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Abstract 

In this work, we report on a novel approach to develop hierarchically-structured 

cell culture platforms incorporating functionalized gold nanoparticles (AuNPs). In 

particular, the hierarchical substrates comprise primary pseudo-periodic arrays of 

silicon microcones combined with a secondary nanoscale pattern of homogenously 

deposited AuNPs terminated with bio-functional moieties. AuNPs with various 

functionalities (i.e. oligopeptides, small molecules and oligomers) were successfully 

attached onto the microstructures. Experiments with PC12 cells on the hierarchical 

substrates incorporating AuNPs carrying the RGD peptide showed an impressive 

growth and NGF-induced differentiation of the PC12 cells, compared to that on the 

NPs-free, bare, micropatterned substrates. The exploitation of the developed 

methodology for the binding of AuNPs as carriers of specific bio-functional moieties 

onto micropatterned culture substrates for cell biology studies is envisaged. 

 

1. Introduction  

 

Gold nanoparticles (AuNPs) are employed in various biomedical applications. 

Their broad use is attributed to their unique properties, which are either directly or 

indirectly correlated with their size. For example, the optical and thermal properties of 

gold nanoparticles are exploited in diagnostics, including bioimaging and biosensing 

(surface-enhanced optical-spectroscopical properties/absorption and scattering) 

(reviewed in 
1
) and in photodynamic therapy (optical heating and photochemical 

reaction generation) (reviewed in 
1,2

). Due to their small and tunable size, their ease of 

functionalization/bioconjugation and their high surface-to-volume ratio, AuNPs are 

exploited in drug delivery systems 
1,3–6

, as novel contrast agents 
2
 and as coatings of 

medical implants 
7
.    

There is an immense need to understand the cells/tissues-nanoparticles 

interactions for each application. The majority of the in vitro studies so far include 

cells grown on petri dishes and incubated with functional nanoparticles. These studies 

focus on the effect of different nanoparticles parameters (e.g. size, shape, 
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functionality, concentration, etc.) on cell toxicity, and generally they investigate 

whether cell functions are somehow altered by the presence of nanoparticles 

(reviewed in 
8
) 

9
. Such studies provide important information regarding the cell-

nanoparticles interactions and the nanoparticle uptake by the cells, which are critical 

in applications, such as drug delivery systems and intracellular imaging 
8,10

. However, 

they cannot provide an insight into the condition where cells are exposed to 

nanoparticles attached on a functional surface, as in the case of implants or 

bioanalytical sensors. Thus, new types of culture platforms are developed in order to 

study the basolateral cells-nanoparticles interactions.  

Two dimensional substrates with attached gold and other plasmonic 

nanoparticles, defined as plasmonic substrates, have been recently introduced 

(reviewed in 
11

). Plasmonic platforms are investigated for their potential in label-free 

sensing of biomolecules and living cells 
12

. Plasmonic nanoparticles assembled onto a 

substrate enable surface plasmon phenomena, which can enhance the Raman signal of 

cells grown on them measured by surface enhanced raman scattering (SERS) 

spectroscopy 
12

. Furthermore, novel cell culture platforms comprising nanopatterns of 

gold nanoparticles with immobilized oligopeptides or even whole proteins, such as 

receptors, have been used to pattern cells and to address fundamental questions on 

adhesion, growth and differentiation or cell manipulation 
11

. Fabricated via block 

copolymer micelle nanolithography 
13

, these culture platforms comprise patterns of 

gold nanodots surrounded by a cell-phobic region of PEG molecules, and are in turn 

functionalized with RGD or other biomolecules 
14–16

. In those experiments, 

nanoparticles have been used as carriers for the functional moieties and as precisely 

located anchoring points for the cells 
14–16

. 

At the same time, it is widely reported that the underlying substratum 

topography influences cell behaviour 
17–21

. Continuous anisotropic patterns at the 

microscale, e.g. in the form of grooves, strongly promote cell alignment and 

orientation along the axis compared to the flat surfaces 
17–20

. Furthermore, we have 

previously reported on the remarkable effects of discontinuous anisotropic silicon 

micro-patterns on neuron cell adhesion and growth, including common cell lines as 

PC12 
22

 and/or primary cells 
23,24

. Besides this, nanosized discontinuous features, e.g. 

in the form of pits, have been shown to significantly affect stem cell differentiation 

favouring a specific lineage 
21

. Although the effect of a topographical pattern on one 

cell type cannot be extrapolated to other cell types, the studies so far show that 

generally the micro-scale patterns can affect cell shape, orientation and alignment, 

and cytoskeletal structure, while the nanostructured patterns can influence cell 

functions, including adhesion, proliferation, and differentiation 
25

. Thus, there is an 

increasing interest in studying the effect of  hierarchical topographies that combine 

both  micro- and nano-scale features on cell growth 
26–28

.  

In this work, we report on a novel approach to develop hierarchically-structured 

cell culture platforms incorporating bioconjugated AuNPs. First, the defined 

hierarchical substrates comprise primary pseudo-periodic arrays of silicon microcones 

combined with a secondary nanoscale pattern of homogenously deposited AuNPs 

terminated with bio-functional moieties. It is shown that AuNPs with tailored 

functionalities (i.e. oligopeptides, small molecules and oligomers) can be successfully 

attached onto the microstructures. Secondly, as a proof of concept, hierarchical 

substrates incorporating AuNPs carrying the RGD peptide (cell-binding moiety) were 

used to study the PC12 cell growth and differentiation. Our results show an 

impressive growth and NGF-induced differentiation of the PC12 cells on the nano-
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micro-patterned substrates, especially at early timepoints, compared to the AuNPs-

free, bare, micropatterned substrates. The exploitation of the developed methodology 

for the binding of AuNPs as carriers of specific bio-functional moieties onto 

micropatterned culture substrates for cell biology studies is envisaged. 

 

 

2. Materials & Methods 

 

2.1 Fabrication of micropatterned Si substrates 

Single crystal n-type Silicon (1 0 0) wafers were subjected to laser irradiation in a 

vacuum chamber evacuated down to a residual pressure of 10
-2

 mbar. A constant 

sulfur hexafluoride (SF6) pressure of 500 Torr was maintained during the process 

through a precision microvalve system. The irradiating laser source was constituted 

by a regenerative amplified Ti:Sapphire (λ=800 nm) delivering 150 fs pulses at a 

repetition rate of 1 kHz and laser fluence 0.68 J/cm
2
. The sample was mounted on a 

high-precision X-Y translation stage normal to the incident laser beam.  

 

2.2 Characterization of micropatterned Si substrates 

After laser irradiation, micro-structured surfaces were morphologically 

characterized by scanning electron microscopy (SEM), as previously described 
22

.  An 

image-processing algorithm (ImageJ, National Institutes of Health, Bethesda, MD, 

USA) was implemented in order to determine the topological characteristics of the 

microcones, including roughness ratio, height and intercone distance from top, side-

view and cross-sectional SEM images (Supporting Table 1). The roughness ratio was 

calculated by dividing the actual, unfolded surface area of spikes by the total 

irradiated area. The mean value was calculated from statistics performed at 10 

individual substrates. 

The wettability of the substrates at the different treatment step was performed 

via static contact angle measurements with the sessile drop method using an 

automated tensionmeter. A 2 µl distilled, deionized Millipore water droplet was 

gently positioned on the surface, using a microsyringe, and images were captured to 

measure the angle formed at the liquid–solid interface. The mean value was calculated 

from at least five individual measurements and expressed as mean value ± standard 

deviation (S.D.).  

  

2.3 Synthesis of AuNPs 

2.3.1 Synthesis of spherical gold nanoparticles 

Gold nanoparticles with a diameter of 13 ± 2 nm were synthesized following 

well-established literature procedures 
29,30

. Briefly, a hot aqueous solution of 

trisodium citrate (5 mL, 2% w/v) was added to a boiling aqueous solution of sodium 

tetrachloroaurate (100 mL, 1 mM) under rapid stirring. Once a colour change to deep 

red, indicating the formation of nanoparticles, was observed, the solution was stirred 

for an additional 15 min. Subsequently the particle solution was removed from the 
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heat and left to cool to room temperature. As prepared citrate-capped AuNPs were 

sterile-filtered using a 0.2 µm syringe filter and stored at 4 °C until further use. 

Optionally particles were functionalised with Bis(p-sulfonatophenyl)phenylphosphine 

dihydrate dipotassium salt (BSPP) by addition of 20 mg of the solid straight into the 

as-prepared gold nanoparticle solution. Particles were then left to stir at room 

temperature overnight. BSPP-coated AuNPs were then purified by addition of brine 

until a blue colour was observed, followed by centrifugation (8000 rpm, 15 min) and 

re-dispersion in water. Particles were stored at 4 °C until further use. 

 

2.3.2 Synthesis of rod-shaped gold nanoparticles 

Gold nanorods with an aspect ratio of ~2.4 were synthesized following a 

modified seeded-growth procedure 
31

. In brief, a seed solution was prepared by 

mixing aqueous solutions of sodium tetrachloroaurate  (5 mM, 1 mL) and CTAB (0.2 

M, 1 mL). Then, an ice-cold solution of sodium borohydride (0.01 M, 0.5 mL) was 

added drop-wise to the mixture under rapid stirring. A colour change to light brown, 

indicated the formation of small (1-2 nm) seed particles. The seed solution was stirred 

for an additional 2 min after appearance of the brown colour and used immediately 

after. At the same time, a growth solution was prepared by mixing aqueous solutions 

of CTAB (0.2 M, 14.24 mL), sodium tetrachloroaurate  (5 mM, 2 mL) and silver 

nitrate (5 mM, 0.21 mL) at 40 °C with stirring at 250 rpm. Subsequently, an aqueous 

solution of L-ascorbic acid (78.8 mM, 160 µL) was added, resulting in a colour 

change from yellow to colourless. After 30 s, 16 µL of the seed solution were injected 

into the growth solution, and the stirrer bar was removed immediately. The solution 

was then kept at 40 °C overnight. The as-prepared gold nanorod solution was then 

purified from excess CTAB by two rounds of centrifugation (8500 rpm, 20 min) and 

re-dispersion in borate buffer (0.01 M, pH 9). 

  

2.4 Functionalization of AuNPs with different functionalities 

2.4.1 CALNN and CALNNRGD 

Au NPs were functionalized with CALNN or CALNNRGD peptides via the thiol 

group of the cysteine 
32,33

. All throughout a 5000x molar excess of peptides was used. 

Briefly, BSPP-coated AuNPs (5 nM, 5 ml) were injected with aqueous solutions of 

CALNN or CALNNRGD (0.5 mg/mL, 133.4 µL) and shaken at 500 rpm overnight. 

The reaction mixture was then purified by two rounds of centrifugation (16400 rpm, 

10 min, 22 °C) and re-dispersed in water. Subsequently particles were shock-frozen in 

liquid nitrogen and lyophilized. 

 

2.4.2 mPEG 

Au NPs were functionalized by adding SH-PEG-OCH3 (75 µL, MW = 356.5 g/mol) 

to a solution of BSPP coated gold nanoparticles (5 nM, 10 mL), while shaking. The 

mixture was shaken for 2 h at room temperature and then kept at 4 °C overnight. 

Functionalized gold nanoparticles were purified by three rounds of centrifugation 

16400 rpm, 15 min, 10 °C) and re-dispersion in Milli-Q water. 
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2.4.3 PEGCOOH-Nanorods 

A freshly prepared SH-PEG-COOH aqueous solution (0.5 mg/mL, 2 ml, MW = 5000 

Da) was added to a solution of gold nanorods (2 mL), while stirring at 500 rpm. The 

mixture was sonicated for 30 s and then shaken at room temperature overnight at 500 

rpm. The solution was then centrifuged (8500 rpm, 16 min, 22 °C) and re-dispersed in 

a freshly prepared SH-PEG-COOH solution (0.25 mg/mL). The mixture was 

incubated for 4 h at room temperature while shaking at 500 rpm. 

AuNRs@PEGCOOH were then purified by two steps of centrifugation/decantation 

(8500 rpm, 16 min, 22 °C) and re-dispersed in borate buffer (0.01 M, pH 9). 

 

2.5 Immobilization of AuNPs onto the micropatterned silicon substrates  

For the binding of the AuNPs onto the micropatterned silicon substrates, a novel 

approach, termed as ‘drop evaporation after surface functionalization’ has been 

implemented. Accordingly, the protocol includes the following steps: activation of the 

substrates, their functionalization with an organosilane and finally drop evaporation of 

the gold nanoparticle solution. 

Specifically, the micropatterned silicon substrates (of approximately 3x3 mm
2
 

surface area) have been thermally oxidized at 1000 °C for 30 min in air. This 

treatment results in a conformal silicon oxide layer. Substrates were in turn activated 

via immersion in Piranha solution [i.e. H2SO4:H2O2 = 3:1 (v/v)] for 30 min at room 

temperature (RT), followed by thorough rinsing with Milli-Q water and drying with 

nitrogen. Then, substrates were immersed in (3-Mercaptopropyl)trimethoxysilane 

(MPTMS) solution in dry toluene [1.85% (v/v)] for 3 h at RT followed by rinsing in 

toluene and ethanol (two times), drying with nitrogen and thermal annealing at 100 
o
C 

for 30 min.  

For the binding of the AuNPs onto the MPTMS-functionalized surfaces, a drop 

of gold NP (20 µl) solution was deposited onto the MPTMS-functionalized 

micropatterned silicon surfaces, and left to slowly evaporate for 16 hrs. Then the 

substrates were then thoroughly rinsed with milli-Q water in order to remove any 

AuNPs that were not chemically bound. Gold nanospheres of 13 nm diameter with the 

following functionalities were used: CALNN (Cys-Ala-Leu-Asn-Asn), CALNNRGD 

(Cys-Ala-Leu-Asn-Asn-Arg-Gly-Asp), citrate groups and methoxy-PEG group (Table 

1). To improve the distribution of the nanoparticles on the surfaces, gold nanoparticle 

solutions were diluted in ethanol in the range of 30-50% (v/v). Gold nanorods with an 

aspect ratio ~2.4 and functionalized with PEG-COOH were also tested.  

Furthermore, RGD chemically bound onto the micropatterned silicon substrates 

(termed as ‘RGD-CDI micropatterned substrates’) have been used for the cell 

experiments. The oligopeptide KRGD  (Lysine-Arg-Gly-Asp) was covalently bound 

onto the micropatterned substrates using the 1,1'-Carbonyldiimidazole (CDI) protocol. 

Specifically, substrates were activated via immersion in Piranha solution for 30 min at 

RT, followed by thorough rinsing with Milli-Q water and drying. Then, substrates 

have been immersed in a solution of CDI (SigmaAldrich) in dry acetone (0.37 M) for 
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3 hrs at RT followed by immersion in acetone for 20 minutes (three times). Substrates 

were subsequently dried with nitrogen.  A drop of KRGD solution (0.5 mg/ml in 

water; PeptideSynthetics, Peptide Protein Research Ltd. United Kingdom) was 

deposited onto the substrates and left to evaporate for 16 hrs, followed by a thorough 

rinse with Milli-Q water.  

 

2.6 Characterization of AuNPs 

TEM images were obtained on a Hitachi H7000 transmission electron 

microscope operating at a bias voltage of 75 kV.  

2.7 Field Emmision Scanning Electron Microscopy (FESEM) 

FESEM analysis was performed on a JEOL 7000 field emission scanning 

electron microscope with an acceleration voltage of 15 kV. Energy-dispersive X-ray 

spectroscopy has been performed at specific points of the substrates. Imaging was 

performed without the need of any metal coating.  

2.8 UV-Vis spectroscopy  

The plasmon resonance of the AuNPs solution was measured using a Perkin 

Elmer Lambda 950 UV-vis-NIR spectrophotometer. Solutions of serially diluted 

AuNPs in ethanol and in water (control) were measured. 

 

2.9 Substrates for in vitro experiments with cells 

For the cell culture experiments the following substrates have been used: i) 

AuNPs functionalized with the peptide CALNNRGD have been used (termed as 

‘RGD-NP micropatterned silicon substrates’), ii) RGD-CDI micropatterned silicon 

substrates, iii) collagen-coated micropatterned silicon substrates, iv) collagen-coated 

standard polystyrene (PS) tissue culture coverslips (positive control; Sarstedt). The 

substrates were sterilized via immersion in ethanol for 1 hr. For the collagen protein 

coating, substrates were immersed in 0.01% (v/v) type I collagen (Sigma-Aldrich 

Chemie GmbH, Munich, Germany) for 2 hrs at RT and washed in phosphate buffered 

saline (PBS) prior to culture initiation 

 

2.10 PC12 cell culture 

The rat pheochromocytoma PC12 cell line (ATCC-LGC, Rockville, MD, USA) 

was maintained in complete medium comprising Dulbecco’s modified Eagle’s 

medium (DMEM; Invitrogen, Grand Island, NY, USA) supplemented with 10% horse 

serum (HS; Invitrogen, Carlsbad, CA, USA) and 5% fetal bovine serum (FBS; 

Biosera, Sussex, UK) at 37°C in a 5% CO2 atmosphere. The cells were plated at a 

density of 0.75 ×10
5
 cells/ml on the various substrates under study. The cells were 

allowed to adhere in complete culture medium. After 24 h, the medium was replaced 

either with fresh complete medium or with differentiation medium [DMEM 

supplemented with 50 ng/ml Nerve Growth Factor (NGF); 2.5 S, Millipore, Billerica, 

MA, USA]. Complete or differentiation medium was replaced every 2 days.  

 

2.11 Immunocytochemistry 
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After 2 and 4 days of culture (i.e. after 1 and 3 days of differentiation), the cells 

were fixed with 4% PFA for 15 min and permeabilized with 0.1% Triton X-100 in PBS 

for 3–5 min. The non-specific binding sites were blocked with 2% BSA in PBS for 30 

min. The neuron-specific βIII isoform of tubulin was detected by incubating the cells 

with the MAB1637 monoclonal antibody (1:900 in PBS–BSA 1%; Millipore, MA, 

USA) for 1 hr at RT and subsequent labelling with goat–anti-mouse FITC conjugate 

secondary antibody (1:200 PBS–BSA 2%; Biotium, USA) for 45 min at RT. The 

samples were then washed with PBS and mounted on coverslips with antifade reagent 

containing DAPI for nuclei staining (ProLong™ Gold Antifade Mountant; Thermo 

Fisher Scientific).  

2.12 Live/Dead assay 

The Live-Dead Cell Staining Kit (BioVision) was implemented in order to 

assess cell viability. At the end of the incubation time (4 days), micropatterned surfaces 

with cells were covered with the staining solution and incubated for 15 min at 37 
o
C. 

Cells were observed immediately under a fluorescence microscope. Healthy cells stain 

only with the cell-permeable Live-Dye, fluorescing green. Dead cells can stain with 

both the cell-permeable Live-Dye and the cell non-permeable Propidium Iodide (PI).  

 

2.13 Fluorescence microscopy 

Cell imaging was performed using an epifluorescence microscope coupled to a 

high-resolution Carl Zeiss Axiocam colour camera; ×10, ×20 and ×40 objectives were 

used.  

 

2.14 Quantitative evaluation with image analysis 

2.14.1 Cell counts /numbers 

Numbers of cells grown on the various substrates were determined by counting 

cell nuclei stained with DAPI with ImageJ v1.36 (“Cell Counter” plugin). The results 

represent the means of three to five different experiments (n = ~30 fields of view for 

each substrate and time of culture). The data were subjected to one-way ANOVA, 

followed by Tukey test for multiple comparisons between pairs of means. 

 

2.14.2 Cell differentiation 

PC12 cell differentiation after treatment with NGF was assessed by evaluation 

of the differentiated cells by visual examination of the field. A differentiated cell was 

considered to display at least one neurite with a length equal to the cell body diameter 
22

. Differentiation was evaluated by the length of the longest neurite and the number 

of neurites per differentiated cell. Neurite length, which was determined by manually 

tracing the contour length, was the distance from the edge of the cell soma to the 

neurite tip. The mean length of the longest neurite per cell was calculated. The values 

from all fields of views were inserted into a spreadsheet. The maximum neurite length 

was binned into 10 and 20 µm intervals ranging from 0 to 80 µm to generate a 

frequency, f, for the i
th 

interval i=1,2,3 (using the frequency function). Furthermore, 

the number of differentiated cells exhibiting 1,2,3 or >3 neurites was manually 
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evaluated and expressed as percent, using the frequency function.  The results 

represent the means of three to five experiments (n = ~30 fields of view for each 

substrate and time of culture). The data were subjected to t-test to compare the 

significance differences between each condition and the control plastic substrate. 

 

 

Table 1: Functionalized AuNPs 

 

Functional group (R) 

 

Simplified chemical structure for one R attached to 

AuNPs 

M.W. 

(g/mol) 

Citrate 

 
 

192 

CALNN 

(Cys-Ala-Leu-Asn-Asn) 

 
 

533 

CALNNRGD 

(Cys-Ala-Leu-Asn-Asn-Arg-

Gly-Asp) 

 

 

   

 
 

861 

 

Methoxy-PEG 

Methoxy-polyethyleneglycol 

 

365 
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3.Results  

3.1 Microconical silicon substrates decorated with functionalized NPs  

Micropatterning of silicon was performed by ultra-short pulsed laser structuring of 

crystalline silicon (Si) wafers. This technique offers the advantage of patterning Si 

surfaces with periodic arrays of topographical features of microscale size, while 

offering high accuracy and reproducibility 
34

. Upon increasing the laser energy 

(fluence), microconical morphologies (spikes) exhibiting different geometrical 

characteristics can be formed, as previously shown 
22,23

. Following surface activation 

via Piranha solution and functionalization via the thiol-containing silane (MPTMS), 

drop evaporation of the gold nanoparticles (Table 1) solution was applied. 

Following this ‘drop evaporation after surface functionalization’ protocol (Fig. 1), 

the AuNPs were successfully attached to the surfaces, as confirmed by FESEM 

imaging. A typical example is presented in Fig. 2a, showing a top-view high 

magnification FESEM image of a single microcone covered with CALNN-terminated 

AuNPs (small bright dots). AuNPs were in the form of single particles but also in the 

form of small clusters. SEM-EDS elemental analysis confirmed the presence of Au 

onto the substrates selectively inside the region where the nanoparticle drop has been 

deposited (Fig. 2b and Supp. Fig. 1b).  

To improve the AuNPs dispersion onto the functionalized surfaces, AuNPs 

solution was diluted in ethanol before the drop evaporation step. Dilution of the 

AuNPs solution in ethanol up to a certain ratio (v/v) significantly improved the 

AuNPs dispersion onto the functionalized surfaces, providing a monolayer of 

individual NPs in a homogenous distribution (Fig. 2c). UV-Vis spectroscopy of the 

respective diluted NP solutions in ethanol (v/v of 20-60%) confirmed the presence of 

the plasmon peak at 520 nm which coincides with the plasmon peak value of the 

AuNPs of 15 nm diameter (blue curve). Above a certain degree of dilution, i.e. of 

70%, AuNPs were assembled onto the surface into clusters (Fig. 2e). This clustering 

effect occurred in the diluted solution, as indicated by the red-shift in the plasmon 

absorbance of the respective diluted solution (Fig. 2d – 80% dilution in ethanol and 

Supp. Fig. 2- 80% dilution in water, for comparison).    
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Figure 1: Experimental procedure of the fabrication of the hierarchical micro-nano-

patterned substrates using drop evaporation after surface functionalization. SEM image of 

micropatterned substrates after ultra-short pulsed laser processing (scale bar: 5 µm).  
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Figure 2. (a) SEM image of CALNN-terminated AuNPs, covalently bound onto 

micropatterned Si substrates using drop evaporation after surface functionalization (scale bar: 

100 nm); (b) SEM- EDS spectra from the region shown in (a); (c-d) AuNPs deposited via the 

drop evaporation protocol using a solution diluted in 40 (c) and 70 (d) % of ethanol; (e) UV-

Vis spectrum of the Au-NP solution diluted in increasing ratio (v/v) of ethanol.  

 

 

Using the protocol of droplet evaporation after surface functionalization a plethora 

of AuNPs with different functionalities were successfully deposited (Figure 3). Thus, 
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AuNPs functionalized with oligopeptides, including CALNN (Fig. 3a,b), CALNN-

RGD (Fig. 3c,d) and with small organic moieties, including the stabilizer citrate (Fig. 

3e) and the methoxy-PEG group (Fig. 3f) have been chemically attached to the 

micropatterned substrates. Remarkably, the AuNPs could conformably disperse over 

the entire surface area of the microstructured substrates, covering both the 

‘spikes’(Fig.3a,f) and the interspike valleys (Fig.3c,e). Besides this, using the same 

protocol, AuNPs of various shapes, including spheres and rods, could be successfully 

attached to micropatterned substrates regardless of the type of roughness (Supporting 

Fig. 3).   

Among the various AuNPs carrying different functionalities, Au-CALNN-RGD 

(‘RGD-AuNPs’) have been used further for the in vitro experiment with cells, since 

the oligopeptide RGD is a cell binding motif of extracellular matrix adhesion proteins. 

To evaluate the effect of the RGD entities carried by the gold nanoparticles, 

micropatterned substrates with RGD chemically attached on them have been also used 

in comparison. For that, KRGD oligopeptide was attached via the CDI protocol. 

SEM-EDS chemical elemental analysis showed carbon atom and nitrogen atom which 

indirectly implies the attachment of the peptide (Supporting Figure 4). 
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Figure 3. Top-view FESEM images of different types of Si substrates decorated with 

AuNPs with different functionalities via  drop evaporation: (a-b) CALNN-terminated AuNPs 

on micropatterned (a single spike is shown) (a) and flat (b) silicon substrates; (c-d) 

CALNNRGD-terminated AuNPs on micropatterned (an interspike valley is shown) (c) and  

flat (d) silicon substrates; (e) citrate-terminated AuNPs on micropatterned (an interspike 

valley is shown) silicon substrates; (f) methoxy-PEG- coated AuNPs on micropatterned (a 

single spike is shown)  silicon substrates (scale bar: 200 nm).  
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3.2 PC12 cell growth on the hierarchical nano-micro-patterned silicon substrates 

PC12 cells were used to assess initially whether the various substrates, 

including the nano-micro-patterned silicon substrates with RGD-AuNP, the micro-

patterned silicon substrates with RGD (RGD-CDI) and the collagen-coated micro-

patterned silicon substrates (Coll-Si), could support cell growth in proliferation 

medium after 2 and 4 days of culture. Cell growth was assessed by 

immunofluorescence and SEM imaging. After 2 days, cells on the RGD-AuNPs-

decorated nano-micro-patterned silicon substrates exhibited an excellent growth in the 

absence of any protein coating. Specifically, cells attached homogeneously in the 

entire substrate area as single cells, while in limited cases formed small clusters which 

is characteristic of the PC12 cells in the absence of NGF (Fig. 4a) 
35

. As confirmed by 

the Live/Dead assay, there were only a few propidium iodide-positive red-stained 

dead cells at 4 days in vitro (DIV) (Fig. 4b). PC12 cells already at 1DIV showed an 

excellent growth, although fewer in number (data not shown); a typical SEM view of 

such cells is presented in Fig. 4d. Quantitative evaluation of the cell growth via 

measuring the nuclei number showed that the PC12 cell growth on the RGD-AuNPs-

decorated nano-micropatterned substrates was comparable to that on the positive 

control plastic petri dishes (Coll-plastic), which had been coated with collagen (Fig. 

4c). Specifically, cell growth on the RGD-AuNPs spikes increased by 66.0% from 2 

to 4DIV, while the respective increase on the collagen-coated plastic was 60.6%. On 

the contrary, cells cultured on the RGD moieties which had been covalently bound 

onto spikes using the CDI protocol (RGD-CDI) exhibited inferior growth at 2DIV, 

but the average cell number/surface area significantly increased within the 4DIV; 

though with high statistical variance. Cells on the collagen-coated micropatterned 

silicon substrates exhibited significantly more cells compared to the RGD-CDI at 

2DIV and less at 4DIV.  

 

Page 14 of 23Biomaterials Science

B
io

m
at

er
ia

ls
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 1
3 

M
ar

ch
 2

01
8.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 C
ol

le
ge

 L
on

do
n 

on
 1

3/
03

/2
01

8 
08

:4
5:

00
. 

View Article Online
DOI: 10.1039/C7BM00904F

http://dx.doi.org/10.1039/C7BM00904F


15 

 

 
Figure 4. PC12 cell growth in proliferation medium: (a) Fluorescence microscopy images of 

Tuj1-positive PC12 cells grown on RGD-terminated AuNPs on micropatterned silicon 

substrates for 2 DIV (scale bar: 50 µm); (b) Fluorescence microscopy images of live (green) 

and dead (red) PC12 cells grown on RGD-terminated AuNPs on micropatterned silicon 

substrates for 4 DIV (scale bar: 100 µm); (c) Cell growth on the various culture substrates 

investigated, expressed in terms on cell number per unit area (mm2);  the results represent the 

means of three to five different experiments (*: p < 0.05; **: p < 0.01); (d) SEM image (45
o
 

tilted view) of PC12 cells on the RGD-terminated AuNPs on micropatterned silicon 

substrates. (Abbreviations: RGD-AuNP, micropatterned Si substrates decorated with RGD-

terminated AuNPs; RGD-CDI, micropattenred Si substrates decorated with RGD oligopeptide 

via CDI protocol; Coll-Si, micropattenred Si substrates coated with collagen; Coll-Plastic, 

plastic dishes coated with collagen). 
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3.3 PC12 cells differentiation on hierarchical/nano-micro-patterned silicon 

substrates following NGF treatment  

 

PC12 cells were induced to differentiate towards the neuronal lineage by 

stimulation with NGF (50 ng/ml), which is widely used as inducer of PC12 cells 

differentiation into a sympathetic neuronal phenotype 
35

. PC12 cells on the RGD-

AuNP-decorated micropatterned silicon substrates flattened and started to exhibit 

neurite extension (Fig. 5a,d). As confirmed by the Live/Dead assay, the majority of 

differentiated cells on the RGD-AuNP-decorated micropatterned silicon substrates at 

4DIV were alive (Fig. 5b). Moreover, the differentiated cell growth on these 

substrates was comparable to that on the plastic petri dishes used as positive control 

(Fig. 5c). On the contrary, cells on the RGD-CDI substrates, where the RGD has been 

covalently bound by the CDI protocol, exhibited inferior growth. Furthermore, similar 

to the case of the NGF absence (Fig. 4c), cells on the collagen-coated micropatterned 

silicon substrates (Coll-Si) exhibited less pronounced growth than on the RGD-AuNP 

decorated ones, though better than on the RGD-CDI micropatterned substrates (Fig. 

5c).   

Remarkably, PC12 cell differentiation on the RGD-AuNP-decorated 

micropatterned substrates took place already at 2DIV (i.e. after 1 day in 

differentiation medium). Almost half of the differentiated cells (i.e. ~54%) extended 

neurites of 20-40 µm, and approximately 24% of cells exhibited neurites of greater 

than 40 µm length (Fig. 5e). At 4DIV (i.e. after 3 days in differentiation medium) 

39% of the differentiated cells extended neurites of 20-40 µm and approximately 29% 

of cells exhibited neurites of greater than 60 µm length, while the respective 

percentage for the cells on the control plastic (Coll-Plastic) were 31% and 

approximately 31%, respectively. In the case of the collagen-coated micropatterned 

substrates (Coll-Si), the neurite length of the majority of the differentiated cells was 

shifted towards smaller values (Fig. 5e). Specifically, 75% of the differentiated cells 

at 2DIV and 59% at 4DIV exhibited neurites of 20-40 µm. Only 3.5% of the 

differentiated cells at 4DIV expressed neurites longer than 60 µm length. This was 

also the case for the RGD-CDI substrates, in which the differentiated cells extended 

shorter neurites. Specifically, at 4 DIV, 22% of the differentiated cells expressed 

neurites of 10-20 µm, 30% of the differentiated cells extended neurites of 20-40 µm, 

but approximately 5% of cells exhibited neurites of greater than 60 µm length (Fig. 

5e).  

Regarding the neurite branching, the majority of the differentiated cells exhibited 

2 neurites per cell regardless the micropatterned substrate (84%, 100% and 86 % on 

the RGD-NP, collagen-coated and RGD-CDI substrates, respectively - Supp. Fig. 5). 

On the contrary, 55.1% of the cells on the collagen coated plastic flat substrates 

exhibited two neurites per cell and 44.9% three or more (Supp. Fig. 5).  
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Figure 5. NGF-induced PC12 cell differentiation: (a) Fluorescence microscopy images of 

Tuj1-positive PC12 cells grown on RGD-AuNPs nano-micropatterned silicon substrates for 4 

DIV (scale bar: 50 µm) and DAPI-stained nuclei (blue); (b) Fluorescence microscopy images 

of live (green) and dead (red) PC12 cells grown on RGD-AuNPs-decorated nano-

micropatterned silicon substrates after 4DIV (scale bar: 100 µm); (c) Cell growth on the 
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various substrates tested, expressed in terms of cell number per unit area (mm2) on 2 and 4 

DIV. The results represent statistics from three to five different experiments. (*: p < 0.05, **: 

p< 0.01); (d) SEM image (45
o
 tilted view) of NGF-treated PC12 cells on micropatterned 

silicon substrates decorated with RGD-terminated ΑuNPs at 2DIV; (e) Neurite length of the 

differentiated PC12 cells on the various substrates tested for 2 and 4DIV. The number of cells 

exhibiting a neurite length value within a specific range is expressed as percentage of cells ± 

standard error of the mean (SEM); the results represent statistics from three to five different 

experiments  (*: p < 0.05, **: p< 0.01). 

 

 

4. Discussion 

 

The fabrication of plasmonic substrates comprising AuNPs attached or grown in 

a precise manner onto substrates has recently attracted increasing scientific interest. 

Plasmonic substrates can be exploited towards introducing new conceptual 

approaches and applications in biosensing 
19,36,37

 and cell biology studies 
14–16

. 

Immobilization of individual NPs on various surfaces, exhibiting a homogenous 

distribution, is a critical step that dictates the performance of such systems. Indeed, 

NP aggregate formation affects the underlying properties of the substrate in a negative 

way, e.g. in the case of bioanalytical SERS applications. The most commonly used 

methods to attach NPs on surfaces are the chemically-assisted 
37–40

 and drying-

mediated assembly 
41

. Despite the numerous studies, drying-mediated deposition of 

NPs seems to be rather complex 
42–45

. While the chemically assisted method has been 

studied only on a small scale to structured substrates 
38

. However, it requires 

relatively high solution volumes.  In this study, a novel method combining the 

chemical-assisted and the drying-evaporation assembly protocols, has been developed 

to successfully bind individual functionalized NPs, in a homogenous dispersion, onto 

micropatterned substrates. The method includes the surface activation and 

functionalization of the surfaces using the MPTMS silane followed by drop 

evaporation of nanoparticles solution. This novel protocol exploits the advantages of 

both assembly protocols, i.e. chemical binding of the nanoparticles via a silane 

coupling agent, and limited amount of nanoparticle suspension volume. Furthermore, 

it is reproducible and applicable in nanoparticles with various functionalities (Figure 

3). 

Due to the chemical attachment of the nanoparticles to the MPTMS, the gold 

nanoparticles via the suggested protocol are proven to be more stable compared to the 

drop evaporation protocol. SEM imaging of the substrates before and after thorough 

rinse with water showed homogenous distribution of single nanoparticles. On the 

contrary, SEM imaging of substrates which had not been activated with the MPTMS, 

showed that any attached nanoparticles were rinsed off after rinse (data not shown). 

Furthermore, AuNPs attached via the presented protocol were stable onto the 

micropatterned substrates even after four days in cell culture (Supp. Figure 6). 

Although the substrates were immersed in growth medium (and cells were grown onto 
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them), and sequentially fixated, dehydrated and critical point dried, the gold 

nanoparticles were still visible on the micropappterned silicon surfaces. 

Our platform exhibits a hierarchical topography at the micro- and nano-scales 

provided by the microcones together with the homogenously dispersed AuNPs, 

respectively. At the same time, it exerts a cell-binding functionality, stemming from 

the RGD oligopeptide end group of the AuNPs. In our previous work, we studied the 

effect of microscale topography on the proliferation and differentiation of PC12 cells 
22

. The substrates developed in the present work enabled the investigation of the effect 

of the combined effects of hierarchical topography and RGD chemistry on PC12 cell 

growth and differentiation. Besides this, the targeted use of AuNPs as carriers of 

tailored bio-functional moieties provides a unique platform for further cell biology 

studies. Indeed, in the presence of NGF PC12 cells on the hierarchical substrates 

comprising RGD-functionalized AuNPs showed increased proliferation and 

differentiation. At the same time, cells on the RGD (using bioconjugation protocol) 

and collagen-coated micropatterned substrates showed an inferior differentiation 

behavior, in terms of neurite extensions’ length. These results suggest that the RGD 

functionality is superior when NPs are used as carriers, compared to RGD or collagen 

coatings. Furthermore, among the three substrates studied, the cell growth on the 

RGD-Au NP coating of the micropatterned substrates exhibited the highest intra-

experiment (i.e. a homogenous cell growth within the substrate) and inter-

experimental reproducibility. 

RGD has been recognized as a cell binding motif of many adhesion proteins of 

the extracellular matrix, including fibronectin, vitronectin, laminin and under some 

conditions, collagens 
46

. Various bioconjugation strategies have been implemented to 

either graft/incorporate the RGD or RGD-containing oligopeptide in the biomaterial 

bulk 
47,48

 or to immobilize it on the biomaterials surface at a post-processing stage 
47,49–52

 for diverse biomaterials and tissue engineering applications. Binding the small 

functional oligopeptide instead of the whole macromolecular chain becomes 

especially important in the case of micro and/or nano-rough surfaces or implant 

surfaces, where non-uniform surface adsorption of proteins can take place 
53

. In this 

study, we compare our novel way to immobilize RGD onto micropatterned substrate 

with a well-established bioconjugation protocol (via CDI) which is commonly used to 

immobilize amine-containing molecules. The difference in terms of the cell growth 

implies the superiority of our introduced protocol for the specific micropatterned 

substrates.  The interpretation of the results can be attributed to the different chemical 

reactions involved in the two protocols. In the bioconjugation protocol, the surface is 

functionalized with CDI, by giving an active intermediate (imidazole carbamate) 
54

. 

Then the peptide binds to the intermediate by the dissociation of the hydrogen atom of 

its N-H group. In our protocol, the surfaces are functionalized with MPTMS. The 

hydrogen atom is then dissociated from the S-H (sulfhydryl group/thiol group) and the 

sulphur atom binds with a gold atom of the gold nanoparticles. Taking into 

consideration, that the S-H dissociation energy of the thiol is lower than that of the N-

H group of a primary amine (353 and 377 kJ/mol at 25 
o
C, respectively), the 
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corresponding reaction of our protocol is more favourable than the other, leading to 

superior RGD  functionality. Furthermore, the gold nanoparticles are more effective 

carriers of the RGD units in terms of quantity. One gold nanoparticle comprises many 

gold atoms some of which are functionalized by RGD oligopeptides. When deposited 

onto the silicon which has been functionalized with the MPTMS, one gold atom of the 

gold nanoparticle reacts with one sulphur atom of one MPTMS molecule. Thus, we 

could say that there is a kind of amplification in terms of the quantity of the RGD 

units carried by the gold nanoparticles. 

It is also understood that apart from the surface chemistry, the surface 

topography can influence the kinetics of protein adsorption and the structure and 

conformation of the adsorbed proteins 
53,55,56

. Therefore, a well-controlled deposition 

of functional moieties will assist towards dictating cell adhesion and subsequent cell 

responses. Οur findings reveal that neurite branching is practically influenced by the 

surface micro-scale topography, rather than by the surface chemistry. Indeed, 

regardless of the type of the micropatterned substrate used, differentiated cells 

exhibited a similar number of neurite extensions, i.e. two. On the contrary, cells on 

the flat control substrates exhibited either two or three neurite extensions.  

The present study suggests AuNPs  as precise and reliable carriers of 

biofunctional moieties, which can be selectively immobilized in a controlled manner 

onto micropatterned surfaces. As a proof of the improved functionality, it is shown 

that RGD units carried by AuNPs lead to superior PC12 cell growth and 

differentiation compared to RGD deposited in the form of bioconjugation protocol. 

Work using AuNPs of different functionalities is under progress, to clarify whether 

this effect comes from the nanoroughness imposed by the AuNPs, the RGD 

functionality itself or the synergy of both.  

 

CONCLUSION 

In this work, a simple protocol – drop evaporation after surface functionalization - 

to realize uniform monolayers of single AuNPs onto both the flat and the 

micropatterned silicon surfaces is developed. Using this protocol, we showed that 

AuNPs could be evenly dispersed throughout the entire micropatterned surface area. 

The protocol has been validated with different AuNPs shapes, as well as with AuNPS 

carrying different functional moieties. It is demonstrated that AuNPs can be used as 

precise and reliable carriers of biofunctional moieties, which can subsequently be 

selectively immobilized in a controlled manner onto micropatterned surfaces. As a 

result, the biological effect of RGD molecular units, carried by AuNPs immobilized 

on micropatterned surfaces, on PC12 cell proliferation and differentiation has been 

significantly improved. The exploitation of this protocol to create functional cell 

culture platforms for further applications in cell biology is highly envisaged.  
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