the m.13094T>C mutation. However within that 

clinical heterogeneity, at certain points in the course of disease, several distinct clinical 

syndromes associated with mutations in the MT-ND5 gene were clearly discernible: early 

onset LS (38%), late childhood/early adulthood-onset LS/MELAS overlap syndrome (13%) 

and LHON (4%) (not previously recognized in association with the m.13094T>C mutation). 

LS frequently manifested with a typical illness trajectory including hypotonia, cranial nerve 

palsies, cerebellar ataxia, and developmental regression; with relapses in clinical status often 

triggered by inter-current illness. Brainstem dysfunction (manifesting as centrally-mediated 

respiratory failure and lability in blood pressure), commonly occurred as a pre-terminal event. 

Patients with the LS/MELAS overlap syndrome typically presented with refractory focal 

seizures and stroke-like lesions (as classically seen in MELAS). Additional features of 

brainstem dysfunction, including acute-onset ptosis, a complex eye movement disorder and 

worsening ataxia (as classically seen in LS) were not infrequent. Neuropsychiatric symptoms 

such as excessive anxiety, low mood, and hypersomnolence, in addition to cognitive 

impairment were features accompanying stroke-like episodes. A progressive gait disorder 

with truncal ataxia was a prominent clinical feature in three adult patients (13%), and 

additional neurological features such as strabismus (Patient 2.4), axonal neuropathy and 

stroke-like episode (Patient 2) were identified. Interestingly, optic neuropathy was the first 

clinical manifestation in four patients (Patients 1, 2.4, 7 and 7.1); however, additional severe 

central nervous system (CNS) involvement evolved in two patients (Patients 1 and 2.4). 
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These findings highlight that as the disease progressed, discrete syndromes were no longer 

discernible. Indeed, the heterogeneity of the neurological manifestations in the m.13094T>C 

mutation appears similar to that observed in other mtDNA encoded complex I gene 

mutations.  

The most common T2/FLAIR signal abnormalities on cranial MRI were localized to 

the brainstem (71%), thalamus (71%), cerebral cortex (35%) and cervical cord (31%) and 

medial thalamic changes (with restricted diffusion) were identified in seven out of eight 

patients presenting with refractory epilepsy. Such findings suggest prolonged seizure activity 

(focal status epilepticus) as the underlying pathophysiological mechanism of the radiological 

(and clinical) changes observed.19 MRI abnormalities in cortical and/or subcortical areas, 

cerebellar hemispheres (crossed cerebellar diaschisis, which refers to cerebellar 

hypometabolism is ascribed to functional disconnection of the contralateral hemisphere from 

the cerebral cortex)20 corpus callosum, thalami and basal ganglia have been increasingly 

reported in cases of isolated seizures, seizure clusters, and status epilepticus.19 Moreover, the 

development of cognitive dysfunction in these patients may be explained by the observed 

involvement of the cerebello-thalamo-cortical pathway (white matter tracts connecting the 

cerebellar cortex to the contralateral various cerebral cortices, passing through the superior 

cerebellar peduncle, red nuclear and the thalamus).21 T2/FLAIR signal abnormality involving 

the brainstem extending into the upper cervical cord was identified in four patients. 

Interestingly, Patient 5 had quite extensive T2/FLAIR signal changes spanning from C2 to 

C6, mimicking a demyelinating disorder but CSF restricted oligoclonal bands and anti-

aquaporin 4 antibodies both tested negative. Whilst MR imaging findings are consistent with 

previously documented changes in other complex I deficient patients, it is striking that only 

two patients with the m.13094T>C mutation had evidence of striatal lesions14 compared to 

90% of complex I cases reported by Lebre and colleagues.22 These findings are corroborated 
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by relative preservation of the striatum and the presence of devastating destruction of the 

thalami and brainstem with marked capillary proliferation on autopsy examination. Whilst 

symmetrical signal abnormalities in basal ganglia are the most common radiological finding 

in patients affected by LS, lesions may merely be confined to the brainstem23,24, as was 

observed in all our cases. This again serves as a reminder that the diagnosis of LS (including 

due to MT-ND5 mutations) should be considered even in the absence of symmetrical basal 

ganglia lesions. 

 The radiological appearances of patients with LS harboring the m.13094T>C 

mutation bear similarities to mitochondrial diseases caused by autosomal recessive tRNA 

synthetase mutations, such as leukoencephalopathy with thalamus and brainstem involvement 

and high lactate (LTBL) caused by EARS2 mutations and leukoencephalopathy with 

brainstem and spinal cord involvement and lactate elevation (LBSL) caused by DARS2 

mutations.25 In two of our cases, the radiological diagnosis was thought to be a space- 

occupying lesion at presentation. However, the ‘relapsing-remitting’ course of neurological 

deficits associated with m.13094T>C-related mitochondrial disease, coupled with the 

evolution of signal abnormalities on interval brain imaging and demonstration of abnormal 

signals in different regions of structurally normal brain on T1 images (but abnormal cerebral 

metabolism on MR spectroscopy), should aid clinicians to discern between the two 

conditions.  

The clinical features of these patients may also overlap at various stages of the disease 

with other more common forms of mitochondrial disease, such as LHON, OPA1, and POLG-

related disease, and may mimic other forms of hereditary ataxia. In addition, m.13094T>C-

related mitochondrial disease may mimic inflammatory CNS disorders such as acute 

disseminated encephalomyelitis (ADEM), multiple sclerosis (MS) and neuromyelitis optica 

(Patients 5, 6 and 7). Indeed, the link of an MS-like illness and common LHON mutations is 
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well recognized in Harding disease, where imaging appearances are frequently 

indistinguishable from MS.26 More recently, the coincidental occurrence of an MS-like 

disorder and OPA1 mutations in three unrelated patients has also been reported.27 

We observed that the histochemical changes such as ragged red  and COX deficient 

fibres, and biochemical analysis of mitochondrial respiratory chain activity in muscle tissue, 

was normal in 60% of the cases presented here, similar to other point mutations in MT-

ND5.8,10,11 In addition, the quadruple immunohistochemistry technique could not detect the 

reduction of complex I subunit in muscle tissue in one of our patients,28 in accordance with 

the findings of preferential CNS manifestations in association with this mutation. 

Interestingly, the threshold level of mutant mitochondrial load necessary to cause symptoms 

in these cases appears to be much lower than in mitochondrial tRNA gene-related disorders 

associated with severe clinical phenotypes. However, our findings corroborate previous 

findings in transmitochondrial cybrid models of the m.13094T>C mutation.14 Furthermore, 

severe clinical phenotypes associated with a relatively low mutant load have also been 

observed in other common point mutations in the MT-ND5 gene, including the m.13513G>A 

mutation, where a mutant load of less than 50% in muscle has been reported in association 

with LS8 and MELAS.9 Preliminary pedigree analysis did not initially prove informative; 

however, extensive segregation testing confirmed this to be a maternally inherited genetic 

disorder. In addition, our findings highlight the importance of recognizing that mtDNA 

disease can only be definitively excluded by performing whole mitochondrial genome 

sequencing in post-mitotic tissues, such as muscle. In the case of predictive testing, we would 

advocate screening for the m.13094T>C mutation in muscle and/or urine to minimize the 

chance of false-negative results. The variable tissue segregation was further evident and 

exemplified by the variable mutation load in multiple tissues at autopsy (Patients 1.2 and 13). 

Intriguingly, the variable phenotypic threshold effect associated with the m.13094T>C 
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mutation would support the assertion that MT-ND5 synthesis is a rate limiting step for 

complex I activity29, given the relatively low mutant load resulting in severe phenotypic 

expression.7 Although we do not have serial measurements of the m.13094T>C mutant load 

in blood for individual patients, our data suggest that mutant mtDNA heteroplasmy level may 

decline with age, and we would hypothesize that there is a negative selection of this mutant 

mtDNA in bone marrow over time, as demonstrated in other commoner mtDNA mutations 

such as m.3243A>G and m.13513G>A. However, we concede there is a possibility of 

ascertainment bias in the older individuals with lower mutant heteroplasmy levels.  

Patients 1.2 and 8 had MELAS/LS overlapping syndrome whilst Patient 13 had LS 

only. Patient 1.2 predominantly manifested with a childhood onset CNS disorder, with no 

evidence of myopathy (on clinical examination), cardiomyopathy, renal impairment or 

hepatic disease. However, in Patient 1.2, the mutant heteroplasmy levels were much higher in 

skeletal muscle (88%), heart (75%), kidney (83%) and liver (83%) compared to CNS tissues 

(~67%. Only patient 8 manifested with stroke-like episodes and subsequently a brainstem 

crisis in her 30s, yet the mutant mtDNA heteroplasmy levels in CNS tissues (~52%) were 

lower than in Patient 1.2. The tissue specificity of phenotypic expression in this mutation is 

intriguing, and the possible underlying reasons require further elucidation yet support the 

observation that mutant heteroplasmy level alone does not fully explain clinical 

manifestation.30   

In summary, the m.13094T>C mutation exhibits highly variable neurological 

manifestations and is frequently associated with high disease burden and early mortality. 

Cortico-thalamic-cerebellar involvement appears to be a frequent finding in these patients 

compared to other rare mtDNA mutations, and may serve as a radiological biomarker of 

m.13094T>C – related mitochondrial disease. Moreover, our findings would suggest 

m.13094T>C–related mitochondrial disease is perhaps not as rare as originally thought. We 
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would suggest that consideration should be given to screening the whole mtDNA genome in 

clinically relevant tissues, prior to proceeding to whole exome sequencing, in those who have 

tested negative for the commonly recognized disease causing genes and mtDNA point 

mutations. Once again, the observed clinical heterogeneity, often apparent lack of maternal 

inheritance, normal histological and biochemical muscle biopsy findings, and variability in 

tissue segregation in these cases, highlights the diagnostic challenges of mitochondrial 

disease caused by rare mtDNA variants.  We suggest, these findings support a better 

understanding of m.13094T>C –related syndromes and their inherent clinical trajectory and 

as such will serve to aid a more timely diagnosis, inform accurate genetic counseling, and 

facilitate tailored therapeutic interventions. 
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Research in context 

The m.13094T>C mutation in MT-ND5 was considered a rare cause of mitochondrial disease 

that had been previously reported in association with Leigh Syndrome only. This study 

revealed that the m.13094T>C mutation is associated with severe, variable neurological 

features, with a more extensive phenotypic spectrum of disease, frequently manifesting at 

lower mutant heteroplasmy levels compared to many other primary mitochondrial DNA 

mutations. The work described here proposes that an unexplained central nervous system 

disorder should raise clinical suspicion of a mitochondrial disorder, and full mtDNA genome 

sequencing should be considered even with normal muscle biopsy findings. 
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Figure Legend 

Figure 1. Cranial and spine MRI. Axial T2-weighted view of Patient 1·2 showed 

hyperintensities involving the cortical and subcortical areas of left frontal lobe when she 

presented with the first stroke-like episode (A); the cranial MRI performed during the 

subsequent stroke-like episode showed hyperintensities involving the left parietal lobe and 

right cerebellar cortex, suggestive of cross cerebellar diaschisis (B) and extensive signal 

abnormalities in the brainstem (C, coronal view). Axial T2-weighted view of Patient 2 

showed an isolated, left thalamic lesion (D). Axial T2 view (E) showed a discrete signal 

abnormality in the right cerebellum, and asymmetrical hyperintensities in the medulla in 

Patient 4.  The sagittal T2 view (F) showed an anterior, long hyperintensity in the cervical 

cord spanning C2-6 levels in Patient 5, corroborated with the signal abnormalities shown in 

the axial view (G).   

Figure 2. Heteroplasmy levels of the m.13094T>C mutation. (A) A negative correlation 

between age and blood mutant heteroplasmy level. (B) Distribution of mutant heteroplasmy 

levels for individual patient. The numbering of X-axis corresponds to the patient number of 

Table 1.  

Figure 3. Neuropathological features of Patient 1.2 and 8. Patient 1.2: The posterior 

cerebellar cortex is affected by multiple necrotic lesions (demarcated by *) demonstrating 

atrophy of the molecular layer, Purkinje cell dropout and granule cell loss (A; LFB H&E) and 

total necrosis of the cortex and underlying white matter (B; LFB H&E). The basis pontis 

demonstrates a devastating lesion with total neuronal cell loss (C; red dashed line; LFB 

H&E). Scale bar = 100 microns. 

Patient 8: The lower midbrain shows devastated inferior colliculus with prominent capillary 

proliferation (arrows), microvacuolation and severe neuronal cell loss (D; H&E). The 

thalamus (E; LFB H&E) and subthalamic nucleus (F; H&E) are devastated featuring 
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prominent capillary proliferation (arrows), microvacuolation, severe neuronal cell loss and 

morphologically normal neurons scattered throughout (arrowhead). The occipital lobes reveal 

microvacuolation and laminar necrosis of the cortical layers within Broadmann area 17 (G; 

LFB H&E) with the underlying white matter demonstrating myelin pallor relative to 

otherwise preserved myelin. The cortex features microvacuolation, severe neuronal cell loss 

and capillary proliferation. Surviving neurons within the inferior colliculus lack complex I 

subunit expression (H; NDUFB8 IHC, arrows) while mitochondrial mass is high (I; SDHA 

IHC, arrows).  
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Table Legend  

Table 1. Syndromic classification and clinical features of individuals with the 

m.13094T>C mutation (n=24).  *=deceased, AO= age of onset, AL= age of last follow up 

or death, B/L INO= bilateral inter-nuclear ophthalmoplegia, Dev delay= developmental delay 

(including motor and speech), F= female, HCM= hypertrophic cardiomyopathy, HTN= 

hypertension, LA= lactic acidosis, LS= Leigh syndrome, LVH= left ventricular hypertrophy, 

M= male, MELAS= mitochondrial encephalomyopathy, lactic acidosis and stroke-like 

episodes, mths= months, n.d.= not done, NIV= non invasive ventilation, n.k.= not known, 

ON= optic neuropathy, PEG= percutaneous endoscopic gastrostomy, PFO= patent foramen 

ovale, PN= peripheral neuropathy, Psy= neuropsychiatric symptoms such as severe 

depression, anxiety or personality change, RF= respiratory failure, SCA= spinocerebellar 

ataxia, SLE= stroke-like episodes, yrs= years.  

Table 2. Cranial MRI changes associated with the m.13094T>C mutation (n=17). All 

cortical lesions (including cerebellar cortex) exhibited restricted diffusion. B/L= bilateral, 

CR= corona radiata, F= frontal lobe, H= hippocampus, L= left, n.k.= not known, O= occipital 

lobe, P= parietal lobe, R= right, T= temporal lobe, U/L= unilateral, Δ= Patient 2·2 had a 

history of clinically and radiologically defined lacunar stroke (internal capsule and corona 

radiate), *= the extent of cervical lesion had not been clearly defined  

Table 3. The m.13094T>C heteroplasmy levels in different postmortem tissues. 
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Fig. 2 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

Fig. 3  
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Table Legend  

Table 1. Syndromic classification and clinical features of individuals with the 

m.13094T>C mutation (n=24).  *=deceased, AO= age of onset, AL= age of last follow up 

or death, Ap= apnoea, At= ataxia, B= blood, B/L INO= bilateral inter-nuclear 

ophthalmoplegia, Brady= bradycardia, Cog= cognitive impairment, Dev delay= 

developmental delay (including motor and speech), F= female, Fib= fibrolast, HCM= 

hypertrophic cardiomyopathy, HTN= hypertension, LA= lactic acidosis, LS= Leigh 

syndrome, LVH= left ventricular hypertrophy, M= male, MELAS= mitochondrial 

encephalomyopathy, lactic acidosis and stroke-like episodes, mths= months, Mu= muscle, 

n.d.= not done, NIV= non-invasive ventilation, n.k.= not known, ON= optic neuropathy, 

PEG= percutaneous endoscopic gastrostomy, PFO= patent foramen ovale, PN= peripheral 

neuropathy, Psy= neuropsychiatric symptoms such as severe depression, anxiety or 

personality change, Pt= ptosis, RF= respiratory failure, SCA= spinocerebellar ataxia, SLE= 

stroke-like episodes, Str= strabismus, Sz= seizures, trachy= tracheostomy, U= urine, yrs= 

years.  
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n.d
. 

n.
d. 

4
1 
(F
ib

) 

13 
(M) 

Prob
and 

1/14
* LS + - + + - + + + 

n.
k. - + - 

Trac
hy, 
PEG 

49 n.
d. 

5
2 

 

 

 

Total 

8/
2
3 

6/
23 

7/
2
0 

11
/2
3 

6/
2
3 

10
/2
3 

9/
2
4 

6/
2
3 

12
/2
2 

3/
2
2 

9/2
3 

4/2
2 
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Table 2. Cranial MRI changes associated with the m.13094T>C mutation (n=17). All cortical 

lesions (including cerebellar cortex) exhibited restricted diffusion. B/L= bilateral, CR= corona radiata, 

F= frontal lobe, H= hippocampus, L= left, n.k.= not known, O= occipital lobe, P= parietal lobe, R= 

right, T= temporal lobe, U/L= unilateral, Δ= Patient 2·2 had a history of clinically and radiologically 

defined lacunar stroke (internal capsule and corona radiate), *= the extent of cervical lesion had not 
been clearly defined  

Pati
ent Age 

Brain imaging anomalies Fluctuat
ing/ 
relapsin

g-
remittin
g 
imaging 

change
s 

no at scan 
Cerebral 
cortex 

Basa
l  

Thala
mus Cerebellum Brainstem 

Cervic
al 

 
(Years) 

Stroke-like 
lesion 

gang

lia 

 

Dentate 
nuclei 

Cort
ex 

Atrop
hy 

Midbr
ain 

Po
ns 

Med
ulla cord 

1 36 P, T (R) 

- U/L 

(R) - - + - - - - 

Yes 

1.1 8 mths - 
- 

B/L - - - + + + C1-2 
n.k. 

1.2 13; 14 P, O, H (L) 
- 

B/L + + + + + + C1 
Yes 

2 26; 30 O (R) 
- 

U/L (L) - - - - - - - 
Yes 

2.2 66 Δ 

- 

- - - - - - - - 

No 

2.4 31 - 
- 

B/L + + + + + + - 
n.k. 

3 3 mths - 
- 

B/L - - - + + + +* 
n.k. 

4 6 - 
- 

- + - - + - + - 
n.k. 

5 13; 14 

F (B/L), P 

(B/L) 

- 

B/L - + + + + - C2-6 

Yes 

6 2.25 - 
- 

B/L - - - + + + - 
No 

7 7 - 
- 

- - - - - - - - 
n.k. 

8 33 O (R) 
- 

B/L - - - + - - - 
Yes 

9 34 
O (B/L), 
P,T,F(L)  

 
- - - - - - - - n.k. 

 
Yes 

10 24 - 
- 

- - - - + + + - 
n.k. 

11 22, 23 - 

 

+ 
U/L - - + + + + 

+ 

(upper
)* 

 

Yes 

12 
1 yr 4 
mths - 

- 
B/L - - - + + + n.k. 

Yes 

13 10 - 
+  

B/L - - - + + - - 
No 

 Total 6/17 

 

2/17 12/17 3/17 3/17 5/17 12/17 

10/

17 9/17 5/15 

 

8/11 

 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

Table 3. The m.13094T>C heteroplasmy levels in different post-mortem tissues. 

 Patient 1.2 Patient 8 Patient 13 

Syndrome MELAS/LS MELAS/LS LS 

Age of death 14 35 14 

Post-mortem tissues    

Heart 75% - 64% 

Adrenal Gland 96% - - 

Liver 83% - 23% 

Kidney 83% - 56% 

Bladder 90% -  

Skeletal muscle 88% - 52% 

Intestine 69% - 24% 

Lung - - 28% 

Frontal lobe 69% 47% - 

Hippocampus 67% 52% - 

Cerebellum 64% 58% - 
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Highlights 

 The m.13094T>C mutation in MT-ND5 is associated with severe, variable 

neurological manifestations. 

 Whole mtDNA genome sequencing should be considered in patients with 

undiagnosed complex neurological disorders.  
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