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Abstract 

Hepatic stellate cells (HSCs), also known as perisinusoidal cells, are pericytes found 

in the perisinusoidal space of the liver. HSCs are the major cell type involved in liver 

fibrosis, which is the formation of scar tissue in response to liver damage. When the 

liver is damaged, stellate cells can shift into an activated state, characterized by 

proliferation, contractility, and chemotaxis. The activated HSCs secrete collagen scar 

tissue, which can lead to cirrhosis. Recent studies have also shown that in vivo 

activation of HSCs by fibrogenic agents can eventually lead to senescence of these 

cells, which may limit fibrosis but may also favor the insurgence of liver cancer. 

Retinoic acid is a metabolite of vitamin A (retinol) that mediates the functions of vitamin 

A required for growth and development. HSCs store vitamin A, which decreases 

progressively in liver injury. Retinoic acid and its receptors (RAR and RXR) are known 

to act synergistically with peroxisome proliferator-activated receptor gamma (PPAR-

gamma) signaling in various cell types, through the activity of transcriptional 

heterodimers. Here we review the recent advancements in the understanding of how 

retinoic acid signaling modulates the fibrogenic potential of HSCs. 
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Introduction  

Hepatic stellate cells (HSCs), also known as perisinusoidal cells, Ito cells or lipocytes, 

are non-parenchymal cells located in the space between the endothelial cells of 

sinusoids and the hepatocytes, representing approximately the 5-8% of resident liver 

cells. As suggested by their name, HSCs show a star-like shape with the cell body 

lying between the parenchymal cells of the liver and a number of cytoplasmic 

processes embracing sinusoids and making contact with hepatocytes and other HSCs’ 

processes [1, 2]. In the healthy liver, HSCs are found in a quiescent state and exhibit 

lipid droplets storing large amounts of retinoids, mainly in the form of retinyl esters [3, 

4]. Apart from the regulation of retinol homeostasis, the functions of these cells in the 

healthy adult liver are yet not fully understood. In recent years, new roles for HSCs in 

liver development during embryogenesis [1, 5] and in immunity, as antigen-presenting 

cells [3, 6, 7] have been proposed. Well known  instead is the pivotal role HSCs play 

in  response to liver injury, upon which they transdifferentiate into activated cells. 

Activated HSCs acquire a myofibroblast-like morphology, lose their retinol stores, 

become proliferative and contractile, migrate to the site of injury and begin to produce 

extracellular matrix to protect against further damage, and cytokines and growth 

factors which favor the regeneration and replacement of damaged hepatocytes [5]. 

Chronic activation of HSCs following persistent liver damage (either due to viral 

hepatitis viruses, alcohol, toxins, or autoimmune disorders) results in promotion of 

fibrosis, because of the deposition of excessive amounts of scar tissue, which alters 

the structure and functionality of the liver [5]. Liver fibrosis often represents the starting 

setting for the development of cirrhosis, which finally may evolve into hepatocellular 

carcinoma (HCC). 
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Hepatic stellate cells and senescence 

The activation of the HSCs occurring upon liver injury and leading to fibrosis is 

somehow a self-limiting process. Indeed, besides proliferating, HSCs performing 

extracellular matrix deposition, also apoptotic and senescent HSCs can be found in 

fibrotic liver, and this would account for fibrosis reversal [8-10].  

Cellular senescence (also called replicative senescence) is a phenomenon in which 

mitotic cells permanently stop dividing yet remaining metabolically active. Several 

events have been described as promoters of senescence, among which are telomere 

shortening after a number of replicative cycles, DNA damage, alteration of chromatin 

structure, oncogene activation or tumor-suppressor gene loss, oxidative stress and 

other kinds of stress [11, 12]. Typical features that mark senescent cells are 

irreversible cell cycle arrest sustained by p53 and p16/Rb pathways, morphological 

changes (above all increased cell size and flattened morphology), expression of 

senescence-associated β-galactosidase(SA-βgal), expression of a senescence-

associated secretory phenotype  (SASP) consisting in the production of cytokines, 

chemokines, growth factors, proteases and other bioactive molecules acting in a 

autocrine and paracrine fashion [11, 13]. 

Interleukin-22 (IL-22) has been recognized as a stimulus triggering senescence in 

HSCs [14].IL-22 is a cytokine produced by T lymphocytes and Natural Killer (NK) cells 

and reported to target epithelial cells of the skin, kidney, digestive and respiratory 

systems and hepatocytes [15]. It acts by binding a heterodimeric receptor composed 

by IL-10R2 and IL-22R1, then activating the JAK/STAT and MAP kinases pathways 

and resulting in mediation of immune responses, tissue protection from injury and 

regeneration [15]. 



5 
 

Interestingly, cultured murine and human HSCs were recently found to express the IL-

10R2 and IL-22R1 receptors, and when treated with IL-22, underwent senescence 

[14]. Consistently, in transgenic mice overexpressing IL-22 the degree of liver fibrosis 

was reduced and the resolution of fibrosis was faster than in wild- type mice. This pro-

senescence phenotype triggered by IL-22 occurs via the activation of the STAT3 and 

the SOCS3 pathways, as already shown in hepatocytes [16], by increasing the 

phosphorylation levels of these effectors either in primary mouse and human HSCs 

and in the human LX2 HSC cell line [14]. Moreover, HSCs lacking STAT3 or SOCS3 

fail to induce p53 and p21, which are likely responsible for the cell cycle block occurring 

during senescence [14]. 

Another inducer of senescence in HSCs is represented by CCN1 (also known as 

CYR61 or cystein-rich 61) [17], a non-structural protein of the extracellular matrix 

whose expression is induced upon injury [17, 18]. Mice lacking hepatic CCN1 treated 

with the hepatotoxic compound carbon tetrachloride (CCl4), exhibit a more pronounced 

liver fibrosis and a decreased number of senescent cells, as judged on the basis of 

the expression of the SA-β-Gal marker, when compared to control mice [17]. 

Moreover, purified CCN1 administered to isolated activated HSCs pushes them into 

senescence by binding to α1β1 integrin, inducing the Rac1/Nox1 pathway, and 

resulting in accumulation of reactive oxygen species (ROS) [17], which are known 

mediators of senescence [19].  

On the other hand, the commitment of HSCs towards senescence is counteracted by 

adenosine, a molecule rapidly produced in response to cell injury [8]. Binding of 

adenosine to its A2A receptor on HSCs has a pro-fibrotic effect since it stimulates 

collagen production [20]. Ahsan et al. demonstrated that by binding to the A2A receptor 

on both LX2 cell line and primary rat HSCs, adenosine activates the 
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PKA/Rac1/p38MAPK pathway and this results in suppression of p53 and Rb, two 

proteins required for senescence initiation [8].  

Based on the mechanisms described above, it is clear that once activated the fate of 

HSCs (proliferation, apoptosis or senescence) depends on an ill-known balance 

between pro- and anti-fibrotic endogenous molecules acting locally. 

This feature is taking a centre stage since the secretory pattern of senescent cells can 

create an inflammatory environment favoring HCC. Although long considered a 

mechanism to prevent proliferation of mutated cells, it is now clear that senescence 

may also play the opposite role, triggering tumor development and progression [13, 

21, 22]. Indeed, among the factors secreted by senescent cells there are growth 

factors which can induce cell proliferation, chemokines and metalloproteases which 

can promote cell migration and invasion [21]. 

A strong link between HSCs senescence and HCC development has been described 

in mouse models of obesity [22]. Obesity is a well-known risk factor for cancer, 

including  HCC, but the underlying mechanisms are poorly understood. Yoshimoto et 

al. showed that changes in the intestinal microbiota play a key role in HCC 

development in both genetically obese and high-fat diet fed mice. In these models, an 

increase in Gram-positive gut bacteria, especially those belonging to the Clostridium 

clusters XI and XIVa, resulted in increased production of the metabolite deoxycholic 

acid (DCA). On reaching  the liver through the enterohepatic circulation, DCA induces 

SASP in HSCs, which in turn promotes HCC development [22-24]. 

 

 

 



7 
 

Hepatic stellate cells activation and retinoic acid 

A hallmark of HSCs in their quiescent state in healthy liver is the storage of large 

amounts of vitamin A (or retinol) in the form of lipid droplets of retinyl esters, mostly 

retinyl palmitate [3, 4]. Vitamin A and its metabolites, collectively known as retinoids, 

are essential for normal cell growth and differentiation, for vision, reproduction and for 

the proper functioning of the immune system [3, 4, 25].The source of retinoids is 

represented by animal and plant foods, the latter mainly containing carotenoids to be 

converted into retinoids. Once absorbed by the intestine, retinoids bound to 

chylomicrons enter the circulation and are targeted to liver and other organs and 

tissues, where retinol is converted into retinaldehyde and this, in turn, is oxidized to 

retinoic acid (RA) [26]. RA is the main biologically active form carrying out the majority 

of the aforementioned functions [25, 26], especially in its all-trans and 9-cis isomeric 

forms [3]. Canonically, RA acts by binding to nuclear retinoic acid receptor -α, -β,  or -

γ (RARs) working as heterodimer with retinoid X receptor -α, -β,  or -γ (RXRs) and 

resulting in regulating the expression of hundreds of target genes containing a retinoic 

acid responsive element (RARE) [25, 26]. In addition to this signaling pathway, 

however, RA is known to also bind another kind of nuclear receptor, namely 

peroxisome proliferator-activated receptor beta (PPARβ) and even to exert its effects 

in a non-transcriptional way, by activating kinase cascades rather than gene 

expression [25, 26]. 

The liver is the main organ involved in retinoid storage and metabolism. In particular, 

hepatocytes take up retinoids from the bloodstream, hydrolyze retinyl esters, 

conjugate the hydrophobic retinol with a retinol binding protein (RBP) and transfer the 

complex retinol –RBP to HSCs, in which it is again esterified and stored in lipid 

droplets. HSCs account for the storage of up to 80% of the total body retinol content 
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[3], and are responsible for its release into the bloodstream when the dietary intake 

does not meet the body requirement [4, 27]. Beside storing retinol, HSCs also 

metabolize it and respond to RA since they have been reported to express enzymes 

for retinol to retinaldehyde and retinaldehyde to RA conversion and both RARs and 

RXRs for regulating target genes expression [4]. 

Following liver injury, HSCs undergo a process of activation during which they become 

myofibroblast-shaped, proliferative and fibrogenic. The activation of HSCs is 

accompanied by a marked depletion of retinoid stocks [4, 27], even though the 

meaning of this event is still not fully understood. Whether retinol loss is a cause or a 

secondary effect of HSCs activation or whether administration of retinol/RA could have 

a therapeutic effect in liver disease is not clear [27, 28]. A number of reports would 

suggest a potential use of retinol/RA as anti-fibrotic drug. Studies on cultured cells 

showed retinoids to inhibit HSCs proliferation and activation [29-32]. In vivo studies 

demonstrated that the administration of retinol or its derivatives decreases liver fibrosis 

in different experimental models [33-37]. Beta-carotene, a precursor of retinol, was 

shown to cause a milder pathological phenotype in a rat model of CCl4– induced 

hepatic fibrosis when compared to untreated controls [36]. Consistently, retinol 

administration prevented liver fibrosis induced by CCl4 by suppressing HSCs activation 

[34, 37], and retinyl palmitate treatment in rats injured with dimethylnitrosamine or with 

pig serum decreased the number of activated HSCs thereby preventing collagen 

deposition and fibrosis in liver [33]. The all-trans RA isomer was found to alleviate 

ethanol-induced liver damage [35]. On the other hand, some conflicting papers exist 

reporting a hepato-toxic and pro-fibrotic effect of retinoids [38-40].  

Another controversy concerns the responsiveness of HSCs to retinoids in their 

activated state [41]. As already stated, quiescent HSCs express the nuclear receptors 
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RARs and RXRs through which they modulate gene expression upon RA stimulus [4]. 

The expression of these receptors, on the contrary, was found to be down-regulated 

at the mRNA level and undetectable at the protein level in activated HSCs and not to 

increase upon exogenous RA administration [42, 43], thus suggesting HSCs 

unresponsiveness to RA during activation. Opposing evidence is provided by Mezaki 

et al., who showed the protein expression of the receptors RAR-α and RAR-β to be 

increased in activated rat HSCs, despite lower mRNA levels. Moreover, HSCs were 

found to become responsive to all-trans RA only during activation due to post-

transcriptional up-regulation of RAR-α [41].  

Other lines of evidence support the importance of HSCs and retinol metabolism in liver 

health. RA plays a role in the negative modulation of liver fibrosis through the activation 

of the immune system cells, and namely NK cells. Early activated HSCs express high 

levels of retinoic acid early inducible gene 1 (RAE-1) which binds the NKG2D receptor 

on NK cells resulting in their activation [16]. Activated NK cells, in turn, become 

cytotoxic towards activated HSCs and HSC killing ameliorates fibrosis [4, 16, 44]. 

Finally, the patatin-like phospholipase domain- containing 3 (PNPLA3) has been 

identified as a lipase catalyzing the hydrolysis of retinyl esters in HSCs [45], that would 

account for the retinol stores depletion occurring during cell activation. Interestingly, 

the I148M polimorphism in PNPLA3 gene in HSCs, causing loss of retinyl esterase 

activity, is associated with chronic liver disease and hepatocellular carcinoma [45, 46]. 

 

Retinoic acid and senescence 

As stated above, HSC senescence could represent a mechanism of fibrosis reversal 

[8-10].  
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Retinoids have their clinical application in the therapy of some kinds of hematological 

and solid cancers and in the prevention of pre-neoplastic to neoplastic disease 

progression [47]. The rationale for this use relies on at least three mechanisms of 

action: promotion of differentiation of abnormal cells back to normal, induction of 

apoptosis, block of cell cycle at the G1 stage [48]. As for the cell cycle arrest, all trans 

– RA was found to repress positive G1 regulators and to up-regulate the expression of 

cycle inhibitors, such as p16, p21 and p27 [48]. Since p16 and p21 are involved in the 

process of senescence, Park et al. [48] investigated on whether all trans – RA could 

promote senescence as well. They found it to cause irreversible cell cycle arrest at G1 

phase in the human hepatic cell lines HepG2 and Hep3B, in the human embryonic 

kidney cell line HEK293 and in the human breast cancer cell line MCF-7.This arrest 

was in every case dependent on the up-regulation of p16 and/or p21 [48]. Similarly, 

retinoids were found to induce senescence in T-cell leukemia cells [49]. 

An interesting evidence linking RA with senescence in stellate cells, was obtained by 

Froeling et al. in pancreatic stellate cells (PSCs) [50], a kind of cells located in the 

periacinar, perivascular and periductal regions of the exocrine pancreas, and sharing 

many morphological and functional features with HSCs [51]. As their liver counterpart, 

indeed, PSCs in their quiescent state store retinol-rich lipid droplets, which are 

depleted upon cell activation [52]. Once activated, PSCs acquire a myofibroblast-like 

shape, become motile and proliferative and produce huge amounts of extracellular 

matrix components driving the fibrogenic process [52]. Interestingly, all trans- RA 

administration was shown to restore a quiescent state in PSCs, both in vitro and in 

vivo, thus slowing pancreatic cancer progression [50]. 

Although until now no reports are available about a putative ability of retinoids to 

induce senescence in HSCs,  one might speculate that retinoid treatment could 
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potentially activate the senescence program in these cells too, and this would 

contribute to reverse HSCs activation and thus to reverse liver fibrosis. 

 

 

Retinoic acid and PPAR-gamma signaling 

As discussed above, the canonical signaling of RA is through its receptors RARs and 

RXRs, the latter being prone to form heterodimers with other nuclear receptors, among 

which PPARs [53].  

PPARs are a family of nuclear ligand– activated transcription factors regulating 

metabolism, above all the lipid one, in inflammation, cell growth and differentiation [54-

56]. This family includes three members, namely PPARα, PPARβ/δ and PPARγ, 

differing from each other for tissue distribution, ligand selectivity and biochemical 

properties [54]. The PPARs work as heterodimers with RXRs and they are activated 

upon binding of either natural or synthetic lipidic compounds, which induce structural 

changes making the PPAR-RXR complex able to bind to specific responsive 

sequences on DNA and to allow target gene expression [55, 56]. PPARγ is the most 

studied among PPARs. It exists in two splicing-generated isoforms, PPARγ1 and 

PPARγ2, the former being ubiquitously expressed while the latter nearly restricted to 

adipose tissue [54]. PPARγ is mainly known for its central role in driving adipogenesis 

and lipid metabolism, since it promotes the expression of genes involved in lipid uptake 

and storage [55]. Moreover, PPARγ regulate adipose secretions such as adiponectin, 

leptin, resistin, TNF-α and it takes part in glucose homeostasis and response to insulin 

[54], as it upregulates the glucose transporter 4 (GLUT4) [57]. The latter aspect has a 

considerable importance in the clinical field, where a class of drugs known as 



12 
 

thiazolidinediones (TZD), used as insulin sensitizers in the treatment of type 2 

diabetes, have revealed to be PPARγ activators [58-60]. 

Unlike PPARα and PPARβ/δ, PPARγ is poorly expressed in the liver [61], nevertheless 

it is essential for lipid metabolism in this organ. Studies performed in liver-specific 

knock-out mouse models demonstrated that liver ablation of PPARγ impairs 

triglyceride clearance, increases body fat mass [62], decreases the expression of  

genes involved in lipogenesis, lipid transport and β-oxidation and protects from the 

development of hepatic steatosis [62, 63]. Moreover, PPARγ has a protective role 

against liver fibrosis, since in vivo fibrogenesis upon injury turned out to be decreased 

in PPARγ- depleted and enhanced in PPARγ- overexpressing rat livers [64, 65]. This 

modulation of liver fibrosis by PPARγ is likely due to its effect on HSCs, since PPARγ 

agonists or ectopic expression of PPARγ in activated HSCs were shown to inhibit 

proliferation, induce apoptosis and cell cycle arrest, and promote reversal from an 

activated to a quiescent state [66-69]. 

Whether PPARγ effects on HSCs are somehow related to  retinol metabolism in these 

cells is still uncertain, although they share the same trend: as retinol, also PPARγ is 

abundant in quiescent HSCs and dramatically decreases upon activation [69, 70]. 

Furthermore, several analogies subsist between HSCs and adipocytes: both cell types 

store lipid droplets, both undergo a process of differentiation/transdifferentiaton in 

which PPARγ is a master regulator. Both preadipocytes and activated HSCs have a 

fibroblast-like shape, and express the same types of interstitial collagens. Because of 

all these similarities, it is currently believed that these cell types are strongly 

interrelated and maybe regulated by the same master transcription factor, namely 

PPARγ [71, 72]. Some reports support the existence of a combined and synergistic 

action of RA and PPARγ in HSC fate and, thus, in the course of liver fibrosis [73, 74]. 
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Combined treatment with the PPARγ ligand 15-Δ12,13-prostaglandin L(2) and the 

RXR ligands all trans-RA and 9cis-RA on rat primary HSCs led to cell cycle arrest, 

inhibition of lipid droplets release and down-regulation of fibrotic markers such as 

collagen Iα1 and αSMA to an extent which is greater than the effect produced by each 

ligand alone [74]. 

The reciprocal interconnection between PPARγ and retinoids, however, is quite 

controversial. The all trans- RA was found to protect mice from diet-induced hepatic 

steatosis through a cascade culminating in the suppression of the lipogenic PPARγ2: 

all trans- RA binding to RAR activates the repressor hairy and enhancer of split 6 

(Hes6) which, in turn, represses PPARγ2 expression [75]. Moreover, RA and the 

synthetic retinoid fenretinide block the C/EBPα-PPARγ pathway in the adipogenic 

process [76-78] and, accordingly, the RARα antagonist Ro 41-5253 promotes pre-

adipocytes differentiation into mature adipocytes by working as activator of PPARγ 

[79]. 

Discordantly, in myeloid cells retinoids were reported to enhance PPARγ expression 

and activity, which is required for the differentiation of this lineage [80]. This would 

suggest that the cross-talk between retinoids and PPARγ is cell type specific. 

Much less information is available for the inverse relationship between retinoids and 

PPARγ, i.e. whether PPARγ can modulate retinoid metabolism. In human dendritic 

cells PPARγ activation induces the expression of genes responsible for retinol 

metabolism and conversion to all trans- RA, which is at last able to modulate immune 

cell functions [81]. 

In light of all these observations, and based on its expression in the HSCs quiescent 

state and on its repression in activated HSCs, PPARγ has been proposed to potentially 

represent a new molecular target in the reversal of liver fibrosis [70, 71]. 
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Conclusion 

Liver fibrosis is a scarring process taking place as a consequence of chronic damage 

and inflammation of this organ and represents a major clinical challenge since it 

degenerates into cirrhosis with consequent liver failure and poor prognosis. The main 

responsible cells for fibrogenesis are HSCs which, upon liver injury, undergo an 

activation process and begin to produce and deposit extracellular matrix forming scar 

tissue. 

Fibrosis has long been considered an irreversible mechanism but recently it has been 

uncovered that HSCs may undergo a phenotype reversion accounting for fibrosis 

regression [9].  

The hallmark of HSCs is the storage of large amounts of retinol in the form of retinyl 

esters in lipid droplets which are depleted upon cell activation, generating 

metabolically active forms of RA [4, 27]. Concomitantly, PPARγ expression, which is 

substantial in quiescent HSCs, significantly decreases following activation [64, 65]. 

Since RA acts through retinoid receptors which synergize with PPARγ, and since both 

retinoids and PPARγ have proven to be able to reverse HSCs activation and liver 

fibrosis [73, 74], it is tempting to propose that a combined treatment with retinoid 

receptor agonists and PPARγ agonists may potentially represent a new and more 

beneficial strategy in the clinical management of liver fibrosis (Figure 1).  

Compliance with ethical standards 
Conflict of interest The authors declare that they have no conflict of interest. 
 

 



15 
 

References 

1. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. 
Physiol Rev. 2008; 88(1):125-172. 
2. Moreira RK. Hepatic stellate cells and liver fibrosis. Arch Pathol Lab Med. 2007; 131(11):1728-
1734. 
3. Blaner WS, O'Byrne SM, Wongsiriroj N, Kluwe J, D'Ambrosio DM, Jiang H, Schwabe RF, Hillman 
EM, Piantedosi R and Libien J. Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid 
storage. Biochim Biophys Acta. 2009; 1791(6):467-473. 
4. Lee YS and Jeong WI. Retinoic acids and hepatic stellate cells in liver disease. J Gastroenterol 
Hepatol. 2012; 27 Suppl 2:75-79. 
5. Yin C, Evason KJ, Asahina K and Stainier DY. Hepatic stellate cells in liver development, 
regeneration, and cancer. J Clin Invest. 2013; 123(5):1902-1910. 
6. Winau F, Hegasy G, Weiskirchen R, Weber S, Cassan C, Sieling PA, Modlin RL, Liblau RS, 
Gressner AM and Kaufmann SH. Ito cells are liver-resident antigen-presenting cells for activating T cell 
responses. Immunity. 2007; 26(1):117-129. 
7. Winau F, Quack C, Darmoise A and Kaufmann SH. Starring stellate cells in liver immunology. 
Curr Opin Immunol. 2008; 20(1):68-74. 
8. Ahsan MK and Mehal WZ. Activation of adenosine receptor A2A increases HSC proliferation 
and inhibits death and senescence by down-regulation of p53 and Rb. Front Pharmacol. 2014; 5:69. 
9. Kong D, Zhang F, Zhang Z, Lu Y and Zheng S. Clearance of activated stellate cells for hepatic 
fibrosis regression: molecular basis and translational potential. Biomed Pharmacother. 2013; 
67(3):246-250. 
10. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L and Lowe 
SW. Senescence of activated stellate cells limits liver fibrosis. Cell. 2008; 134(4):657-667. 
11. Campisi J and d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. 
Nat Rev Mol Cell Biol. 2007; 8(9):729-740. 
12. Kuilman T, Michaloglou C, Mooi WJ and Peeper DS. The essence of senescence. Genes Dev. 
2010; 24(22):2463-2479. 
13. Rodier F and Campisi J. Four faces of cellular senescence. J Cell Biol. 2011; 192(4):547-556. 
14. Kong X, Feng D, Wang H, Hong F, Bertola A, Wang FS and Gao B. Interleukin-22 induces hepatic 
stellate cell senescence and restricts liver fibrosis in mice. Hepatology. 2012; 56(3):1150-1159. 
15. Wolk K, Witte E, Witte K, Warszawska K and Sabat R. Biology of interleukin-22. Semin 
Immunopathol. 2010; 32(1):17-31. 
16. Radaeva S, Sun R, Pan HN, Hong F and Gao B. Interleukin 22 (IL-22) plays a protective role in T 
cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. 
Hepatology. 2004; 39(5):1332-1342. 
17. Kim KH, Chen CC, Monzon RI and Lau LF. Matricellular protein CCN1 promotes regression of 
liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol Cell Biol. 2013; 
33(10):2078-2090. 
18. Jun JI and Lau LF. The matricellular protein CCN1 induces fibroblast senescence and restricts 
fibrosis in cutaneous wound healing. Nat Cell Biol. 2010; 12(7):676-685. 
19. Colavitti R and Finkel T. Reactive oxygen species as mediators of cellular senescence. IUBMB 
Life. 2005; 57(4-5):277-281. 
20. Che J, Chan ES and Cronstein BN. Adenosine A2A receptor occupancy stimulates collagen 
expression by hepatic stellate cells via pathways involving protein kinase A, Src, and extracellular 
signal-regulated kinases 1/2 signaling cascade or p38 mitogen-activated protein kinase signaling 
pathway. Mol Pharmacol. 2007; 72(6):1626-1636. 
21. Davalos AR, Coppe JP, Campisi J and Desprez PY. Senescent cells as a source of inflammatory 
factors for tumor progression. Cancer Metastasis Rev. 2010; 29(2):273-283. 



16 
 

22. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita 
H, Hattori M, Honda K, Ishikawa Y, Hara E and Ohtani N. Obesity-induced gut microbial metabolite 
promotes liver cancer through senescence secretome. Nature. 2013; 499(7456):97-101. 
23. Hutchinson L. Liver cancer: Gut microbiota feeds obesity-induced liver cancer. Nat Rev Clin 
Oncol. 2013; 10(8):428. 
24. Ohtani N, Yoshimoto S and Hara E. Obesity and cancer: a gut microbial connection. Cancer 
Res. 2014; 74(7):1885-1889. 
25. Al Tanoury Z, Piskunov A and Rochette-Egly C. Vitamin A and retinoid signaling: genomic and 
nongenomic effects. J Lipid Res. 2013; 54(7):1761-1775. 
26. Theodosiou M, Laudet V and Schubert M. From carrot to clinic: an overview of the retinoic 
acid signaling pathway. Cell Mol Life Sci. 2010; 67(9):1423-1445. 
27. Shirakami Y, Lee SA, Clugston RD and Blaner WS. Hepatic metabolism of retinoids and disease 
associations. Biochim Biophys Acta. 2012; 1821(1):124-136. 
28. Kluwe J, Wongsiriroj N, Troeger JS, Gwak GY, Dapito DH, Pradere JP, Jiang H, Siddiqi M, 
Piantedosi R, O'Byrne SM, Blaner WS and Schwabe RF. Absence of hepatic stellate cell retinoid lipid 
droplets does not enhance hepatic fibrosis but decreases hepatic carcinogenesis. Gut. 2011; 
60(9):1260-1268. 
29. Chi X, Anselmi K, Watkins S and Gandhi CR. Prevention of cultured rat stellate cell 
transformation and endothelin-B receptor upregulation by retinoic acid. Br J Pharmacol. 2003; 
139(4):765-774. 
30. Davis BH, Kramer RT and Davidson NO. Retinoic acid modulates rat Ito cell proliferation, 
collagen, and transforming growth factor beta production. J Clin Invest. 1990; 86(6):2062-2070. 
31. Davis BH and Vucic A. The effect of retinol on Ito cell proliferation in vitro. Hepatology. 1988; 
8(4):788-793. 
32. Margis R, Pinheiro-Margis M, da Silva LC and Borojevic R. Effects of retinol on proliferation, 
cell adherence and extracellular matrix synthesis in a liver myofibroblast or lipocyte cell line (GRX). Int 
J Exp Pathol. 1992; 73(2):125-135. 
33. Mizobuchi Y, Shimizu I, Yasuda M, Hori H, Shono M and Ito S. Retinyl palmitate reduces hepatic 
fibrosis in rats induced by dimethylnitrosamine or pig serum. J Hepatol. 1998; 29(6):933-943. 
34. Noyan S, Cavusoglu I and Minbay FZ. The effect of vitamin A on CCl4-induced hepatic injuries 
in rats: a histochemical, immunohistochemical and ultrastructural study. Acta Histochem. 2006; 
107(6):421-434. 
35. Pan Z, Dan Z, Fu Y, Tang W and Lin J. Low-dose ATRA supplementation abolishes PRM 
formation in rat liver and ameliorates ethanol-induced liver injury. J Huazhong Univ Sci Technolog Med 
Sci. 2006; 26(5):508-512. 
36. Seifert WF, Bosma A, Hendriks HF, van Leeuwen RE, van Thiel-de Ruiter GC, Seifert-Bock I, 
Knook DL and Brouwer A. Beta-carotene (provitamin A) decreases the severity of CCl4-induced hepatic 
inflammation and fibrosis in rats. Liver. 1995; 15(1):1-8. 
37. Senoo H and Wake K. Suppression of experimental hepatic fibrosis by administration of 
vitamin A. Lab Invest. 1985; 52(2):182-194. 
38. Geubel AP, De Galocsy C, Alves N, Rahier J and Dive C. Liver damage caused by therapeutic 
vitamin A administration: estimate of dose-related toxicity in 41 cases. Gastroenterology. 1991; 
100(6):1701-1709. 
39. Okuno M, Moriwaki H, Imai S, Muto Y, Kawada N, Suzuki Y and Kojima S. Retinoids exacerbate 
rat liver fibrosis by inducing the activation of latent TGF-beta in liver stellate cells. Hepatology. 1997; 
26(4):913-921. 
40. Vollmar B, Heckmann C, Richter S and Menger MD. High, but not low, dietary retinoids 
aggravate manifestation of rat liver fibrosis. J Gastroenterol Hepatol. 2002; 17(7):791-799. 
41. Mezaki Y, Yoshikawa K, Yamaguchi N, Miura M, Imai K, Kato S and Senoo H. Rat hepatic stellate 
cells acquire retinoid responsiveness after activation in vitro by post-transcriptional regulation of 
retinoic acid receptor alpha gene expression. Arch Biochem Biophys. 2007; 465(2):370-379. 



17 
 

42. Milliano MT and Luxon BA. Rat hepatic stellate cells become retinoid unresponsive during 
activation. Hepatol Res. 2005; 33(3):225-233. 
43. Weiner FR, Blaner WS, Czaja MJ, Shah A and Geerts A. Ito cell expression of a nuclear retinoic 
acid receptor. Hepatology. 1992; 15(2):336-342. 
44. Melhem A, Muhanna N, Bishara A, Alvarez CE, Ilan Y, Bishara T, Horani A, Nassar M, Friedman 
SL and Safadi R. Anti-fibrotic activity of NK cells in experimental liver injury through killing of activated 
HSC. J Hepatol. 2006; 45(1):60-71. 
45. Pirazzi C, Valenti L, Motta BM, Pingitore P, Hedfalk K, Mancina RM, Burza MA, Indiveri C, Ferro 
Y, Montalcini T, Maglio C, Dongiovanni P, Fargion S, Rametta R, Pujia A, Andersson L, et al. PNPLA3 has 
retinyl-palmitate lipase activity in human hepatic stellate cells. Hum Mol Genet. 2014; 23(15):4077-
4085. 
46. Valenti L, Dongiovanni P, Ginanni Corradini S, Burza MA and Romeo S. PNPLA3 I148M variant 
and hepatocellular carcinoma: a common genetic variant for a rare disease. Dig Liver Dis. 2013; 
45(8):619-624. 
47. Freemantle SJ, Spinella MJ and Dmitrovsky E. Retinoids in cancer therapy and 
chemoprevention: promise meets resistance. Oncogene. 2003; 22(47):7305-7315. 
48. Park SH, Lim JS and Jang KL. All-trans retinoic acid induces cellular senescence via upregulation 
of p16, p21, and p27. Cancer Lett. 2011; 310(2):232-239. 
49. Maeda Y, Sasakawa A, Hirase C, Yamaguchi T, Morita Y, Miyatake J, Urase F, Nomura S and 
Matsumura I. Senescence induction therapy for the treatment of adult T-cell leukemia. Leuk 
Lymphoma. 2011; 52(1):150-152. 
50. Froeling FE, Feig C, Chelala C, Dobson R, Mein CE, Tuveson DA, Clevers H, Hart IR and Kocher 
HM. Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-beta-catenin 
signaling to slow tumor progression. Gastroenterology. 2011; 141(4):1486-1497, 1497 e1481-1414. 
51. Omary MB, Lugea A, Lowe AW and Pandol SJ. The pancreatic stellate cell: a star on the rise in 
pancreatic diseases. J Clin Invest. 2007; 117(1):50-59. 
52. Phillips P. Pancreatic stellate cells and fibrosis. 2012. 
53. Ziouzenkova O and Plutzky J. Retinoid metabolism and nuclear receptor responses: New 
insights into coordinated regulation of the PPAR-RXR complex. FEBS Lett. 2008; 582(1):32-38. 
54. Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M and Evans RM. PPARgamma 
signaling and metabolism: the good, the bad and the future. Nat Med. 2013; 19(5):557-566. 
55. Poulsen L, Siersbaek M and Mandrup S. PPARs: fatty acid sensors controlling metabolism. 
Semin Cell Dev Biol. 2012; 23(6):631-639. 
56. Wang YX. PPARs: diverse regulators in energy metabolism and metabolic diseases. Cell Res. 
2010; 20(2):124-137. 
57. Wu Z, Xie Y, Morrison RF, Bucher NL and Farmer SR. PPARgamma induces the insulin-
dependent glucose transporter GLUT4 in the absence of C/EBPalpha during the conversion of 3T3 
fibroblasts into adipocytes. J Clin Invest. 1998; 101(1):22-32. 
58. Berger J, Bailey P, Biswas C, Cullinan CA, Doebber TW, Hayes NS, Saperstein R, Smith RG and 
Leibowitz MD. Thiazolidinediones produce a conformational change in peroxisomal proliferator-
activated receptor-gamma: binding and activation correlate with antidiabetic actions in db/db mice. 
Endocrinology. 1996; 137(10):4189-4195. 
59. Hauner H. The mode of action of thiazolidinediones. Diabetes Metab Res Rev. 2002; 18 Suppl 
2:S10-15. 
60. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM and Kliewer SA. An 
antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor 
gamma (PPAR gamma). J Biol Chem. 1995; 270(22):12953-12956. 
61. Heikkinen S, Auwerx J and Argmann CA. PPARgamma in human and mouse physiology. 
Biochim Biophys Acta. 2007; 1771(8):999-1013. 
62. Gavrilova O, Haluzik M, Matsusue K, Cutson JJ, Johnson L, Dietz KR, Nicol CJ, Vinson C, 
Gonzalez FJ and Reitman ML. Liver peroxisome proliferator-activated receptor gamma contributes to 



18 
 

hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem. 2003; 
278(36):34268-34276. 
63. Moran-Salvador E, Lopez-Parra M, Garcia-Alonso V, Titos E, Martinez-Clemente M, Gonzalez-
Periz A, Lopez-Vicario C, Barak Y, Arroyo V and Claria J. Role for PPARgamma in obesity-induced hepatic 
steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts. Faseb J. 
2011; 25(8):2538-2550. 
64. Wang Z, Xu JP, Zheng YC, Chen W, Sun YW, Wu ZY and Luo M. Peroxisome proliferator-
activated receptor gamma inhibits hepatic fibrosis in rats. Hepatobiliary Pancreat Dis Int. 2011; 
10(1):64-71. 
65. Yang L, Chan CC, Kwon OS, Liu S, McGhee J, Stimpson SA, Chen LZ, Harrington WW, Symonds 
WT and Rockey DC. Regulation of peroxisome proliferator-activated receptor-gamma in liver fibrosis. 
Am J Physiol Gastrointest Liver Physiol. 2006; 291(5):G902-911. 
66. Hazra S, Xiong S, Wang J, Rippe RA, Krishna V, Chatterjee K and Tsukamoto H. Peroxisome 
proliferator-activated receptor gamma induces a phenotypic switch from activated to quiescent 
hepatic stellate cells. J Biol Chem. 2004; 279(12):11392-11401. 
67. Marra F, Efsen E, Romanelli RG, Caligiuri A, Pastacaldi S, Batignani G, Bonacchi A, Caporale R, 
Laffi G, Pinzani M and Gentilini P. Ligands of peroxisome proliferator-activated receptor gamma 
modulate profibrogenic and proinflammatory actions in hepatic stellate cells. Gastroenterology. 2000; 
119(2):466-478. 
68. Sun K, Wang Q and Huang XH. PPAR gamma inhibits growth of rat hepatic stellate cells and 
TGF beta-induced connective tissue growth factor expression. Acta Pharmacol Sin. 2006; 27(6):715-
723. 
69. Yu J, Zhang S, Chu ES, Go MY, Lau RH, Zhao J, Wu CW, Tong L, Zhao J, Poon TC and Sung JJ. 
Peroxisome proliferator-activated receptors gamma reverses hepatic nutritional fibrosis in mice and 
suppresses activation of hepatic stellate cells in vitro. Int J Biochem Cell Biol. 2010; 42(6):948-957. 
70. Miyahara T, Schrum L, Rippe R, Xiong S, Yee HF, Jr., Motomura K, Anania FA, Willson TM and 
Tsukamoto H. Peroxisome proliferator-activated receptors and hepatic stellate cell activation. J Biol 
Chem. 2000; 275(46):35715-35722. 
71. Sauvant P, Cansell M and Atgie C. Vitamin A and lipid metabolism: relationship between 
hepatic stellate cells (HSCs) and adipocytes. J Physiol Biochem. 2011; 67(3):487-496. 
72. She H, Xiong S, Hazra S and Tsukamoto H. Adipogenic transcriptional regulation of hepatic 
stellate cells. J Biol Chem. 2005; 280(6):4959-4967. 
73. Bruck R, Weiss S, Aeed H, Pines M, Halpern Z and Zvibel I. Additive inhibitory effect of 
experimentally induced hepatic cirrhosis by agonists of peroxisome proliferator activator receptor 
gamma and retinoic acid receptor. Dig Dis Sci. 2009; 54(2):292-299. 
74. Sharvit E, Abramovitch S, Reif S and Bruck R. Amplified inhibition of stellate cell activation 
pathways by PPAR-gamma, RAR and RXR agonists. PLoS One. 2013; 8(10):e76541. 
75. Kim SC, Kim CK, Axe D, Cook A, Lee M, Li T, Smallwood N, Chiang JY, Hardwick JP, Moore DD 
and Lee YK. All-trans-retinoic acid ameliorates hepatic steatosis in mice by a novel transcriptional 
cascade. Hepatology. 2014; 59(5):1750-1760. 
76. McIlroy GD, Delibegovic M, Owen C, Stoney PN, Shearer KD, McCaffery PJ and Mody N. 
Fenretinide treatment prevents diet-induced obesity in association with major alterations in retinoid 
homeostatic gene expression in adipose, liver, and hypothalamus. Diabetes. 2013; 62(3):825-836. 
77. Schwarz EJ, Reginato MJ, Shao D, Krakow SL and Lazar MA. Retinoic acid blocks adipogenesis 
by inhibiting C/EBPbeta-mediated transcription. Mol Cell Biol. 1997; 17(3):1552-1561. 
78. Xue JC, Schwarz EJ, Chawla A and Lazar MA. Distinct stages in adipogenesis revealed by 
retinoid inhibition of differentiation after induction of PPARgamma. Mol Cell Biol. 1996; 16(4):1567-
1575. 
79. Schupp M, Curtin JC, Kim RJ, Billin AN and Lazar MA. A widely used retinoic acid receptor 
antagonist induces peroxisome proliferator-activated receptor-gamma activity. Mol Pharmacol. 2007; 
71(5):1251-1257. 



19 
 

80. Szanto A and Nagy L. Retinoids potentiate peroxisome proliferator-activated receptor gamma 
action in differentiation, gene expression, and lipid metabolic processes in developing myeloid cells. 
Mol Pharmacol. 2005; 67(6):1935-1943. 
81. Szatmari I, Pap A, Ruhl R, Ma JX, Illarionov PA, Besra GS, Rajnavolgyi E, Dezso B and Nagy L. 
PPARgamma controls CD1d expression by turning on retinoic acid synthesis in developing human 
dendritic cells. J Exp Med. 2006; 203(10):2351-2362. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



20 
 

 
Figure 1 
HSCs are able to metabolize retinol to give both retinyl esters (then stored in lipid droplets) and 
retinoic acid. Moreover, HSCs express the nuclear receptors for retinoic acid RARs, which, together 
with RXRs, bind to DNA on Retinoic Acid Responsive Elements (RARE) and modulate target genes 
expression. 
 
 
Table 1: 
Characteristics of the studies showing the anti- or the pro-fibrotic effects of retinoids on liver 
Type of retinoid  Organism/cells   Effect     References 
 

Anti-fibrotic effect of retinoids 
13-cis-retinoic acid   Cultured rat HSCs  Inhibition of proliferation and transformation          Chi et al. [67] 

13-cis-retinoic acid   Rat and cultured rat 

HSCs   Inhibition of activation     Davis et al. [68] 

         

Vitamin A   Cultured rat HSCs    Inhibition of proliferation     Davis et al. [69] 

All-trans retinoic acid  Rat HSC line  Inhibition of proliferation and collagen production   Ye and Dan[71] 

Retynyl palmitate   Rat   Suppression of hepatic fibrosis induced by  

dimethylnitrosamine/pig Serum             Mizobuchi et al 

[72] 

Vitamin A   Rat  Suppression of CCl4-induced HSCs activation and fibrosis                         Noyan et al. 

[73] 

 

All-trans retinoic acid  Rat  Amelioration of ethanol-induced liver injury    Pan et al. [74] 

Beta carotene   Rat  Alleviation of CCl4-induced hepatic inflammation and fibrosis                  Seifert et al. 

[75] 

 

Vitamin A   Rat  Suppression of hepatic fibrosis induced by CCL4/pig serum            Senoo and 

Wake [76] 

All-trans retinoic acid  Mouse  Amelioration of CCl4-induced liver fibrosis            Hisamori et al. 

[77] 

 

Pro-fibrotic effect of retinoids  
9-cis-retinoic acid   Rat  Exacerbation of pig serum-induced liver fibrosis    Okuno et al. 

[79] 

Vitamin A (high levels)  Rat  Exacerbation of CCl4-induced liver fibrosis    Vollmar et al. 

[80] 

Vitamin A   Humans  Dose-dependent chronic liver damage     Geubel et al. 

[78] 
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Figure 2 
Natural or synthetic lipid compounds, such as thiazolidinediones (TZD) are agonists for the 
transcription factor PPARc, which heterodimerizes with RXR, binds to DNA on PPAR responsive 
elements (PPRE) and drives transcription of a number of target genes involved in lipid and glucose 
metabolism, inflammation, cell growth. 
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Figure 3 
Alcohol, toxins, hepatic viruses, autoimmune disorders and other kinds of injuries cause the 
transdifferentiation of hepatic stellate cells (HSCs) from a quiescent to an activated, pro-fibrotic state. 
The combined action of retinoid receptor agonists (such as RA) and PPARc agonists (such as TZDs) may 
synergistically bring activated HSCs back to a quiescent phenotype, accounting for fibrosis reversal. 


