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ABSTRACT

The Shikoku Basin is a back-arc basin located offshore southwest Japan. Sedi-
ments within the basin make up a key part of the subduction inputs to the Nankai 
Trough. A 19 m.y. history of sedimentation has been documented at Sites C0011 and 
C0012 of the Integrated Ocean Drilling Program (Kumano transect) and Sites 1173 
and 1177 of the Ocean Drilling Program (Muroto and Ashizuri transects, respectively). 
This paper focuses on three noteworthy aspects of that history: (1) the onset of sub-
stantial pyroclastic influx, which shifted significantly along the strike length of the 
margin, from 3.3–3.9  Ma at Sites 1177 and 1173 to 7.6–7.8  Ma at Sites C0011 and 
C0012; (2) transport of sand by sediment gravity flows, which resulted in three discrete 
sand bodies during the Miocene (Kyushu, Daiichi Zenisu, and Daini Zenisu submarine 
fans); and (3) clay mineral assemblages within hemipelagic mudstones, which show 
systematic reduction of 3 wt% detrital smectite per 1 m.y. decrease in age. Collectively, 
these temporal and spatial adjustments of lithofacies and sediment composition have 
important implications for downdip and along-strike projections of frictional, geotech-
nical, and hydrogeological properties as strata enter the Nankai subduction zone. The 
stratigraphic positions of smectite-rich Miocene mudstones, for example, should match 
up with increases in the volume of fluid production by clay dehydration during sub-
duction. The higher-permeability sand bodies (Kyushu and Zenisu submarine fans) 
should act as preferred conduits for focused fluid flow. The potential for buildup of flu-
id overpressures should increase above and laterally adjacent to stratigraphic pinch-
outs of sand bodies, especially where the aquifers are inclined or confined between 
basement highs. These three-dimensional complexities set the Nankai-Shikoku system 
apart from other subduction zones (e.g., Japan Trench, Costa Rica) where inputs con-
sist of comparatively homogeneous pelagic and hemipelagic deposits.
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INTRODUCTION

The Nankai Trough subduction zone is located offshore 
southwest Japan at the boundary between the Philippine Sea 
and Eurasia plates (Fig. 1). The overarching goal of the Nankai 
Trough Seismogenic Zone Experiment (NanTroSEIZE) has been 
to create a distributed array of boreholes along the subduction 
zone, extending across the updip limit of seismogenic and tsuna-
migenic behavior (Tobin and Kinoshita, 2006). All first-order ele-
ments of the plate boundary’s architecture have been targeted by 
the Integrated Ocean Drilling Program (IODP), starting with the 
presubduction inputs of sediment and oceanic basement, mov-
ing landward across the frontal accretionary prism, and finally to 
depths beneath the forearc basin, where earthquakes occur (Ashi 
et al., 2009; Screaton et al., 2009a Tobin et al., 2009; Expedition 
319 Scientists, 2010; Underwood et al., 2010; Expedition 333 
Scientists, 2012a; Strasser et al., 2014; Tobin et al., 2015). This 
paper provides a synthesis of the principal deep-marine clastic 
systems that accumulated in the northern Shikoku Basin (i.e., 
inputs to the Nankai subduction zone). We interpret their evolu-
tion in the context of an evolving, regional-scale history of plate 
interactions.

A better understanding of the lithostratigraphic units in the 
Shikoku Basin, their detrital provenance, and their mechanisms 
of sediment transport and deposition is an important compo-
nent of the NanTroSEIZE research because the composition and 

physical-hydrological properties of the sediments affect fluid pro-
duction and fault-slip behavior during subduction (Underwood, 
2007; Saffer et al., 2008; Saffer and McKiernan, 2009; Brown 
et al., 2011). Clay dehydration reactions in altered basaltic base-
ment might also be a significant source of fluid (e.g., Kameda 
et al., 2011). Knowledge about the stratigraphic architecture of 
sand bodies improves predictions of where fluid flow might be 
focused through high-permeability sheets or meandering shoe-
string sands, and about locations where excess pore-water pres-
sure might build up at lateral pinch-outs of sandy depositional 
lobes (e.g., Bredehoeft et al., 1988; Yardley and Swarbrick, 
2000). Pore pressure within the accretionary prism is especially 
important to consider because it influences the taper angle of the 
wedge, wedge mechanics, initiation of slip on the plate-boundary 
megathrust, and various fault-slip behaviors, ranging from stable 
sliding to slow slip events, large earthquakes, and tsunamis (e.g., 
Ujiie et al., 2003; Tsuji et al., 2005; Saffer and Bekins, 2006; 
Tobin and Saffer, 2009; Seno, 2009; Saffer and Tobin, 2011; 
Kameda et al., 2015; Saffer and Wallace, 2015).

Our objective in this paper is to summarize what is known 
about the history of sedimentation within the Shikoku Basin, 
with an emphasis on recent drilling results from IODP Sites 
C0011 and C0012 (Fig. 2; Underwood et al., 2010; Expedition 
333 Scientists, 2012a). We supplement that new information 
with older results from Site 297 of the Deep Sea Drilling Project 
(DSDP; Karig et al., 1975) and Sites 808, 1173, and 1177 of the 

Figure 1. Index map of the northern Philippine Sea region. Box outlines study area shown in Figure 2.
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Figure 2. (A) Map of the Shikoku Basin and Nankai Trough study areas, with locations of Kumano, Muroto, and Ashi-
zuri transects and drilling sites. (B–C) Enlarged maps showing locations of Deep Sea Drilling Project (DSDP), Ocean 
Drilling Program (ODP), and Integrated Ocean Drilling Program (IODP) sites.
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Ocean Drilling Program (ODP; Fig. 2; Taira et al., 1992; Moore 
et al., 2001a). The Shikoku Basin is unusual when viewed from 
a global perspective of marine sedimentology because the basin 
formed on the back-arc side of the Izu-Bonin intraoceanic sub-
duction zone (Fig. 1), and yet the plate is subducting beneath a 
continental arc. In stark contrast to pelagic-hemipelagic inputs to 
the Japan Trench (Kimura et al., 2012; Kameda et al., 2015) and 
Costa Rica (Spinelli and Underwood, 2004; Underwood, 2007), 
the Nankai-Shikoku depositional system has been strongly 
affected by tectonic events around its perimeter. The facies 
character of the basin has adjusted to a multitude of allocyclic 
mechanisms throughout its history, including primary basement 
relief inherited from seafloor spreading and seamount volcanism 
in the back-arc, episodic volcanic-arc activity along two of its 
sides, triple junction migration and repeated reorganization of the 
proto–Nankai subduction boundary, discrete phases of collision 
between the Izu-Bonin and SW Japan (Honshu) arcs, opening 
of the Okinawa Trough back-arc basin, initiation of intraoceanic 
subduction along the Ryukyu Trench, and subduction-driven 
uplift across the Japanese hinterland (Fig. 1). Not surprisingly, 
virtually all of the major facies boundaries across the basin are 
diachronous. Sandy depositional systems (channels and lobes) 
are concentrated in lower to intermediate levels of the stratig-
raphy, contradicting the generic paradigm in which subduction 
inputs are supposed to thicken and coarsen upward as an oceanic 
plate moves closer to its subduction front (Piper et al., 1973). 
This paper provides a regional-scale overview of the causes and 
effects of those facies changes. We focus on three specific aspects 
of that depositional history: the onset of volcanic-ash influx to the 
basin; the origin and spatial extent of major sand bodies (subma-
rine fans); and gradual changes through time in the composition 
of detrital clay mineral assemblages.

PLATE-BOUNDARY RECONSTRUCTIONS

The Shikoku Basin is one of several prominent back-arc or 
marginal basins in the western Pacific Ocean (Karig, 1971; Seno, 
1985; Jolivet et al., 1989). Shikoku Basin occupies the northeast-
ern part of the Philippine Sea plate (Fig. 1), and the Parece Vela 
Basin represents its extension to the south (Kasuga and Ohara, 
1997; Okino et al., 1999; Yamashita et al., 2007). Such basins 
typically originate through rifting of an island arc and spreading 
between the remnant and active volcanic edifices (Karig, 1974; 
Taylor and Karner, 1983; Martinez et al., 2007; Stern, 2010). 
Sedimentation within back-arc basins is modulated by a variety 
of factors, including proximity to volcanic eruptions in the adja-
cent arc, thermal decay and subsidence of basement, directions 
of prevailing winds that dominate eolian transport, and biogenic 
productivity (Karig and Moore, 1975; Marsaglia, 1995; Marsa-
glia et al., 1995). Evolutionary facies models for back-arc basins 
typically show coarsening and thickening of volcaniclastic depos-
its toward the active arc, progradation of a volcaniclastic apron 
toward the remnant arc, and changes in the pelagic sediments 
from biogenic oozes to red-brown clays as portions of the basin 

floor subside below the calcite compensation depth. Those first-
order patterns can be perturbed by resedimentation of carbonates 
by turbidity currents and debris flows (Klein, 1985). In addition, 
some marginal basins, such as the Shikoku Basin, are flanked on 
one side by a continental landmass (Fig. 1). That type of configu-
ration increases the potential for multidirectional influx of terrig-
enous sediments by sediment gravity flow.

The lithosphere beneath Shikoku Basin began to form 
around 30  Ma in response to Izu-Bonin back-arc rifting and 
seafloor spreading along the eastern part of the Philippine Sea 
plate (Watts and Weissel, 1975; Kobayashi and Nakada, 1979; 
Seno and Maruyama, 1984; Chamot-Rooke et al., 1987; Taylor, 
1992; Okino et al., 1994, 1999; Kobayashi et al., 1995; Sdrolias 
et al., 2004). The Kyushu-Palau Ridge to the west (Fig. 1) repre-
sents the remnant Eocene–Oligocene arc (Ishizuka et al., 2011a). 
A bathymetric partition separates the Shikoku Basin from the 
West Philippine Basin (Fig.  1). Variations in crustal thickness 
and magnetization of oceanic crust across the width of the basin 
have been attributed to differences in magma supply at the time 
of seafloor spreading and asymmetric spreading (Kido and Fuji-
wara, 2004; Ishihara and Koda, 2007). The direction of spreading 
rotated at ca. 20–19 Ma from ENE-WSW to NE-SW (Sdrolias 
et al., 2004). The Kinan seamount chain (Fig. 1), which trends 
roughly N-S down the center, is built on vestiges of the extinct 
spreading axis. Organized spreading evidently ceased ca. 15 Ma, 
but scattered eruptions on seamounts continued to as recently as 
8–7 Ma (Ishii et al., 2000; Sato et al., 2002; Ishizuka et al., 2009).

Estimates for the current rate of relative plate motion across 
the Nankai Trough subduction boundary range from 2.5  cm/yr 
(Ranken et al., 1984) to 4.0–5.0 cm/yr (Seno, 1977; Zang et al., 
2002), but that vector is not representative of the last 30  m.y. 
of subduction history. Furthermore, plate-tectonic adjustments 
across the broader regions near Japan included several note-
worthy events that must have affected delivery and transport of 
sediment into the nearby Shikoku Basin (e.g., Maruyama et al., 
1997; Taira, 2001; Isozaki et al., 2010). We consider in the next 
paragraphs the following highlights of that history: (1) rifting and 
subsequent opening of the Sea of Japan during the late Oligocene 
to middle Miocene, accompanied by rapid clockwise rotation of 
southwest Japan; (2) initiation of subduction of the Philippine Sea 
plate along the proto–Nankai margin during the middle Miocene, 
accompanied by widespread, near-trench magmatism across the 
Outer Zone of Japan; (3) a shift during the late Miocene from near-
orthogonal subduction to left-lateral strike-slip, oblique slip, or 
unusually slow subduction along western and central segments of 
the proto–Nankai margin; (4) reestablishment of near-orthogonal 
convergence and accelerated subduction of the Philippine Sea plate 
occurring in the wake of a triple junction as it migrated toward the 
northeast; (5) a series of Pliocene–Quaternary collisions near the 
northeastern end of Nankai Trough between the Honshu arc and 
basement highs of the Izu-Bonin arc; and (6) rifting and spread-
ing of the back-arc Okinawa Trough from late Miocene to Qua-
ternary, and associated buildup of bathymetric/topographic relief 
along the adjacent Ryukyu arc-trench system. We emphasize here 
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that the exact timing of these events remains somewhat uncertain, 
as do the exact positions of the evolving plates and their boundar-
ies at various points in time. That temporal and spatial uncertainty 
is particularly important to consider for triple-junction migration 
and related effects. In the following text, we elaborate on each of 
these changes in regional tectonics.

The plate-tectonic reconstructions of Hall (2002, 2012), 
Mahony et al. (2011), Seton et al. (2012), von Hagke et al. (2016), 
and Wu et al. (2016) show subduction of the Pacific plate as the 
dominant process in southwest Japan prior to ca. 16 Ma, with 
a trench extending from Hokkaido to Kyushu and beyond. The 
Shikoku Basin at that time probably was separated from south-
west Japan by a salient of the Pacific plate (Hibbard and Karig, 
1990). To the north of the Japanese Islands, the Sea of Japan first 
started to open via seafloor spreading ca. 28 Ma, as indicated by 
the oldest magnetic anomaly in the Japan Basin (Tamaki, 1995). 
Continued opening of that marginal basin resulted in a “double-
door” style of rotation that produced bent structural trends in the 
crustal blocks of southwest and northeast Japan (Otofuji et al., 
1985, 1986; Celaya and McCabe, 1987; Faure and Lalevee, 1987; 
Martin, 2011). Counterclockwise rotation of northeast Japan trig-
gered eruptions of low-K tholeiitic basalts in the forearc of the 
Japan Trench (Yamamoto and Hoang, 2009). In southwest Japan, 
the sense of rotation was clockwise; that rapid motion began 
ca. 18 Ma and ceased by ca. 15 Ma (Otofuji, 1996; Ishikawa, 
1997; Otofuji et al., 1999; Hoshi and Sano, 2013; Hoshi et al., 
2015). The first collisions between the Honshu arc and basement 
highs along the axis of the Izu-Bonin arc also started during that 
Miocene time period (Niitsuma, 1989; Amano, 1991; Soh et al., 
1991; Takahashi and Saito, 1997; Hoshi and Sano, 2013).

Rapid rotation of southwest Japan during the Miocene trig-
gered a form of induced subduction initiation (e.g., Stern, 2004; 
Leng and Gurnis, 2011). The Philippine Sea plate evidently 
started its descent beneath the proto–Nankai Trough just before 
the Shikoku Basin spreading center went extinct ca.  15  Ma. 
Manifestations of subduction of young and unusually warm 
lithosphere (including the extinct spreading center) are largely 
represented in the form of anomalous near-trench magmatism, 
which spread across the Outer Zone of Japan (Hibbard and Karig, 
1990; Kimura et al., 2005). The oldest of those magma bodies 
is 16.8 ± 0.8 Ma, and most ages cluster around 15 Ma (Hasebe 
et al., 2000; Hasebe and Hoshino, 2003; Orihashi et al., 2007; 
G. Kimura et al., 2014). The near-trench volcano-plutonic com-
plex included I-type granites, S-type granites, rhyolitic lavas, and 
rhyolitic ash-flow deposits derived from large caldera eruptions 
(Kawakami and Hoshi, 2007; Miura and Wada, 2007; Shinjoe 
et al., 2007). Granitic and basaltic magmas were also intruded 
into accreted sedimentary rocks and forearc-basin deposits along 
the strike-length of the Shimanto belt. Allowing for at least 1 m.y. 
of lag time for the nascent subducting slab to generate flux melt-
ing (e.g., Ishizuka et al., 2011b), we estimate the timing of sub-
duction initiation to be ca. 18 Ma.

By ca.  14–13  Ma, magmatism across southwest Japan 
shifted to the north and became better organized along the belt of 

Setouchi high-Mg andesites (Shimoda et al., 1998; Tatsumi et al., 
2001; Tatsumi, 2006; J.-I. Kimura et al., 2014). Geochemical 
evidence from those volcanic rocks is consistent with extensive 
melting of subducting sediments (Shimoda et al., 1998, 2003). 
Overlapping that time period, from ca. 17 to ca. 11 Ma, the triple 
junction at the juncture of the Pacific, Philippine Sea, and Eurasia 
plates appears to have migrated toward the northeast, as indicated 
by a crude spatial pattern for the ages of anomalous near-trench 
magma bodies (G. Kimura et al., 2014). Kyushu experienced a 
long period of quiescence in subduction-related volcanism from 
ca. 10 Ma to ca. 6 Ma, and that gap has been attributed to either 
sinistral strike-slip motion or pronounced deceleration of plate 
convergence (Kamata and Kodama, 1994; Mahony et al., 2011). 
We do not know exactly how far the sinistral boundary extended 
to the northeast, but the entire strike-length of the proto–Nankai 
margin may have been transcurrent during that interval of time.

The band of subalkalic arc volcanoes in northeast Japan 
(i.e., eruptive products of Pacific plate subduction) remained 
largely stationary from ca. 15 Ma through the Quaternary (Uto 
and Tatsumi, 1996; Kimura et al., 2005; Acocella et al., 2008). 
In contrast, motion of the Philippine Sea plate changed dra-
matically at ca. 6 Ma, which increased subduction rates and/or 
reestablished roughly trench-normal subduction along the entire 
Nankai Trough (Kamata and Kodama, 1994, 1999; Itoh and 
Nagasaki, 1996). Those changes greatly affected patterns of 
magmatism and deformation across southwest Japan. Studies 
of mantle tomography reinforce this idea of recently renewed 
subduction. The seismic slab-subduction depths for the Philip-
pine Sea plate extend only to ~60 km, consistent with limited 
distances of subduction beneath the Kii Peninsula, Shikoku, and 
Kyushu (Honda and Nakanishi, 2003; Nakajima and Hasegawa, 
2007; Iidaka et al., 2009; Zhao, 2012; Zhao et al., 2012; Wu et al., 
2016). In comparison, the subducting Pacific plate slab can be 
traced to depths of ~500  km beneath Hokkaido and northern 
Honshu (Nakajima et al., 2009; Zhao et al., 2012). Reestablish-
ment of near-orthogonal convergence along the Nankai Trough 
resulted in a series of collisions between bathymetric highs along 
the Izu-Bonin arc and the Honshu arc (Ogawa et al., 1985; Niit-
suma, 1989; Amano, 1991; Kitazato, 1997; Soh et al., 1998). In 
addition, scattered andesitic volcanism returned to Kyushu by 
ca. 5 Ma (Kamata, 1989; Mahony et al., 2011, 2016).

Convergence along the Nankai Trough plate interface 
changed again at ca. 2 Ma, when the convergence vector for the 
Philippine Sea plate rotated to the northwest (Wu et al., 2016). 
Across Kyushu, the magmatic arc established itself fully dur-
ing that time and became increasingly dominated by explosive 
calderas and large ignimbrite eruptions (Kamata and Kodama, 
1999; Mahony et al., 2011, 2016). That region was also affected 
by widespread, crustal-scale deformation (Kamata, 1989; 
Kodama et al., 1995; Itoh et al., 1998; Okamura, 2016). There 
is complementary evidence at the southwest end of the Nankai 
Trough for rapid, along-strike migration of the collision point 
between Kyushu and the aseismic Kyushu-Palau Ridge (Wallace 
et al., 2009). At the eastern end of Nankai Trough, the volcanic 
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front near the Izu-Honshu collision zone migrated to the west in 
response to redirection of the subduction vector for the Philippine 
Sea plate (Nakamura et al., 2014). The geologic and topographic 
responses to that collision also intensified during the Quaternary, 
as shown by rapid rates of uplift, exposure of midcrustal tonal-
ite and granodiorite plutons, and widespread deformation around 
the collision zone (Kitazato, 1997; Saito et al., 1997; Kawate and 
Arima, 1998; Soh et al., 1998; Hirono, 2003; Okamura, 2003; 
Yamaji et al., 2003; Yamamoto and Kawakami, 2005; Hashima 
et al., 2016). Offshore, lithospheric shortening from the collision 
triggered low-angle thrust faulting seaward of the eastern Nan-
kai Trough and creation of the Zenisu Ridge in the subducting 
basement (Chamot-Rooke and Le Pichon, 1989; Lallemant et al., 
1989; Mazzotti et al., 2002). Tomographic images indicate that 
the entire Izu-Bonin arc is now subducting under the Honshu arc 
(Yamamoto et al., 2009).

At the present time, the Ryukyu Trench, islands of the 
Ryukyu volcanic arc, and the Okinawa Trough separate the East 
China Sea from the northeastern edge of the West Philippine 
Basin and northwest Shikoku Basin (Fig. 1). Those bathymetric 
obstructions, however, did not exist during the early to middle 
Miocene (e.g., Letouzey and Kimura, 1986; Sibuet et al., 1995). 
Andesitic volcanoes along the Ryukyu arc grew above a base-
ment of accreted sedimentary and metamorphic rocks that are 
broadly correlative with the Shimanto belt of southwest Japan 
(Kizaki, 1986; Ujiie, 1997; Schoonover and Osozawa, 2004). 
That accretionary prism, however, is probably a product of Pacific 
plate subduction rather than subduction of the Philippine Sea 
plate (Hibbard and Karig, 1990; Seton et al., 2012; von Hagke 
et al., 2016; Wu et al., 2016). To the north, the continental mar-
gin of the East China Sea shows widespread evidence for exten-
sional faulting of continental basement beneath the continental 
shelf (Cukur et al., 2011; Gungor et al., 2012). Rifting of the shelf 
began in the Late Cretaceous and resulted in the creation of sev-
eral sedimentary basins separated by buried continental ridges 
or rifted remnants of proto–Ryukyu arc basement (Sibuet et al., 
1987). Multiple phases of uplift (basin inversion) also affected 
the shelf (Yang et al., 2004; Lee et al., 2006; Cukur et al., 2011; 
Yang et al., 2011).

Differences of opinion exist with regard to the timing of ini-
tial rifting and early stages of seafloor spreading in the Okinawa 
Trough (Fig. 1), depending, in part, on the types of data used to 
make such reconstructions. The estimates range from younger than 
2.6 Ma (Kimura, 1985; Park et al., 1998) to 7–2 Ma (Sibuet et al., 
1998), to 10–6 Ma (Miki, 1995), and 13–7 Ma (Sibuet et al., 1987; 
Gungor et al., 2012). Given our focus on the Shikoku Basin, the 
key question in that history is: When did bathymetric/topographic 
relief grow enough to inhibit or block sediment transport from the 
shelf edge toward the south? The paleotectonic reconstructions 
of Gungor et al. (2012) are the most detailed in that regard; they 
show formation of a small rift basin (Ho Basin) between a base-
ment high (Longwan Ridge) and the proto–Ryukyu Trench during 
the middle Miocene (15.9–11.6 Ma). According to Gungor et al. 
(2012), opening of the Okinawa Trough and growth of the Ryukyu 

arc volcanoes to elevations above sea level did not occur until the 
late Miocene. Thus, we conclude that the requisite seafloor relief 
probably was in place by ca. 7 Ma.

BASINWIDE CORRELATION OF LITHOFACIES

Lithologic Character and Age of Facies Units

Reorganizations of the plate boundaries and centers of arc 
volcanism, as summarized herein, must have influenced the detri-
tal sources and pathways of sediment delivery to the Shikoku 
Basin throughout its evolution, particularly toward its northern 
reaches in closer proximity to continental watersheds. Seismic-
reflection data show that the total thickness of sediment decreases 
toward the south; sediments in the southern part of the Shikoku 
Basin are thin and discontinuously distributed in depressions 
developed on the irregular basement (Higuchi et al., 2007). Dis-
tal parts of the basin were cored, intermittently, during DSDP 
Leg 58 (Klein and Kobayashi, 1981). The deposits at Sites 442, 
443, and 444 consist largely of hemipelagic mud with scattered 
tephra layers (Curtis and Echols, 1980; Furuta and Arai, 1980; 
White et al., 1980). The isotopic signatures of those fine-grained 
sediments seem to require input from sources that were external 
to the basin’s margins, probably via eolian transport from eastern 
Eurasia (Mahoney, 2005). Mahoney (2005) further suggested that 
sharp fluctuations of those isotopic signatures represent episodes 
of basin-margin volcanism (e.g., from the Izu-Bonin arc) super-
imposed on a background of steady hemipelagic sedimentation.

Paleogeographic reconstructions for proximal parts of the 
Shikoku Basin have benefited from new information gathered 
during IODP Expeditions 322 and 333 (Fig.  2). Those coring 
results from the Kumano transect reinforce earlier ideas regarding 
variations in lithostratigraphy along strike (Underwood, 2007), 
as demonstrated by differences between Site 1177 (Ashizuri tran-
sect) and Sites 1173, 1174, and 808 (Muroto transect; Fig. 2). 
Two new sites were cored on the Philippine Sea plate just sea-
ward of the Nankai Trough (Underwood et al., 2010; Expedition 
333 Scientists, 2012a). Site C0011 is located on the northwest 
flank of a prominent bathymetric high (Kashinosaki Knoll), and 
Site C0012 is located near the crest of the knoll (Fig. 3). Because 
of operational failures and insufficient allocations of time, drill-
ing terminated ~200 m above basement at Site C0011 (Figs. 3 
and 4). The upper intervals at both sites (Figs. 4 and 5) were not 
cored until Expedition 333 (Expedition 333 Scientists, 2012a). 
At Site 1173, deposits of Shikoku Basin are overlain by a Quater-
nary trench-wedge facies (Fig. 6). Coring at Site 1177 (Ashizuri 
transect) commenced at 300 m below the seafloor (mbsf; Fig. 7), 
so sediments younger than ca. 2 Ma (including the trench wedge) 
were not sampled there. Synthesis of these drilling results allows 
us to define five first-order lithofacies units, as described below. 
Most of the facies boundaries are diachronous, and some of the 
facies do not extend across the entire basin (Fig. 8).

The uppermost lithologic unit with the Shikoku Basin is a 
hemipelagic-pyroclastic facies consisting of bioturbated silty 
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clay with abundant intercalations of fine to coarse volcanic ash, 
typically with unaltered glass shards. Deposition of those sedi-
ments occurred predominantly by settling of suspended mud and 
air-fall tephra. We correlate such deposits along the Kumano tran-
sect with units that previous investigators along the Muroto and 
Ashizuri transects had designated as the “upper Shikoku Basin” 
facies (Taira et al., 1992; Moore et al., 2001a). Initially, the lower 
boundary of the upper Shikoku Basin facies was defined by the 
deepest occurrence of discrete volcanic ash layers at Site 808 
(Shipboard Scientific Party, 1991). If we adhere to that defini-
tion, it is clear that the basal age of the facies varies considerably 
along strike (Fig. 8). The ages are: 7.6 Ma at Site C0011 (Fig. 4); 
7.8 Ma at Site C0012 (Fig. 5); 3.3 Ma at Site 1173 (Fig. 6); and 
3.9 Ma at Site 1177 (Fig. 7).

The choices listed earlier herein for unit boundaries remain 
open to question. For example, shipboard scientists may have 
pushed the boundary at Site 1173 higher up section than war-
ranted. Their choice for the unit boundary also took into account a 
match with sharp changes in sediment physical properties (Ship-
board Scientific Party, 2001a). To complicate matters further, 
heat flow is unusually high along the Muroto transect, which is 
near the axis of the Kinan seamounts (Yamano et al., 2003), and 
enhanced levels of diagenesis may have obscured visual recogni-
tion of some thin ash beds (Spinelli et al., 2007). Here, we call 

attention to an increase in the rate of sedimentation at ~400 mbsf 
(Fig. 6); that inflection point in the age-depth model may be a 
more reliable indicator of the primary facies change. The age of 
sediment at that depth is ca. 4.0 Ma, which is closer to the age of 
the facies boundary at Site 1177, where effects of volcanic ash 
alteration are absent (Spinelli et al., 2007).

Along the Kumano transect (Fig.  3), an abrupt downhole 
facies change to a distinctive tuffaceous sandstone occurs at 
~350 mbsf (Site C0011) and at ~150 mbsf (Site C0012; Under-
wood et al., 2010). This volcanic turbidite facies does not exist 
along the Muroto and Ashizuri transects (Fig. 8). Point counts of 
smear slides showed that the upper interval of tuffaceous sand-
stone is composed of >25% pyroclasts and fresh volcanic glass, 
whereas an underlying interval of volcaniclastic sandstone con-
tains <25% pyroclastic grains and more sedimentary-lithic grains 
(Underwood et al., 2010; Kutterolf et al., 2014). The basal age 
of the volcanic turbidite facies is 9.1 Ma at C0011 (Fig. 4) and 
9.4 Ma at C0012 (Fig. 5).

Beneath the volcanic turbidites, we find a hemipelagic facies 
composed of monotonous bioturbated silty claystone (Fig.  3). 
Minor lithologies include thin beds of micrite and calcareous 
claystone. This facies extends across the entire basin (Fig. 8). The 
mudstone deposits at Site C0012 contain an interval with bed-
ding inclined at angles of 40° to 45°. From seismic character and 

Figure 3. Seismic-reflection profile crossing Kashinosaki Knoll (from Underwood et al., 2010) with distribution of lithofacies units at Inte-
grated Ocean Drilling Program (IODP) Sites C0011 and C0012 (Kumano transect); mbsl—m below sea level; VE—vertical exaggeration.
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Figure 4. (A) Integrated age-depth model for Integrated Ocean Drilling Program (IODP) Site C0011, with lithofacies unit boundaries and rates 
of sediment accumulation (uncorrected for compaction). Age control is from Expedition 322 Scientists (2010a) and Expedition 333 Scientists 
(2012b). (B) Stratigraphic changes in relative abundance of smectite plotted as wt% of the bulk sediment (data from Underwood and Guo, 
2013, 2017). 

Figure 5. (A) Integrated age-depth model for Integrated Ocean Drilling Program (IODP) Site C0012, with lithofacies unit boundaries and rates 
of sediment accumulation (uncorrected for compaction). Age control is from Expedition 322 Scientists (2010b) and Expedition 333 Scientists 
(2012c). (B) Stratigraphic changes in relative abundance of smectite expressed as wt% of the bulk sediment (data from Underwood and Guo, 
2013, 2017). Q—Quaternary. 
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core-scale deformation structures, this zone of disruption appears 
to be associated with listric normal faults on the north-inclined 
flank of Kashinosaki Knoll (Underwood et al., 2010). Nannofos-
sil datums also indicate an angular unconformity near the top of 
this interval with a hiatus of ~2 m.y. (Fig. 5).

The base of the hemipelagic facies is generally defined by 
the uppermost appearance of fine-grained turbidites; the age of 
that facies change is 12.2 Ma at Site C0011 (Fig. 4), 12.7 Ma at 
Site C0012 (Fig. 5), and 6.9 Ma at Site 1177 (Fig. 7). The hemi-
pelagic facies at Site 1173 (Figs. 6 and 8) extends almost to the 
base of the sediment column (to an age of 15.2 Ma), presumably 

due to isolation of the Kinan basement high from transport by 
Miocene turbidity currents (Underwood, 2007). In fact, Miocene 
turbidites were not recovered from any sites above the subducting 
Kinan basement high (Sites 808, 1173, 1174). Seismic-reflection 
data, however, do reveal isolated pockets of probable turbidites 
in basement lows along the N-S strike-length of the seamounts 
(Moore et al., 2001b).

At Site 1177, four intervals of siliciclastic turbidites were 
recovered from the lower half of the Shikoku Basin, ranging in 
age from 15.6 to 6.9 Ma (Fig. 7). Those thin-bedded siliciclas-
tic sandstones are consistently lithic-rich layers with abundant 
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terrigenous organic matter. A similar facies was recovered along 
the Kumano transect (Fig.  3). In its upper parts, bioturbated 
mudstones are interbedded with normally graded siltstone and 
fine-grained sandstone. The facies grades down section into 
coarser tuffaceous sandy mudstone, siliciclastic sandstone, and 
tuff. Attempts to correlate, in detail, from the flank to the crest 
of Kashinosaki Knoll were compromised by poor core recovery 
at Site C0011 (Fig. 4) and by the occurrence of an unconformity 
between Sites C0011 and C0012. Fission-track ages of sandstone 
clasts at Site C0011 indicate that the detrital source rocks were 
14.7 ± 0.9 Ma in age; comparable detrital ages for broadly cor-
relative deposits at Site C0012 are 13.0 ± 0.7 Ma (Pickering et al., 
2013). The tuffs at Site C0011 appear to be geochemically simi-
lar to thick rhyolitic beds that were recovered near the bottom of 
Hole 808C (Fig. 2); those strata yielded an age of ca. 13.6 Ma 
(Taira et al., 1992).

An angular unconformity disrupts the lowermost stratigra-
phy at Site C0012 at a depth of ~510 mbsf, with an apparent hiatus 
of ~4 m.y. (Fig. 5). Smear slides show that sandstones immedi-
ately above the unconformity are compositionally diverse; some 
contain abundant volcanic glass and feldspar, whereas others are 
enriched in sedimentary-lithic grains, quartz, and heavy minerals 
(Expedition 322 Scientists, 2010b). Their heterogeneous com-

positions, textures, and ages are comparable to the lowermost 
volcaniclastic-rich facies at Site 1177 (Fig. 7).

Drilling was terminated at Site C0011 well above the 
sediment-basement interface (Fig.  4), but at Site C0012, the 
basal lithofacies of pelagic claystone is a 9.3-m-thick interval 
composed of variegated calcareous claystone, rich in nannofos-
sils (Fig. 5). The pelagic claystone accumulated in direct contact 
with basalt, and its mottled red-green coloration is probably due 
to iron reduction. Nannofossils from the claystone indicate that 
the basalt beneath Kashinosaki Knoll is older than 18.9 Ma, simi-
lar to the projected basement age at Site 1177. Basalt was merely 
tagged at Sites 1177 and 1173, but over 100 m of basalt were 
cored at Site C0012 (Expedition 333 Scientists, 2012c). Base-
ment at Site C0012 was also logged to a depth of 710 mbsf dur-
ing Expedition 338 (Strasser et al., 2014).

Turbidite Sand Bodies of Shikoku Basin

Integration of drilling results with seismic-reflection data 
(Ike et al., 2008a, 2008b) facilitated mapping the distribution of 
facies units over larger areas of Shikoku Basin (Fig. 9). Coring at 
Sites C0011 and C0012 verified that intervals with semitranspar-
ent to weak reflections correspond to mudstones that were depos-

Figure 8. Schematic illustration of the time-space distribution of lithofacies units across the northern Shikoku Basin. Orientation of 
the section is roughly parallel to the trench axis and passes through “reference sites” for the Ashizuri, Muroto, and Kumano drilling 
transects. ODP—Ocean Drilling Program; IODP—Integrated Ocean Drilling Program.
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ited from dilute hemipelagic suspensions. The acoustic character 
for intervals with sandy sediment gravity flow deposits consists 
of high-amplitude, continuous to discontinuous reflections. Such 
deposits occur preferentially within basement lows, as shown by 
a seismic-reflection profile parallel to the trench axis (Fig. 9). In 
addition, total sediment thickness is up to six times greater above 
basement lows than above basement highs (Ike et al., 2008b). As 
an example, total sediment thickness on the western and north-
ern slopes of Kashinosaki Knoll is ~40%–50% more than on the 
summit and southeastern slopes (Fig. 3).

The upslope continuity of three sand-bearing acoustic inter-
vals from the flank to the crest of Kashinosaki Knoll (Fig. 3) is 

perhaps surprising, given its elevation, but by no means unique to 
that particular bathymetric high (see, for example, Dolan et al., 
1989; Völker et al., 2008). Thinning and onlap of older turbidite 
units against the knoll indicate that the basement high originated 
as a constructional volcanic edifice rather than by later-stage fault-
ing of the basement (Ike et al., 2008a). The unconformity near 
the stratigraphic base of Site C0012 is likewise consistent with a 
steeply inclined seafloor early in its history. Each facies interval 
thins toward the crest (Fig. 3), so seafloor relief must have been 
sustained over the knoll’s history. Furthermore, the persistence 
of Kashinosaki Knoll as a bathymetric high seemingly requires 
upslope flow of turbidity currents (Muck and Underwood, 1990) 
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and/or turbidity currents with entrained layers that rose several 
hundred meters above the flanking abyssal seafloor.

Figure  9 shows the interpretation of a composite seis-
mic profile that crosses from the seaward trench edge through 
Sites C0011 and C0012. Lower portions of the section display 
a prominent package of high-amplitude, continuous reflections; 
coring confirmed that interval to be an upward-fining succession 
of sandy to silty turbidites, which Pickering et al. (2013) named 
Kyushu Fan. Its acoustic character is similar to that of the lower 
Shikoku Basin near ODP Site 1177 and DSDP Site 297 (Fig. 2; 
Pickering et al., 2013). At Site 1177, the rate of sedimentation for 
Kyushu Fan (uncorrected for compaction) averaged 3.4 cm/k.y. 
(Fig. 7), which was only marginally faster than the coeval hemi-
pelagic facies at Site 1173 (Fig. 6). At Site C0012, the average 
rate of sedimentation for the Kyushu Fan interval was 8.2 cm/k.y. 
(Fig. 5). The correlative package of reflections laps onto steep 
basement slopes around Kashinosaki Knoll but runs parallel to 
the gentler basement slopes. Thinning and onlap of the acoustic 
interval to both the south and the north indicate that sediment 
gravity flows moved oblique to the seismic line (Pickering et al., 
2013). The sediment gravity flows also filled in preexisting base-
ment lows to the west (Fig. 9; Ike et al., 2008b).

Core recovery through the depth interval of Kyushu Fan 
was especially poor at Site C0011, largely because of pro-
gressive deterioration and eventual destruction of the drill bit 
(Expedition 322 Scientists, 2010a). Logging while drilling 
logs, however, provide an accurate record of the prevalence of 
sandy sediment gravity flow deposits on the flank of Kashino-
saki Knoll. Sandstone beds were not recovered between 660 
and 710 mbsf, but the logs show thicknesses of 5–7 m, and log 
responses are indicative of normal (fining-upward) size grading 
(Fig. 10). A 60-m-thick interval that was not cored contains two 
prominent sandstone layers, and there are several 10-m-scale 
upward-fining cycles (Fig. 10).

Farther to the west, sandstones correlative with the Kyushu 
Fan acoustic facies were first recovered during DSDP Leg 31 
at Site 297 (Pickering et al., 2013), which is located in west-
ern Shikoku Basin along an extension of the Ashizuri transect 
(Fig. 2). Because of spot coring by DSDP, the age constraints 
at that site are insufficient to establish reliable upper and lower 
boundaries to the facies, but microfossils are indicative of late-
middle Miocene to early Pliocene deposition (Karig et al., 
1975). The age-depth model at ODP Site 1177 is considerably 
better, and those sand deposits range in age from 15.6 Ma to 
6.9 Ma (Fig. 7). Marsaglia et al. (1992) reported mean Q-F-L 
values (total quartz, total feldspar, total lithic) of Q-44, F-26, 
L-30 for seven samples from Site 297, similar to the mean val-
ues reported by Fergusson (2003) for seven samples from Site 
1177: Q-48, F-25, L-27. The petrofacies data are broadly indica-
tive of a generic dissected-arc to recycled-orogen provenance, as 
defined by Dickinson et al. (1983).

The lower portion of the volcanic turbidite facies also 
matches an interval with strong acoustic-impedance contrasts. 
Pickering et al. (2013) named that sand body the Daiichi Zenisu 

Fan. The acoustic interval thins to the south but continues over 
the crest of Kashinosaki Knoll (Fig. 9). Rates of sedimentation 
within this interval averaged 6.3 cm/k.y. at Site C0011 (Fig. 4) 
and 5.2 cm/k.y. at Site C0012 (Fig. 5). Blocky log response and 
discontinuous reflection geometries are characteristic of sub-
marine channels (Pickering et al., 2013). Some channels mea-
sure 10–20 m in depth and 800–1000 m in width, similar to the 
dimensions of many modern and ancient examples (Clark and 
Pickering, 1996). Coring showed that the basal part of the thick-
est channel fill contains ~10 m of disaggregated pieces of volca-
niclastic sandstone and bioturbated mudstone, tight to isoclinal 
folds, thinning and attenuation of bedding, and subhorizontal 
small-scale faults with a normal (extensional) sense of displace-
ment (Expedition 322 Scientists, 2010a). The inferred mass-
transport deposits were erosive and probably responsible for 
channel incision. The map-view orientation of the buried chan-
nels remains uncertain; they might be relatively straight channels 
emanating from the east-northeast (i.e., subparallel to the trend 
of the trench axis) or sinuous channels coming from the north 
(Pickering et al., 2013).

The uppermost interval of high-amplitude reflections cross-
ing Kashinosaki Knoll is more continuous and sheet-like in 
geometry (Fig. 9). Pickering et al. (2013) named that nonchan-
nelized sand body the Daini Zenisu Fan. The correlative coring 
interval contains distinctive, thick beds of tuffaceous sandstone 
(Expedition 322 Scientists, 2010a), and the seismic interval can 
be traced without breaks over the crest of the Kashinosaki base-
ment high. Pickering et al. (2013) interpreted the sand body to 
be a product of energetic but unconfined sediment gravity flows 
that prograded into the Shikoku Basin from a source to the north 
or northeast. Additional indicators of detrital provenance come 
from a combination of smear-slide petrography and geochemical 
analyses of the distinctive tuffaceous sandstones (Kutterolf et al., 
2014). Those sands probably were transported into deep water by 
density-graded turbidity currents that formed during or immedi-
ately after large volcanic eruptions, perhaps as pyroclastic flows 
entered the ocean (Schindlbeck et al., 2013). The sandstones of 
Daini Zenisu Fan are dominated by volcanic-rock fragments 
and pyroclasts, with lesser amounts of sedimentary-rock and 
metamorphic-rock fragments, whereas sandstones from Daiichi 
Zenisu Fan are more enriched in sedimentary and metamorphic 
lithic grains, suggestive of a mixed volcanic-sedimentary source 
area (Kutterolf et al., 2014).

To provide broader regional and temporal context for 
interpretation of the Miocene petrofacies in Shikoku Basin, 
we summarize results for trench sands deposited in the Nankai 
Trough. Marsaglia et al. (1992) reported the following averages 
for DSDP Sites 582 and 583 (Fig.  2): Q-22, F-24, L-54, and 
Lm-32, Lv-46, Ls-22, Lm—metamorphic lithic, Lv—volcanic 
lithic, Ls—sedimentary lithic. Averages for Quaternary depos-
its at Site 1174 are Q-13, F-20, L-67, and Lm-8, Lv-59, Ls-33 
(Fergusson, 2003). Detrital modes for accreted Quaternary sands 
at IODP Site C0006 (Fig.  2) average Q-50, F-21, L-29, and 
Lm-51, Lv-20, Ls-29 (Usman et al., 2014). The average modes 
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for accreted Pliocene–Pleistocene sands (Sites 1175 and 1176) 
are Q-64, F-14, L-22, and Lm-10, Lv-16, Ls-74, whereas late 
Miocene accreted deposits at Site 1178 (Fig. 2) yield averages 
of Q-29, F-17, L-54, and Lm-3, Lv-4, Ls-93 (Fergusson, 2003). 
The apparent spatial trend from the northeast (more quartzose) to 
southwest end of the trench (more lithic-rich) probably reflects a 
difference in the competition between long-distance axial trans-
port by sediment gravity flows (moving down the gradient of the 
trench floor) and transverse input to the trench through large sub-
marine canyons that are incised into the landward trench slope 
across the margin’s strike length (e.g., Soh and Tokuyama, 2002; 
Underwood et al., 2003b; Kawamura et al., 2009; Yoshikawa 
and Nemoto, 2010; Usman et al., 2014; Buchs et al., 2015). In 
addition, the proportion of volcaniclastic sand transported to the 
trench gradually increased through time, probably as an indirect 
response to acceleration of nearby arc-related volcanism (e.g., 
Mahony et al., 2016).

DEPOSITION OF HEMIPELAGIC MUD IN THE 
SHIKOKU BASIN

General Considerations

The sand component of the total sediment budget for Shikoku 
Basin provides an incomplete record of the basin’s evolution. For 
a more holistic view, we also consider the hemipelagic influx. 
Reconstructions of paleodispersal systems for fine-grained sus-
pended sediment are more complicated than for bottom-seeking 
sediment gravity flows, however, because a larger number of 
physical and biological processes contribute: wind-driven ocean 
surface currents, thermohaline bottom currents, eolian transport, 
resedimentation by the full spectrum of sediment gravity flow 
processes, glacial-marine transport (at high latitudes), biological 
production, and particle aggregation and resuspension by ben-
thos (e.g., Gorsline, 1984; Gingele et al., 2001; Phillips et al., 
2014). The local balance among all of those mechanisms should 
be expected to change over time in response to global climate 
cycles, local/regional tectonics, the configuration of landmasses 
and fluvial drainage systems, and transformations of bathymetry 
by erosion and sediment accumulation. As burial depths increase, 
the possibility also exists for the primary mineral assemblages 
to be obscured by authigenic or diagenetic overprints. Next, we 
summarize one important aspect of hemipelagic sedimentation 
in the Shikoku Basin: the detrital clay mineral assemblages, as 
documented by X-ray diffraction (XRD).

Numerous studies have demonstrated the importance of 
environmental and geologic factors in modulating composi-
tional changes in clay mineral assemblages. The ratio of chlo-
rite-to-kaolinite, for example, decreases systematically from 
higher latitudes toward the tropics because of an intensification 
of chemical weathering at the expense of physical weathering 
(Biscaye, 1965; Petschick et al., 1996). Consequently, temporal 
changes in those mineral abundances can be treated as a proxy 
for paleoclimate (Thiry, 2000). Mechanical weathering of poly-

mictic sources, which are typical of subduction complexes and 
collisional orogenic belts, usually produces clay mineral assem-
blages (at midlatitudes) that are enriched in detrital illite and 
chlorite, with modest amounts of smectite and kaolinite (Griggs 
and Hein, 1980; Karlin, 1980; Naidu and Mowatt, 1983; Hathon 
and Underwood, 1991). Expandable clay minerals of the smectite 
group are widely regarded as tracers for meteoric weathering and 
pedogenesis of volcanic sources (Karlin, 1980; Parra et al., 1985, 
1986; Chamley, 1989; Petschick et al., 1996; Fagel et al., 2001). 
Fluctuations in the rate and volume of volcanic eruptions (due, 
for example, to changing subduction rates or angles) can lead to 
commensurate shifts in the weathering and delivery of smectite 
from volcanic-rich watersheds. The competition among chemical 
weathering, mechanical weathering, and source-rock composi-
tion often oscillates on both local and regional scales in response 
to global climate change (glacial-interglacial cycles) and micro-
climate. Eustatic changes in sea level, moreover, are sometimes 
responsible for shifting the spatial distribution of source rocks 
within a given watershed, from exposure of soils to atmospheric 
processes on an emergent shelf to times when the shelf is flooded 
by seawater (Steinke et al., 2008).

Clay Mineral Assemblages in Shikoku Basin

Earlier XRD studies provided some insights into how detri-
tal clay mineral assemblages in the Nankai Trough and Shikoku 
Basin changed over time (Cook et al., 1975; Chamley, 1980; 
Chamley et al., 1986; Underwood et al., 1993a, 1993b). Those 
workers documented a preponderance of detrital illite and chlo-
rite within the Quaternary trench-wedge deposits, suggestive 
of a provenance dominated by exposures of sedimentary and 
metasedimentary strata. In contrast, hemipelagic muds within 
the central Shikoku Basin (DSDP Sites 297, 442, 443, and 444) 
display progressive enrichments of smectite as burial depths 
increase (Cook et al., 1975; Chamley, 1980). At Site 808 (Fig. 2), 
smectite increases within the upper Shikoku Basin deposits (rela-
tive to the overlying trench-wedge), but for older strata, Under-
wood and Pickering (1996) were unable to discriminate with 
confidence between the effects of temporal changes in detrital 
sources (and/or transport paths) and temperature-driven reactions 
of ash-to-smectite and smectite-to-illite diagenesis. Burial tem-
peratures were high enough at Site 808 to increase the proportion 
of illite in illite/smectite (I/S) mixed-layer clays to ~70% at a 
depth of 1200 mbsf (Underwood and Pickering, 1996; Masuda 
et al., 1996, 2001).

Subsequent XRD results from Sites 1173 and 1174 (Steurer 
and Underwood, 2003) verified the overprint of smectite-to-illite 
diagenesis. The overprint at Site 1173 occurs outboard of the sub-
duction front and starts at a depth of ~400 mbsf (Fig. 6). The 
overprint affects strata at Site 1174 (Fig. 2) to an even greater 
extent (Steurer and Underwood, 2003). Presubduction illitization 
along the Muroto transect has been attributed to anomalously 
high heat flow (Yamano et al., 2003; Harris et al., 2013), together 
with rapid burial of Shikoku Basin sediments beneath the Nankai 
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trench wedge (Underwood, 2007; Saffer et al., 2008; Saffer and 
McKiernan, 2009).

Along the Ashizuri transect, Steurer and Underwood (2003) 
discovered that percentages of smectite at Site 1177 are sub-
stantially higher than at Site 1173, particularly within Miocene 
mudstones now assigned to the Kyushu Fan. Relative percent-
ages of smectite are generally >40 wt% of the bulk mudstone, 
but the values decrease to <15 wt% in the overlying hemipelagic-
pyroclastic facies (Fig. 7). Data from DSDP Site 297 likewise 
show large increases in the abundance of smectite (Underwood 
et al., 2003a). Heat flow near Site 1177 is significantly lower than 
along the trend of the Kinan seamounts (Harris et al., 2013), and 
modeling of smectite-to-illite reaction progress demonstrated 
that burial temperatures were not warm enough at Site 1177 to 
initiate the I/S reaction (Steurer and Underwood, 2003). Instead, 
those smectite-rich assemblages retain the primary compositional 
fingerprint of a largely volcanic source prior to ca. 10 Ma. The 
plots of XRD data for Sites 1173 and 1177 both show gradual 
decreases in detrital smectite through the uppermost hemipelagic 
facies and the overlying hemipelagic-pyroclastic facies (Figs. 6 
and 7). Measurements of cation exchange capacity provide com-
plementary evidence for up-section decreases in smectite (Henry 
and Bourlange, 2004).

Underwood and Guo (2013, 2017) documented the compo-
sition of clay mineral assemblages at Sites C0011 and C0012. 
They found no empirical evidence at either site for a diagenetic 
overprint (Underwood and Guo, 2013). Guo (2012) also ran 
numerical simulations to test for I/S reaction progress under the 
documented thermal conditions (Hamamoto et al., 2011; Harris 
et al., 2013; Marcaillou et al., 2012). Burial temperatures sea-
ward of the trench were insufficient to initiate such reactions, so 
the record of the detrital influx remains pristine.

To illustrate further how and when the clay minerals changed 
during the last 15 m.y. of sedimentation in the Shikoku Basin, 
we interpolated the age at each sample’s depth on its respective 
linear segment of the age-depth model (Figs. 4 and 5). The trends 
for age versus smectite (relative wt% of the bulk sediment) are 
plotted in Figure  11. Detrital smectite dominates in sediments 
older than 10 Ma, with values at both Sites C0011 and C0012 
typically ranging from 40 to 60 wt%. Such values are similar to 
the results for coeval samples at Site 1177 (Fig. 7) and Site 297 
(Underwood et al., 2003a). At all four sites, we see consider-
able amounts of compositional scatter among the older Miocene 
strata, but the temporal trend is straightforward: Concentrations 
of smectite decreased systematically through time. The statisti-
cal fit is particularly striking over the last 10 m.y. (Figs. 11C and 
11D). Linear regression yields correlation coefficients over that 
time span of r = 0.78 (Site C0011) and r = 0.70 (Site C0012). We 
attribute the slightly weaker statistical fit at C0012 to time gaps in 
the stratigraphy created by slumping and unconformities (Expedi-
tion 322 Scientists, 2010b; Expedition 333 Scientists, 2012c). To 
summarize, over the last 10 m.y. of sedimentation in the Shikoku 
Basin, the average concentration of smectite in bulk mudstones 
decreased by ~3 wt% for each 1 m.y. decrease in age (Fig. 11).

DISCUSSION

Provenance and Dispersal of Sand Bodies in Shikoku Basin

The plate-tectonic reconstructions of Mahony et al. (2011), 
Hall (2002, 2012), Seton et al. (2012), and Wu et al. (2016) all 
place the northern edge of Shikoku Basin adjacent to the East 
China Sea prior to rapid opening of the Sea of Japan from 18 Ma 
to 15 Ma. If those reconstructions are correct, then the Kyushu 
Fan phase of sand influx to the Shikoku Basin probably passed 
through a network of submarine canyons that cut into the Chi-
nese continental margin (i.e., to the west of the rotating crustal 
blocks of Kyushu; Fig.  12A). Analogous submarine canyons 
exist today along the northern margin of Okinawa Trough (Zhao 
et al., 2008; Oiwane et al., 2011; Wu et al., 2014). We suggest that 
comparable systems incised and remained active during incipi-
ent subduction of the Philippine Sea plate, extending sediment-
supply routes across what is now the Ryukyu arc-trench system 
(Fig.  12A). As further evidence for that dispersal route, Clift 
et al. (2013) presented compelling data for a match in thermo-
chronology between zircon and apatite grains from Site 1177 and 
grains from the Yangtze River. If their correlation is correct, then 
it implies extension of a Miocene catchment all the way into the 
craton of central China. In addition, basin inversion affected the 
central and northern East China Sea during the late Miocene. The 
entire Tertiary succession, nearly 10 km in thickness, underwent 
inversion and erosion of up to 1.6 km of sedimentary strata (Yang 
et al., 2011). We suggest those erosional events also contributed 
significant volumes of sediment to the Shikoku Basin during the 
middle to late Miocene.

Clift et al. (2013) referred to the Miocene sand deposits at 
Site 1177 as “trench fill,” which is incorrect, and they neglected 
to restore paleopositions of the turbidites to locations far south 
of the present-day trench. When submarine fan sedimentation 
started (ca. 15.6 Ma), subduction of the Philippine Sea plate had 
just commenced (Hibbard and Karig, 1990; Wu et al., 2016). The 
northern edge of Kyushu-Palau Ridge was still located south of 
the newly developed subduction front, not yet in a position to 
block turbidity currents coming from the northwest. The fledg-
ling trench, moreover, did not provide a deep enough obstruction 
to block or deflect transport of sediment gravity flows from the 
northwest. The axial ridge of Shikoku Basin (i.e., Kinan sea-
mount chain) ceased spreading at ca. 15 Ma. Its elevation stood 
in the way of most flows moving toward the eastern half of the 
basin. To get past that basement high, larger flows either fun-
neled between the Kinan seamounts (e.g., Moore et al., 2001b) 
or circumvented the northernmost edge of the ridge (Fig. 12A). 
Kyushu Fan sedimentation ceased along the Kumano transect 
area at 12.8–12.2 Ma (Figs. 4 and 5). In our interpretation, that 
cutoff marks the arrival of elevated basement highs (Kinan sea-
mounts) at the proto–Nankai subduction front, thereby blocking 
access of gravity flows to the east side of the basin. In addi-
tion, oblique to strike-slip motion along the margin (e.g., Wu 
et al., 2016) may have shifted the east side of Shikoku Basin 
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Figure 11. Temporal changes in relative abundance of smectite in hemipelagic deposits at Integrated Ocean Drilling Program 
(IODP) Sites C0011 and C0012, expressed as wt% of the bulk sediment. See Figures 4 and 5 for age-depth models and com-
positional trends with depth. X-ray diffraction data are from Underwood and Guo (2013, 2017). Enlarged plots highlight linear 
regression statistics for depositional ages of 10 Ma to Holocene (n = number in population, r = correlation coefficient).
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Figure 12. Simplified paleogeographic reconstructions of the northern Shikoku Basin and surrounding regions during three stages of tectonic 
evolution: (A) 15–10 Ma, (B) 10–6 Ma, and (C) 6–0 Ma. Each map highlights our interpretations of major sediment sources and dispersal paths 
for sediment gravity flows (SGFs), suspended hemipelagic sediments, and pyroclastic deposits. Distributions of igneous rocks across the Japa-
nese Islands are from Kimura et al. (2005). The Japanese Islands are held fixed relative to present-day coordinates and shorelines to provide a 
static geographic reference frame for onland magmatism. These reconstructions do not include rigorous restorations of rotation and subduction of 
the Philippine Sea plate and allow for uncertainties in position and migration of the triple junction joining the Pacific, Philippine Sea, and Eurasia 
plates. In addition, outlines of Kyushu-Palau Ridge, Izu-Bonin arc, and Kinan seamount chain correspond to present-day bathymetry and are not 
meant to show portions along their strike consumed by subduction. MORB—mid-ocean-ridge basalt.
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progressively farther from the basin’s entry point for the turbid-
ity currents (Fig. 12B).

In our reconstruction, Kyushu Fan remained active on the 
west side of Shikoku Basin until 6.9  Ma (Fig.  12B), extend-
ing into the phase of highly oblique subduction to sinistral slip 
(ca. 10–6 Ma) along the margin (Kimura et al., 2005; Wu et al., 
2016). Evidently, bathymetric architecture along the proto–
Nankai margin was not configured to block or trap sediment 
gravity flows landward of Shikoku Basin. In some such systems, 
vertical offsets along strike-slip faults result in sediment ponding 
(fill-and-spill) within a ridge-and-trough topography (e.g., Teng 
and Gorsline, 1989; Normark et al., 2009). It is equally com-
mon, however, for submarine canyon–fan systems to cut across 
the entire width of a transform margin (McHugh et al., 1998; 
Fildani and Normark, 2004; Goldfinger et al., 2007; Mountjoy 
et al., 2009; Paull et al., 2011). Accordingly, we suggest that the 
changing sense of plate motion along the proto–Nankai margin, 
by itself, did not cause termination of sand influx to the Shikoku 
Basin. Instead, the final demise of Kyushu Fan, at ca. 7 Ma, was 
more likely a response to two extrabasinal events: subsidence in 
the incipient Okinawa Trough, and magmatic growth of Ryukyu 
arc volcanoes to elevated positions near or above sea level. After 
that island-arc topography materialized, subsequent sediment 
gravity flows from the East China Sea were trapped behind the 
Ryukyu Islands (Fig.  12C). In addition, subsequent accelera-
tion of near-orthogonal convergence at ca. 6–5 Ma should have 
resulted in increased shortening and development of more pro-
nounced topographic relief in the Nankai Trough. We would 
expect flows entering the deeper trench to be routed parallel to its 
axis rather than spilling over into the Shikoku Basin.

The topography and fluvial drainage systems that supplied 
sand to the younger Zenisu fans between 9.2  Ma and 7.6  Ma 
were probably closer to what we see in the present geography 
of the Japanese margin. The Daiichi and Daini Zenisu sand bod-
ies were deposited during the oblique-subduction to sinistral-slip 
phase of plate motion along the proto–Nankai Trough (Kimura 
et al., 2005; Wu et al., 2016). Neither the Daiichi Zenisu nor 
the Daini Zenisu depositional systems reached the western side 
of Shikoku Basin, which indicates that their sand sources were 
probably located to the east or northeast (Fig. 12B). The sand 
composition of both fans is consistent with a mixed provenance 
that contained an abundance of sedimentary, metasedimentary, 
and volcanic source rocks (Pickering et al., 2013; Kutterolf et al., 
2014). Those lithologies are currently exposed in the Izu-Honshu 
collision zone (e.g., Toriumi and Arai, 1989; Soh et al., 1991, 
1998; Takahashi and Saito, 1997), so our interpretation connects 
the Zenisu fans to a similar source.

The channels of Daiichi Zenisu Fan display length and 
depth scales similar to the Quaternary axial channel in the Nan-
kai Trough (Shimamura, 1989). It could be argued that such 
dimensions (hundreds of meters wide by several tens of meters 
deep) preclude derivation of sediment gravity flows from small 
watersheds of the Izu-Bonin islands; when compared to paleowa-
tersheds of central Honshu, the islands might seem less likely 

to feed point sources of fluvial discharge large enough to erode 
and sustain a deep-water channel-levee complex. To counter 
that argument, we note that large erosional features are common 
along the modern Izu-Bonin-Mariana system (e.g., Chadwick 
et al., 2005; Gardner, 2010). Zenisu submarine canyon and chan-
nel system, in particular, funnels turbidity currents and debris 
flows into the Zenisu Trough on the southeast side of the uplifted 
Zenisu Ridge (Wu et al., 2005). The head of Zenisu Canyon is 
incised into the Izu arc at a water depth of 1000 m, and the chan-
nel’s thalweg on the basin floor is 40–50 m deep and 500–1000 m 
wide. Additional coring would be needed to confirm how far 
those Quaternary turbidites extend into the northeast corner of 
Shikoku Basin (i.e., toward Kashinosaki Knoll). In our interpre-
tation, routing during the late Miocene passed through features 
similar to Zenisu Canyon.

The Daini Zenisu Fan contains distinctive tuffaceous sand-
stones with large clasts of reworked pumice. Kutterolf et al. (2014) 
compared their major-element concentrations, trace-element 
ratios, and Sr-Nd-Pb isotopes with those of several potential 
sources for volcanic detritus (e.g., Ryukyu arc, northern Honshu, 
southern Honshu, Izu-Bonin arc and rear-arc, northern Kyushu); 
they found a paleo-Honshu source to be the best geochemical 
match. Honshu arc volcanoes during that time extended from 
the Izu-Honshu collision zone northeast into northern Honshu 
(Fig. 12B; Kimura et al., 2005). The sheet-like geometry of Daini 
Zenisu Fan indicates that the associated sediment gravity flows 
were able to move unimpeded for hundreds of kilometers from 
the collision zone toward the center of Shikoku Basin (Fig. 12B).

Transformation of the Nankai Trough into a deeper and nar-
rower bathymetric feature, with prominent slopes on the land-
ward and seaward sides, probably started ca. 6 Ma in response to 
the renewal of near-orthogonal subduction of the Philippine Sea 
plate (e.g., Kamata and Kodama, 1994; Wu et al., 2016). Devel-
opment of the trench’s seaward slope was responsible for funnel-
ing most of the subsequent Pliocene and Quaternary sediment 
gravity flows down the axis of the trench, toward the southwest, 
rather than allowing spillover into Shikoku Basin (Fig.  12C). 
Local exceptions to that norm of axial transport can be found 
on the northeast side of Kashinosaki Knoll. Seismic-reflection 
profiles there display evidence for escape of trench turbidites and 
burial of upper Shikoku Basin sediments (Ike et al., 2008a) well 
seaward of the usual position of trench-wedge onlap, which is 
7–21 km from the landward base-of-slope (Mountney and West-
brook, 1996). When viewed as a whole, however, axial flows 
appear to have dominated during the Quaternary.

Most previous workers have argued that sand-rich deposits 
in the present-day trench wedge originated mostly from the Izu-
Honshu collision zone (De Rosa et al., 1986; Taira and Niitsuma, 
1986; Marsaglia et al., 1992; Underwood et al., 1993a; Fergus-
son, 2003; Underwood and Fergusson, 2005; Usman et al., 2014). 
Clift et al. (2013) provided a contrary and provocative interpre-
tation in which dispersal and along-strike transport of sediment 
from the collision zone have been limited throughout the margin’s 
history, with little or no effect on trench-floor sedimentation off-
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shore Shikoku and the Kii Peninsula; they further claimed that no 
sediment from the collision zone can be found offshore Kyushu, 
a distance of 350–500 km along the strike of the margin. Those 
assertions may be correct for some of the older (Miocene to early 
Pleistocene) sediment gravity flow deposits that were offscraped 
into the accretionary prism at Sites 1178 and 1176 (see also Fer-
gusson, 2003; Underwood and Fergusson, 2005), but we refute 
the interpretation for the Quaternary trench wedge (Fig. 12C).

Beyond the cogent petrographic arguments of others (e.g., 
Marsaglia et al., 1992; Fergusson, 2003), we reiterate the follow-
ing lines of evidence in support of a long-lasting detrital source 
in the Izu-Honshu collision zone and sustained, long-distance 
axial transport down the trench: (1) The gradient of the Nankai 
trench floor dips to the southwest, which favors sediment grav-
ity flows moving in that direction; (2) a large submarine canyon 
(Suruga Trough) has been deeply incised into the northeastern 
end of Nankai Trough; (3) three subaqueous slope-type fan deltas 
have prograded from the head of Suruga Trough, all aligned with 
the mouths of high-gradient rivers (Soh et al., 1995); (4) frequent 
storm-induced sediment-transport events flush sediment from the 
head of Suruga Trough, even during the Holocene highstand of sea 
level (Yoshikawa and Nemoto, 2010); (5) a second large subma-
rine canyon (Tenryu Canyon) was incised immediately seaward 
of the Tenryu River mouth, resulting in exposure of metamor-
phosed Miocene accretionary prism along the deep-water canyon 
walls (Kawamura et al., 2009); (6) erosion in Tenryu Canyon was 
rejuvenated following the collision of the proto–Zenisu Ridge 
with the accretionary prism (Soh and Tokuyama, 2002); (7) high-
resolution bathymetric records highlight a prominent axial chan-
nel on the Nankai trench floor (see Fig.  2), which begins at a 
point source at the mouth of the Fuji River and extends to a posi-
tion offshore the Kii Peninsula (Shimamura, 1989); (8) the Ten-
ryu Fan prograded onto the trench floor at the mouth of Tenryu 
Canyon, causing southward deflection of the axial channel (Soh 
et al., 1991); (9) deeper seismic-reflection character (i.e., high-
amplitude reflections) shows temporal continuity of axial-channel 
migration, extending back at least into the late Pleistocene (Shi-
mamura, 1989); (10) a 7 m.y. history of rapid uplift exists within 
the inferred Izu-Honshu source area (e.g., Tanzawa Mountains), 
characterized by high rates denudation (up to 2 mm/yr) and exhu-
mation of tonalites from midcrustal depths (Yamada and Tagami, 
2008; Tani et al., 2010); (11) bedrock uplift rates in the Kiso 
Range of central Japan equal 3–6 mm/yr, with denudation rates 
of 1–4 mm/yr (Sueoka et al., 2012); (12) paleocurrent evidence 
from DSDP Site 808 is consistent with reflection or deflection of 
turbidity currents off the seaward slope (Pickering et al., 1992); 
and (13) the magnetic fabric in distal trench turbidites (Sites 582 
and 583) is oriented parallel to the axis of the trench (Taira and 
Niitsuma, 1986).

Provenance and Dispersal of Hemipelagic Muds

XRD data from Sites C0011 and C0012 (Underwood and 
Guo, 2013, 2017) provide a robust record of the temporal shifts 

in clay mineral assemblages, enhancing what Underwood and 
Fergusson (2005) had described previously for the regional 
Nankai-Shikoku system. Underwood and Fergusson (2005) rec-
ognized that fine-grained suspended sediments had been eroded 
and transported from multiple sources, and that competition 
among those sources and dispersal routes have changed gradu-
ally over time. They attributed the gradual depletion of detrital 
smectite, with commensurate increases in illite and chlorite, 
to four factors: (1) intensification of the NE-directed Kuroshio 
Current after closure of the Central America seaway at ca. 3 Ma 
(Molina-Cruz, 1997; Tsuchi, 1997); (2) strengthening of ocean 
bottom currents at ca. 6 Ma, in response to buildup of Antarc-
tic ice and enhanced circulation of Antarctic bottom water (Lee 
and Ogawa, 1998); (3) shifts in centers of active volcanism, as 
well localities with widespread exposures of weathered volca-
nic rock (Kamata and Kodama, 1994; Cambray et al., 1995); and 
(4) progressive uplift and erosion of accreted sedimentary and 
metasedimentary rocks across the Outer Zone of Japan (Taira 
et al., 1988; Hasebe et al., 1993, 1997; Nakajima, 1997). Paral-
lel trends in clay mineral assemblages in the Sea of Japan have 
been linked to the effects of a strengthening Tsushima Current 
(Fagel et al., 1992). We can now extend the record of hemipelagic 
input to Shikoku Basin back to 15 Ma (Fig. 11). Refinements to 
our interpretations are supported by improved reconstructions of 
regional plate-tectonic history (e.g., Hall, 2002; Mahony et al., 
2011; Wu et al., 2016), better mapping and dating of time-space 
patterns for magma bodies (e.g., Kimura et al., 2005; G. Kimura 
et al., 2014), expanded records of regional and local denudation 
history (e.g., Hasebe and Hoshino, 2003; Hasebe and Watanabe, 
2004; Yamada and Tagami, 2008), and consideration of some 
new geochemical indicators of detrital provenance for the coeval 
sand deposits in Shikoku Basin (e.g., Clift et al., 2013; Kutterolf 
et al., 2014).

As discussed previously, the likelihood of having sandy sedi-
ment gravity flows funneled from the East China Sea into the Shi-
koku Basin during Kyushu Fan deposition is strong. If the sand 
and silt components of the basin’s sediment budget followed that 
dispersal route from ca. 16 Ma to ca. 7 Ma, then some clay-size 
suspended sediment must have tracked the same path (Figs. 12A 
and 12B). Termination of that route for bottom-seeking sediment 
gravity flows, however, did not necessarily result in a permanent 
cutoff of suspended sediment, as some exchange of surface water 
would still be possible through gaps between the volcanic islands 
of the Ryukyu arc, especially during highstands of sea level 
(Fig. 12C). During lowstands, a continuous land bridge evidently 
blocked such exchanges of water masses (Ujiié and Ujiié, 1999).

One way to constrain the compositional fingerprint of the 
East China Sea is by measuring clay mineral abundances of 
near-surface muds in Okinawa Trough. Those muddy sediments 
are enriched in illite (>50%) with relatively low percentages of 
smectite, typically <30% of the total clay (Dou et al., 2010; Xu 
et al., 2014; Wang et al., 2015). Diekmann et al. (2008) showed 
comparable dominance by detrital illite during the Quaternary at 
ODP Site 1202, which is located on the western edge of southern 
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Okinawa Trough. If we assume that bulk-sediment compositions 
from kindred sources were similar during the Miocene, then 
pulses of suspended sediment emanating from mainland China 
(via the East China Sea) and/or farther west from Taiwan should 
have been distinctly illite-rich. Instead, we find high concentra-
tions of smectite in Miocene strata within the Shikoku Basin 
(Fig. 11). Thus, the main route of suspended sediment during the 
Miocene was probably not through the East China Sea.

The anomalous near-trench magmatism that swept across 
the Outer Zone of Japan from ca. 16 Ma to 12 Ma (Fig. 12A; 
Kimura et al., 2005; G. Kimura et al., 2014) left regionally exten-
sive ignimbrite deposits from felsic caldera eruptions (e.g., Dan-
hara et al., 2007; Iwano et al., 2007; Miura and Wada, 2007). 
Apatite fission-track ages are indicative of rapid cooling, uplift, 
and exhumation of the associated granitic rocks (Hasebe and 
Hoshino, 2003). The Izu-Honshu collision zone followed a simi-
lar pattern, with rapid exhumation bringing tonalites to the sur-
face from midcrustal (7–12  km) depths (Yamada and Tagami, 
2008). Chemical weathering of the Miocene ignimbrites (which 
contained abundant, chemically unstable volcanic glass) should 
have produced soils with high concentrations of smectite. We 
suggest that 15 m.y. of progressive denudation, after those erup-
tions ceased, stripped away the weathered volcanic cover and 
gradually exposed more of the deeper-seated intrusions and sur-
rounding country rocks (e.g., Shimanto belt). The main cause of 
gradual smectite depletion within the Shikoku Basin was that 
gradual change in the balance between volcanic and sedimentary/
plutonic source rocks.

Saitoh et al. (2015) used Sr-Nd-Pb isotope compositions of 
upper Shikoku Basin sediments (i.e., the hemipelagic-pyroclastic 
facies) to define a mixing trend over the past 7  m.y. Mixing 
occurred between two sources: the East China Sea source and a 
Japan margin source (see also Dou et al., 2012). Their data show 
progressive decreases in the influx of sediment from China over 
time, especially between 4.4 Ma and 2.9 Ma. Those decreases 
in sediment transport from the East China Sea may have been 
enhanced by intensification of the Kuroshio Current (Fig. 12C), 
which now directs surface water flow into Okinawa Trough. 
However, changes in the paleoposition of depositional sites rela-
tive to the core of the current also need to be considered (Saitoh 
et al., 2015). On the other hand, we suggest that the mixing trend 
of Saitoh et al. (2015) should have been accompanied by con-
temporaneous decreases in the proportion of detrital illite (i.e., 
from 4.4 Ma to present); instead, we see the opposite trend in 
XRD results from sites across the entire Nankai-Shikoku system 
(Fig. 11). We therefore agree with the suggestion for increasing 
dominance of suspended-sediment influx from the Japan margin 
since 4.4 Ma (Fig. 12C), but that increase must have been accom-
panied by gradual changes in the proportions of parent rock types 
within those detrital source areas.

Temporal changes in the proportions of different parent 
rocks across the Outer Zone of Japan are also supported by fis-
sion-track data from the Kii Peninsula, which reveal localized 
Miocene overprints of paleotemperature with the Cretaceous 

Shimanto belt (Hasebe and Watanabe, 2004). The regional effects 
of Miocene magmatism also raised levels of thermal maturity 
within Eocene–Miocene parts of the accretionary complex and 
forearc (Chijiwa, 1988; Underwood et al., 1992). Hasebe et al. 
(1993) and Hasebe and Hoshino (2003) highlighted local exam-
ples of differential uplift along the strike length of the Shimanto 
belt, with younger (ca. 10 Ma) cooling ages in the Muroto Pen-
insula. Hasebe and Tagami (2001) provided additional evidence 
of differential exhumation across the Shimanto accretionary 
prism, forced by local episodic events. Thus, even though uplift 
and weathering trends were not uniform across the Outer Zone 
of Japan, gradual exposure of those granitic plutons, the sur-
rounding accreted sedimentary rocks, and associated metasedi-
mentary rocks to chemical and physical weathering should have 
produced a clay mineral assemblage that became progressively 
more enriched in illite and chlorite.

In our interpretation, the onset of gradual and irreversible 
smectite depletion in the suspended sediments of Shikoku Basin 
occurred at ca. 9 Ma (Fig. 11). That phase in geologic history 
represents the turning point in regional-scale uplift of the Japan 
margin, when widespread sources of detrital smectite (weathered 
Miocene ignimbrites) began their decline. Subordinate sources, 
including a small component of eolian input, complicated the 
picture. Sporadic delivery of illitic clays from the East China 
Sea source (Fig. 12B) helps to explain the scatter in percentage 
of smectite (Fig. 11), especially during Miocene deposition of 
submarine fans. Similarly, subordinate transport of clays as part 
of the tuffaceous sediment gravity flows from the Izu-Honshu 
collision zone (Kutterolf et al., 2014) probably resulted in punc-
tuated increases in detrital smectite coming from the northeast 
side of the basin (Fig. 12B). In general, however, strengthening 
of the NE-flowing Kuroshio Current during the late Pliocene and 
early Pleistocene reinforced the Outer Zone trend by transporting 
illite-rich mud from Taiwan (Diekmann et al., 2008) and damp-
ened transport of smectite-rich suspended sediment eroded from 
weathered volcanic islands of the Izu-Bonin chain (Fig. 12C).

Initiation of Pyroclastic Influx to the Shikoku Basin

The final episode of sedimentation history in the Shikoku 
Basin for us to consider is the onset of pyroclastic influx (i.e., 
the base of the hemipelagic-pyroclastic facies). To begin with, 
we recognize a significant difference between numbers of dis-
crete ash layers recovered at Site C0011 (n = 101) versus the 
numbers at Site C0012 (n = 47). A small part of that discrep-
ancy might be an artifact of incomplete core recovery. Perhaps 
the air-fall deposits have been thinner, on average, on top of the 
Kashinosaki bathymetric high; thinner ash beds should have a 
greater likelihood of being homogenized into the hemipelagic 
mud by bioturbation. Another contributing factor might be cre-
ation of unconformities, from winnowing by enhanced tidal 
energy, or strong bottom currents and eddies moving over the 
crest of the knoll (e.g., Turnewitsch et al., 2013; Chen et al., 
2015; Pollard and Read, 2015; Read and Pollard, 2015), or by 
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removal of parts of the section by mass wasting. The net effect 
is better preservation of tephra layers on the flanks of the knoll 
than on the crest.

The base of the hemipelagic-pyroclastic facies is enigmatic 
because its age changes so dramatically along strike (Fig.  8). 
The boundary varies from 7.8–7.6 Ma on the northeast side of 
the basin (Figs. 4 and 5) to 3.3–3.9 Ma on the northwest side 
(Figs.  6 and 7). Diagenetic overprints may have masked the 
boundary’s original position (i.e., due to alteration of deeper ash 
layers to smectite-rich bentonites), but that effect is inferred to 
be relatively minor. We reach that conclusion because the pro-
jected borehole temperatures are significantly different at the cur-
rent depths of the unit boundary: ~40 °C at Site 1177; ~63 °C 
at Site 1173; ~33 °C at C0011; ~23 °C at Site C0012 (Spinelli 
et al., 2007; Expedition 333 Scientists, 2012b, 2012c; Marcail-
lou et al., 2012). If the boundary were largely diagenetic, then 
the temperatures at the base of the unit should be similar at all 
sites. We suggest, instead, that large shifts in the timing of ash 
influx from west to east are manifestations of plate-boundary 
reorganizations, particularly the response of explosive arc activ-
ity to the renewal of subduction at ca. 6 Ma (Figs. 12B and 12C). 
To explore that possibility in more detail, we consider where the 
prospective eruptive centers near Japan were positioned during 
accumulation of the hemipelagic-pyroclastic facies.

At the present time, Shikoku Basin is fronted by active 
volcanoes to the east-northeast (Izu-Bonin arc), to the north-
northeast (Honshu arc), and to the west-northwest (Kyushu and 
Ryukyu arcs). Linking individual ash layers to specific eruptions, 
therefore, is challenging. Expedition 333 Scientists (2012b, 
2012c) recognized four distinctive ash beds that they correlated 
with named and dated tephra deposits on land, ranging in age 
from 0.85 to 4.0 Ma (Hayashida et al., 1996; Satoguchi et al., 
2005; Nagahashi and Satoguchi, 2007). Of those correlations, 
two tephra beds can be traced eastward from calderas in central 
Kyushu to the Boso Peninsula of central Honshu (Kamata et al., 
1997), and two eruptions probably originated in central Japan. 
Volcano-specific sources for all of the remaining pyroclastic 
deposits remain uncertain, but the Honshu arc in central Japan is 
a logical candidate, especially for ash deposits on the east side of 
Shikoku Basin.

Island-arc–type eruptions (subalkalic magmas) have 
occurred along the Honshu arc of NE Japan for the past 12 m.y. 
(Kimura et al., 2005). Regional analysis of marine tephras shows 
that the frequency of eruptions has increased since ca.  8  Ma 
(Mahony et al., 2016). In addition, the volcanic front has 
migrated landward (~50 km to the west) during the past 3 m.y. 
(Nakamura et al., 2014). Atmospheric transport from volcanoes 
near the southern end of the Honshu arc, in particular, should 
have carried ash into the northeastern part of the Shikoku Basin 
on a regular basis (Fig. 12B); prevailing winds currently blow 
across Japan toward the southeast during the winter, and the sub-
tropical jet stream is directed toward the east. In addition, central 
Japan experienced a rich history of extremely large explosive 
eruptions during the Pliocene and Pleistocene (Yoshikawa et al., 

1996; Nagahashi et al., 2000; Kataoka et al., 2001; Iwaki and 
Hayashida, 2003). Fourteen distinctive marker tephras have 
been mapped on land, with thickness contours that project off-
shore into the northern Philippine Sea; the ages of those tephras 
range from 4.15 Ma to 1.65 Ma (Tamura et al., 2008). Similarly, 
uplifted Pliocene–Pleistocene marine deposits exposed on the 
Boso Peninsula (north side of the Izu-Honshu collision zone) 
contain more than 250 tephra layers, with ages ranging from 
2.1 Ma to 0.7 Ma (Satoguchi, 1995). Given that history, we favor 
central Japan (southern Honshu arc) as the principal source for 
ash layers at Sites C0011 and C0012 (Figs. 12B and 12C). That 
influx has been sustained since ca. 7.8 Ma, largely controlled by 
subduction of the Pacific plate.

Another potential source of windblown ash is located to the 
east-northeast of Sites C0011 and C0012 along the Izu-Bonin 
island arc (Fig.  12). Pyroclastic turbidity currents are another 
possibility (e.g., Schindlbeck et al., 2013). According to Cambray 
et al. (1995), the Izu-Bonin system experienced two pulses of 
explosive activity over the last 5 m.y. Prevailing winds, however, 
are more likely to have transported ash from those volcanoes into 
the central Shikoku Basin and northern Parece Vela Basin (e.g., 
closer to DSDP Sites 442, 443, and 444). We therefore regard the 
Izu-Bonin source as a subordinate contributor of airborne ash to 
the northeastern part of Shikoku Basin.

Pyroclastic influx to the northwest side of Shikoku  Basin 
started later, during the Pliocene (Fig. 8). Subduction-related vol-
canism across Kyushu had ceased during the phase of oblique 
subduction or sinistral slip (ca. 10 Ma to 6 Ma; Fig. 12B). The 
proto–Nankai boundary at that time probably extended into the 
Ryukyu arc as a zone of left-lateral transpression (Mahony et al., 
2011). Eruptions gradually picked up again on Kyushu from 
6 Ma to 2 Ma, after the convergence direction for the Philippine 
Sea plate rotated to the northwest. Reinitiation of magmatism 
was dominated initially by local basalt flows and development of 
an andesite lava plateau in the Hohi volcanic zone (Kamata and 
Kodama, 1994, 1999; Mahony et al., 2011). Scattered stratovol-
canoes and monogenetic (rhyolitic) volcanoes also erupted dur-
ing that phase, with ages that range mostly from 3.8 Ma to 2.2 Ma 
(Mahony et al., 2011). The current style of large-magnitude explo-
sive caldera eruptions started in earnest at ca. 1.5 Ma, coincident 
with formation of a well-defined, NE-SW–trending volcanic 
front (Kamata and Kodama, 1999; Maeno and Taniguchi, 2007). 
Several of those explosions were large enough to create marker 
beds of tephra that extend into central Japan (Kamata et al., 1997; 
Kaneko et al., 2007), and two of the named ash beds at Sites 
C0011 and C0012 have been correlated with Kyushu. It stands to 
reason, however, that the Kyushu source was more prevalent on 
the west (proximal) side of Shikoku Basin. We suggest, therefore, 
that the stratigraphic base of the hemipelagic-pyroclastic facies 
at Sites 1173 and 1177 coincides with reinitiation of explosive 
volcanism on Kyushu and the islands along the northwest end of 
the Ryukyu arc (Fig. 12C). That influx has been sustained since 
ca.  3.8 Ma, largely controlled by subduction of the Philippine 
Sea plate.
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Implications for Subduction Processes and Fault-Slip 
Behavior

Sedimentary strata within the Shikoku Basin are vital to a 
broader analysis of the regional tectonics because they represent 
inputs to the Nankai subduction zone. As such, the complexities 
of lithostratigraphy and sediment composition that we highlight 
raise a number of important implications for the likely responses 
of strata to deformation and diagenesis landward of the subduc-
tion front. Fundamentally, the subduction zone is not composed 
of monotonous sediment that is uniform in its physical properties 
and behavior in all directions. As such, not only did the region’s 
tectonic evolution affect sedimentation, the textural and compo-
sitional attributes of those sediments have modulated the mar-
gin’s tectonic behavior.

One postdepositional consequence is higher concentrations 
of dispersed volcanic glass and pumice, which have been shown 
to be a prerequisite for early silica cementation and retention of 
intervals of anomalously high porosity (Hüpers et al., 2015); 
those properties and compaction responses exist only within the 
upper Shikoku Basin (i.e., the hemipelagic-pyroclastic facies). 
Sediment shear strength is highly sensitive to concentrations of 
clay-size particles and clay mineralogy; weaker intervals in the 
stratigraphy often coincide with higher proportions of smectite 
(Brown et al., 2003; Kopf and Brown, 2003; Saffer and Marone, 
2003; Ikari et al., 2007; Ikari and Saffer, 2011). Specifically, 
samples from the hemipelagic-pyroclastic facies typically yield 
values of 0.5–0.6 for residual apparent coefficient of friction, 
whereas values for older smectite-rich mudstones are close to 0.2 
(Ikari et al., 2013). Thus, the weakest intervals entering Nankai 
Trough are subducting mudstones and bentonites within the lower 
Shikoku Basin. As noted by Underwood (2007), the stratigraphic 
position of the frontal décollement does not coincide with unusu-
ally high concentrations of smectite; instead, frictional properties 
are weak throughout most of the Miocene section.

Hydrogeological properties are likewise sensitive to sedi-
ment composition and grain size. Following their accretion, the 
localized submarine-channel deposits of Daiichi Zenisu Fan, as 
compared with extensive sheet-like sand deposits of the Kyushu 
Fan, must create totally different three-dimensional migration 
routes for fluids draining out of or beneath the accretionary 
prism. The pathways for focused flow through shoestring-shaped 
sand bodies are more circuitous and unpredictable in three 
dimensions. Elevated pore pressures (i.e., above hydrostatic) 
are more likely to develop at lateral pinch-outs of the sheet-like 
sand bodies, especially where such aquifers are inclined (Yardley 
and Swarbrick, 2000) or where sediment gravity flow deposits 
fill basement lows and lap onto the mudstone carapace of adja-
cent basement highs (Fig.  9A). Overpressures are also likely 
where successions of low-permeability mudstone retard verti-
cal drainage from underlying sheet sands (e.g., at the boundary 
between Kyushu Fan deposits and the hemipelagic mud facies). 
Pore pressures at those terminations of sand may become high 
enough to favor specific stratigraphic intervals for abnormally 

low values of effective normal stress, reduced shear strength, and 
underconsolidation (Underwood, 2007; Saffer and Tobin, 2011). 
Stratigraphic intervals with diminished shear strength likely act 
as preferred paths for seaward propagation of the megathrust 
and/or megasplay fault. The low-velocity zones detected in the 
hanging wall of the megathrust (e.g., Bangs et al., 2009) could 
have similar connections to a facies-dependent hydrogeological 
architecture.

Changes in concentrations of detrital smectite with depth 
and age also mean that diagenetic fluid production should peak 
in the lower half of the Shikoku Basin succession, where initial 
(presubduction) proportions of smectite exceed 50 wt% of the 
bulk sediment (Figs. 4 and 5). As burial progresses, dehydration 
reactions involving smectite to illite will undoubtedly result in 
consistently larger volumetric contributions of fluid where initial 
concentrations of smectite are higher (Saffer et al., 2008). Larger 
volumes of fluid production, therefore, set up a greater potential 
for overpressured conditions within the footwall to the megath-
rust (e.g., Colton-Bradley, 1987; Osborn and Swarbrick, 1997; 
Wangen, 2001). Conversely, the upper stratigraphic intervals of 
Shikoku Basin (hemipelagic-pyroclastic facies), which are more 
illite-rich (Figs. 4 and 5) and more likely to be offscraped into the 
frontal accretionary prism (Screaton et al., 2009b), should pro-
duce significantly lower volumes of fluid during clay diagenesis. 
The temperature structure of the margin also modulates diage-
netic fluid production. Heat flow changes along the strike of the 
Nankai margin largely in response to the age of the subducting 
plate (Yamano et al., 2003; Spinelli and Underwood, 2005; Har-
ris et al., 2013). Along-strike variations in temperature seaward 
of the deformation front will exert a first-order control over 
where the landward (downdip) progression of diagenetic reac-
tions will peak (Saffer et al., 2008), and that variability probably 
contributes to the different forms of fault-slip behavior along the 
plate interface and the megasplay (Hyndman et al., 1995; Wang 
et al., 1995; Oleskevich et al., 1999; Yoshioka and Murakami, 
2007). When those disparities in updip and downdip tempera-
ture are combined with all of the architectural intricacies that we 
described for the subduction inputs to Nankai Trough, the time-
space patterns for great earthquakes, low-frequency earthquakes, 
and slow-slip events should be expected to be inhomogeneous 
(e.g., Hasegawa et al., 2009; Obara, 2009).

SUMMARY AND CONCLUSIONS

Five decades of scientific ocean drilling have demonstrated 
that the history of sedimentation within the Shikoku Basin is much 
more intricate and nuanced than the relatively simple pelagic-
hemipelagic successions found outboard of the Japan and Costa 
Rica subduction zones. As such, we expect the three-dimensional 
distributions of sediment shear strength, permeability, diagenetic 
fluid production, and pore pressure to be more unpredictable and 
facies-sensitive in the Nankai subduction zone as Shikoku Basin 
deposits move downdip into the frontal accretionary prism and 
the footwall to the megathrust.
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Our synthesis of data from sand bodies, hemipelagic mud-
stones, and pyroclastic deposits demonstrates that sedimentary 
facies within Shikoku Basin evolved in a punctuated manner, 
driven by several reorganizations of plate boundaries and changes 
in plate motions around the basin’s margins (e.g., Wu et al., 2016). 
A factor of somewhat lesser importance for modulating facies 
architecture was the creation of irregular basement topography 
during initial stages of back-arc rifting, seafloor spreading, and 
postspreading construction of seamounts (e.g., Kinan seamount 
chain, Kashinosaki Knoll). Those basement highs influenced the 
routing of sand once gravity flows entered the basin by deflecting 
more sediment into adjacent basement lows.

The Kyushu Fan (Pickering et al., 2013) created sheet-like 
sand bodies that prograded into Shikoku Basin on both sides of 
the extinct spreading center during the early to middle Miocene. 
At the same time, coeval deposits along the Kinan seamount 
chain (ODP Site 1173) were dominated by hemipelagic settling 
of fine-grained suspended sediment. The compositions of sedi-
ment gravity flow deposits at IODP Sites C0011 and C0012 are 
consistent with a mixed detrital and pyroclastic provenance. 
Thermochronology results from Clift et al. (2013) indicate that 
Miocene sand beds at ODP Site 1177 (west side of Shikoku 
Basin) were transported across the East China Sea from a proto–
Yangtze River watershed. Kyushu Fan ceased its activity on the 
east side of the basin at ca. 12.5–12.2 Ma, and that termination 
event gave way to more than 3  m.y. of uninterrupted hemipe-
lagic deposition. We attribute the earlier east-side termination of 
Kyushu Fan mostly to blockage of sediment gravity flow trans-
port routes by incipient subduction of the Kinan seamounts along 
the proto–Nankai Trough. Throughout Shikoku Basin, that phase 
of Miocene hemipelagic sedimentation was dominated by smec-
tite-rich clay mineral assemblages. Bulk mudstones with ages of 
15 Ma to 10 Ma typically contain more than 40 wt% smectite. 
The main source of the detrital smectite was subaerial weathering 
of ignimbrites that erupted across the Outer Zone of Japan shortly 
after the initiation of subduction of the Philippine Sea plate.

Most plate reconstructions for the Philippine Sea plate (e.g., 
Mahony et al., 2011; Wu et al., 2016) show sinistral strike-slip or 
strongly oblique subduction during the late Miocene (10 Ma to 
6 Ma). During that time interval, transport of tuffaceous and vol-
caniclastic sands was restricted to the east side of Shikoku Basin. 
Those sediment gravity flow deposits are separated from the older 
Kyushu Fan deposits by a thick interval of hemipelagic mudstone. 
The Daiichi Zenisu Fan is channelized, whereas the overlying 
Daini Zenisu Fan is sheet-like and more “distal” in facies charac-
ter (Pickering et al., 2013). During both intervals, sediment grav-
ity flows were able to move up the flanks of Kashinosaki Knoll to 
its crest, and both fan systems thin in the upslope direction. Geo-
chemical and petrographic data from pumice fragments indicate 
a detrital provenance to the northeast, either in the southern Hon-
shu arc or the Izu-Honshu collision zone (Kutterolf et al., 2014). 
The modern Zenisu canyon-channel system (Wu et  al., 2005) 
provides us with a convincing analog for that phase of sediment 
routing. The shift from channelized to sheet-like flows occurred at 

ca. 8 Ma, and influx of volcanic sand from the Izu-Honshu source 
terminated shortly thereafter (7.8 Ma to 7.6 Ma).

On the west side of the Shikoku Basin, supply routes for 
sediment gravity flows from the East China Sea remained active 
up to ca. 7 Ma. We suggest that sediment routing to DSDP Site 
297 and ODP Site 1177 was finally terminated when bathymet-
ric topography along the Ryukyu arc-trench system grew close 
enough to sea level to trap subsequent sediment gravity flows 
behind the volcanic islands. Rifting and opening of the Okinawa 
Trough back-arc basin contributed to that phase of bathymetric 
reorganization. Clay mineral assemblages during that period of 
time began to show a steady decline in the amount of detrital 
smectite, with reductions of ~3 wt% smectite for each 1  m.y. 
decrease in age. We attribute that change in suspended sediment 
composition to rapid uplift and denudation of the Outer Zone of 
Japan. Chemical weathering and physical erosion stripped away 
the ignimbrites and exposed progressively deeper levels of the 
Miocene granites and sedimentary rocks of the Shimanto belt 
accretionary prism.

The bathymetric low that currently defines Nankai Trough 
as a trench, with prominent slopes on both landward and sea-
ward sides, formed at ca. 6 Ma after renewal of near-orthogonal, 
northwest-directed subduction of the Philippine Sea plate. The 
seaward slope of the trench evidently prevented most sediment 
gravity flows from spilling over into eastern Shikoku Basin. Con-
sequently, the youngest facies in Shikoku Basin is dominated by 
hemipelagic mudstone with dozens of discrete interbeds of vol-
canic ash. That phase of pyroclastic influx began ca. 7.8 Ma along 
the northeastern half of the basin. The main source for that tephra 
was probably the southern Honshu arc in central Japan, with sub-
ordinate influx from the Izu-Bonin islands to the east-northeast. 
In contrast, onset of substantial pyroclastic influx to the north-
west side of Shikoku Basin was delayed until ca. 3.8 Ma. We 
attribute that difference in age to reintroduction of subduction-
related volcanism across Kyushu and the northeastern Ryukyu 
Islands. The prominent caldera eruptions on Kyushu commenced 
at ca. 1.5 Ma. Some of those larger Quaternary explosions cre-
ated distinctive tephra deposits that extended into central Japan 
and the northeast side of Shikoku Basin, but their impact on sedi-
mentation was greater on the more proximal northwest side.

Clay mineral assemblages during the Pliocene continued the 
progressive depletion of detrital smectite and increases in illite 
and chlorite. Sr-Nd-Pb isotope compositions indicate a mixing 
trend over the same time interval, with increasing dominance 
of a Japan-margin source over a source in the East China Sea 
(Saitoh et al., 2015). Fine-grained sediments in Okinawa Trough 
are highly enriched in detrital illite, so the temporal shift to domi-
nance by the Japan-margin source must have been accompanied 
by changes in the rock types exposed to weathering across the 
Outer Zone of Japan and Izu-Honshu collision zone. We suggest, 
specifically, that continuation of uplift and denudation resulted in 
increasingly widespread exposures of Miocene granites, tonal-
ites, forearc-basin deposits, and sedimentary to metasedimentary 
rocks of the Shimanto belt to weathering and erosion.
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Trench-parallel sediment routing has dominated the Nankai 
margin during the Quaternary, especially after ca. 2 Ma, when 
collision between the Izu and Honshu volcanic arcs intensified in 
the main source region to the trench. Except for one local incur-
sion onto the northeast flank of Kashinosaki Knoll (Ike et al., 
2008a), we know of no recent examples of sand transport onto 
the floor of Shikoku Basin. Instead, the lithostratigraphic units of 
Shikoku Basin are rapidly buried by an upward-thickening and 
upward-coarsening wedge of trench-floor deposits.
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