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Abstract Hierarchical feature selection is a new research area in machine
learning/data mining, which consists of performing feature selection by ex-
ploiting dependency relationships among hierarchically structured features.
This paper evaluates four hierarchical feature selection methods, i.e., HIP, MR,
SHSEL and GTD, used together with four types of lazy learning-based classi-
fiers, i.e., Näıve Bayes (NB), Tree Augmented Näıve Bayes (TAN), Bayesian
Network Augmented Näıve Bayes (BAN) and k -Nearest Neighbors (KNN)
classifiers. These four hierarchical feature selection methods are compared
with each other and with a well-known “flat” feature selection method, i.e.,
Correlation-based Feature Selection (CFS). The adopted bioinformatics datasets
consist of aging-related genes used as instances and Gene Ontology terms used
as hierarchical features. The experimental results reveal that the HIP (Select
Hierarchical Information Preserving Features) method performs best overall,
in terms of predictive accuracy and robustness when coping with data where
the instances’ classes have a substantially imbalanced distribution. This paper
also reports a list of the Gene Ontology terms that were most often selected
by the HIP method.
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1 Introduction

In the context of the classification task of machine learning (or data min-
ing), feature selection methods aim at improving the predictive performance
of classifiers by removing redundant or irrelevant features (Liu and Motoda
1998). Feature selection is a challenging problem because the number of can-
didate feature subsets grows exponentially with the number of features. More
precisely, the number of candidate feature subsets is 2m − 1, where m is the
number of features. Feature selection methods can be divided into two cat-
egories (Guyon and Elisseeff 2003): embedded and pre-processing methods.
Embedded methods select features during the construction of the classifica-
tion model. Pre-processing methods are categorized into two groups: filter and
wrapper. Filter methods select features by measuring the relevance of features
regardless of the classifier, whereas wrapper methods measure the relevance of
features based on the performance of a classifier. In general, filter methods are
faster and more scalable than wrapper methods, so we focus on filter methods
in this work.

This paper addresses a specific type of feature selection problem where the
features are organized into a hierarchical structure, with more generic features
representing ancestors of more specific features in the feature hierarchy. In this
work the feature hierarchy is the Directed Acyclic Graph (DAG) of the Gene
Ontology (GO), which, broadly speaking, contains terms specifying the hier-
archical functions of genes. More precisely, in our datasets, each instance is an
aging-related gene (i.e., a gene which is believed to affect the process of aging
in model organisms), each feature represents a GO term (broadly speaking,
a gene function) that may be present or absent for each instance (gene), and
the class variable specifies whether the gene is associated with increasing or
decreasing the longevity of a model organism.

Note that, although we focus on feature DAGs, the methods evaluated here
are also applicable to feature trees, and in general to any hierarchical feature
structure where there is an “is-a” or “generalization-specialization” relation-
ship among features, so that the presence of a feature in an instance implies
the presence of all ancestors of that feature in the instance.

It is worth mentioning that the Gene Ontology is a very popular bioin-
formatics resource to specify gene functions, and analyzing data about aging-
related genes is important because old age is the greatest risk factor for a large
number of diseases (Tyner et al 2002; de Magalhães 2013). In addition, in the
context of machine learning, there are a limited number of papers reporting
GO terms as a type of features used for classification. In particular, in the
context of aging-related gene classification, when using GO terms and other
types of features, Freitas et al. (2011) classified DNA repair genes into two
categories, i.e., aging-related or non-aging related; and Fang et al. (2013) clas-
sified aging-related genes into DNA repair or non-DNA repair genes. However,
such methods treated GO terms as “flat” features, ignoring their hierarchical
generalization-specialization relationships.

There has been very little research so far on hierarchical feature selection
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methods – i.e., on feature selection methods that exploit the generalization-
specialization relationships in the feature hierarchy to decide which features
should be selected – for the classification task. Such hierarchical feature se-
lection methods have been proposed in (Ristoski and Paulheim 2014; Lu et al
2013; Wang et al 2003; Jeong and Myaeng 2013). Most of these methods
worked with tree-structured feature hierarchies (where a feature has at most
one parent in the hierarchy) and text mining applications where instances rep-
resent documents/news and features represent words/concepts. An exception
is (Lu et al 2013), where instances represent patients and features represent
a tree-structured drug ontology. By contrast, in this work we address the
more complex DAG-structured feature hierarchies of the GO, where a feature
node can have multiple parents. Hierarchical feature selection methods have
also been proposed for the task of selecting “enriched” Gene Ontology terms
(terms that occur significantly more often than expected by chance) (Alexa
et al 2006), which is quite different from the classification task addressed in
this paper.

As far as we know, our previous work reported in (Wan and Freitas 2013;
Wan et al 2015; Wan 2015; Fernandes et al 2016) seems to be the first work
that proposed hierarchical feature selection methods to cope with the DAG-
structured hierarchies of GO terms in the classification task. In that work
we proposed three hierarchical feature selection methods, which were used as
pre-processing methods for selecting features for the Näıve Bayes classification
algorithm. In this paper we further evaluate the two best performing out of
those three feature selection methods (reviewed in Section 3) on experiments
with more types of GO terms, as well as comparing those two methods with
three other feature selection methods. More precisely, this current paper ex-
tends our previous work in several directions, as follows.

First, we compare two hierarchical feature selection methods proposed in
(Wan and Freitas 2013; Wan et al 2015) against two other hierarchical fea-
ture selection methods, i.e., SHSEL (Ristoski and Paulheim 2014) and GTD
(Lu et al 2013). In addition, we compare those four hierarchical feature selec-
tion methods against a well-known “flat” (non-hierarchical) feature selection
method, i.e., the Correlation-based Feature Selection algorithm (Hall 1998),
used as a baseline method. Second, we further evaluate the hierarchical fea-
ture selection methods following the pre-processing approach with 4 classifiers,
namely 3 Bayesian network classifiers – Näıve Bayes, TAN (Tree Augmented
Näıve Bayes) and BAN (Bayesian Network Augmented Näıve Bayes) classi-
fiers – and the K -Nearest Neighbors (KNN) classifier. By contrast, in (Wan
and Freitas 2013; Wan et al 2015) we used only Näıve Bayes and KNN, and in
(Wan and Freitas 2015) we used only BAN. Third, we evaluate all the above
feature selection methods on 28 datasets of aging-related genes: 4 model or-
ganisms times 7 different sets of hierarchical features. The hierarchical features
used in this work involve combinations of three types of Gene Ontology terms
describing gene properties (biological process, molecular function and cellular
component terms); whilst the hierarchical features used in (Wan and Freitas
2013; Wan et al 2015) involve only biological process terms.
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In summary, to the best of our knowledge this paper is the first work to
report the results of such an extensive evaluation of hierarchical feature selec-
tion methods for the classification task.

This paper is organized as follows. Section 2 briefly reviews the background
about Näıve Bayes, TAN, BAN, KNN, lazy learning, Gene Ontology and hi-
erarchical redundancy. Section 3 describes two hierarchical feature selection
methods, viz., HIP and MR. Section 4 presents the experimental methodology
and computational results, which are discussed in detail in Section 5. Section
6 reports the GO terms most frequently selected by the best feature selection
method (HIP – Select Hierarchical Information Preserving Features). Finally,
Section 7 presents conclusions and future research directions.

2 Background

2.1 The Näıve Bayes (NB) Classifier

Näıve Bayes (NB) is a well-known Bayesian classifier which is very computa-
tionally efficient and has in general good predictive performance. NB is based
on the assumption that features are independent from each other, given the
class variable. An example network topology is shown in Figure 1(a), where
the edges indicate that each feature depends only on the class (their only par-
ent node). To classify a testing instance, NB computes the probability of each
class label c given all the feature values (x1, x2,..., xm) of the instance using
Equation (1) – where the symbol ∝ means “proportional to” – and assigns the
instance to the class label with the greatest probability.

P(c|x1, x2, ..., xm) ∝ P(c)
m∏
i=1

P(xi|c) (1)

In Equation (1), m is the number of features, and the probability of a class
label c given all feature values of an instance is estimated by calculating the
product of the prior probability of c times the probability of each feature value
xi given c, using the above mentioned independence assumption.

2.2 The Tree Augmented Näıve Bayes (TAN) Classifier

TAN is a type of semi-Näıve Bayes classifier that relaxes Näıve Bayes’ feature
independence assumption, by allowing each feature to depend on at most one
other feature – in addition to depending on the class, which is a parent node
of all features. An example network topology is shown in Figure 1(b), where
all nodes except X4 have one non-class variable parent node. This increases
the ability to represent feature dependencies (which may lead to improved
predictive accuracy) and still leads to reasonably efficient algorithms. TAN
algorithms are not as efficient (fast) as NB, but TAN algorithms are in general
much more efficient and scalable than other Bayesian classification algorithms
that allow a feature to depend on several features. Among the several types of
TAN algorithms, e.g., in (Friedman et al 1997; Keogh and Pazzani 1999; Jiang
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et al 2005; Zhang and Ling 2001), in this work we focus on one of the most
computationally efficient ones, which is based on the principle of maximizing
the conditional mutual information (CMI) for each pair of features given the
class attribute (Friedman et al 1997). Then, the Maximum Weight Spanning
Tree (MST) is built, where the weight of an edge is given by its CMI. Finally,
one vertex of the MST is randomly selected as the root, and the edge directions
are propagated accordingly.

2.3 The Bayesian Network Augmented Näıve Bayes (BAN) Classifier

Compared with Näıve Bayes and TAN classifiers, a Bayesian Network Aug-
mented Näıve Bayes (BAN) classifier is a type of more sophisticated semi-Näıve
Bayes classifier that allows each feature to have more than one parents. An
example network topology is shown in Figure 1(c), where node X4 has two
parent nodes, i.e., X1 and X2. The conventional algorithm to construct a BAN
is analogous to the one for learning the TAN classifier (Friedman et al 1997).

In this work, instead of learning the feature dependencies by conventional
methods, we use the GO–hierarchy–aware BAN (GO–BAN) classifier proposed
in (Wan and Freitas 2013, 2015), hereafter denoted simply BAN, where the net-
work edges representing feature dependencies are simply the pre-defined edges
in the feature hierarchy. More precisely, this BAN classifier uses the edges of
the Gene Ontology (GO)’s DAG (Directed Acyclic Graph) (The Gene Ontol-
ogy Consortium 2000) – see Section 2.6 – as the topology of the BAN network.
This has the advantages of saving computational time and exploiting the back-
ground knowledge associated with the Gene Ontology, which incorporates the
expertise of a large number of biologists.
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Fig. 1: Topology of different Bayesian network classifiers

2.4 The K -Nearest Neighbors Classifier (KNN)

K -Nearest Neighbors is a “lazy learning”-based classifier (see Section 2.5). It
classifies an individual testing instance by assigning to it the class label of
the majority of its k nearest training instances (Hastie et al 2001; Aha 1997;
Cover and Hart 1967). In this work, the 3 nearest training instances were used
for classification. We adopt the Jaccard similarity coefficient (Jain and Dubes
1988; Jain and Zongker 1997) as the distance measure, due to the fact that
in the datasets used in this work the features take binary values. As shown in



6 Cen Wan, Alex A. Freitas

Equation (2), the Jaccard similarity coefficient measures the ratio of the size
of the intersection over the size of the union of two feature sets,

Jaccard(i, k) =
m11

m11+m10+m01
(2)

where m11 denotes the number of features with value “1” in both the ith (test-
ing) and kth (nearest training) instances; m10 denotes the number of features
with value “1” in the ith instance and value “0” in the kth instance; m01 de-
notes the number of features with value “0” in the ith instance and value “1”
in the kth instance. A greater value of the Jaccard coefficient means a smaller
distance (higher similarity) between the two instances.

2.5 Lazy Learning

A “lazy” learning method performs the learning process in the testing phase,
building a specific classification model for each new testing instance to be
classified (Aha 1997; Pereira et al 2011). This is in contrast to the usual “eager”
learning approach, where a classification model is learnt from the training
instances before any testing instance is observed. In the context of feature
selection, lazy learning selects a specific set of features for each individual
testing instance, whilst eager learning selects a single set of features for all
testing instances. Some hierarchical feature selection methods evaluated in this
work are lazy methods, because they exploit hierarchical information which
is specific to each instance, in order to select the best set of features for each
instance – as described later. Hence, we use lazy versions of NB, TAN and
BAN, as well as KNN (which is naturally lazy), in our experiments.

2.6 The Gene Ontology and Hierarchical Feature Redundancy

The Gene Ontology (GO) uses unified and structured controlled vocabularies
to describe gene functions (The Gene Ontology Consortium 2000). There are
three types of GO terms: biological process, molecular function and cellular
component. Most GO terms are hierarchically structured by an “is-a” rela-
tionship, where each GO term is a specialization of its ancestor (more generic)
terms. Therefore, there are three DAGs representing the three types of GO
terms. For example, as shown in Figure 2(a), GO:0008150 (biological process)
is the root of the DAG for biological process terms, and it is also the parent
of GO:0051234 (establishment of localization), which is in turn the parent of
GO:0006810 (transport).

Consider a hierarchy of features, where each feature represents a GO term
which is a node in a GO DAG. Each feature takes a binary value, “1” or “0”,
indicating whether or not an instance (a gene) is annotated with the corre-
sponding GO term. The “is-a” hierarchy of the GO is associated with two
hierarchical constraints. First, if a feature takes the value “1” for a given in-
stance, this implies its ancestors in the DAG also take the value “1” for that
instance. For example, in Figure 2(a), if the term GO:0051234 has value “1”
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Fig. 2: Example of hierarchically structured features

for a given gene, then the value of term GO:0008150 should be “1” as well.
Conversely, if the feature takes the value “0” for a given instance, this implies
that its descendants in the DAG also take the value “0” for that instance. For
example, if the term GO:0006810 has value “0”, then term GO:0044765 should
also have value “0”.

Hierarchical feature redundancy is defined in this work as the case where
there are two or more nodes which have the same value (“1” or “0”) in an in-
dividual instance and are located in the same path from a root to a leaf node
in the DAG. For instance, in Figure 2(b), where the number “1” or “0” beside
a node is the value of that feature in a given instance, nodes N and M are
redundant, since both have value “1” and are located in the same path, i.e.,
M–N–T–K or M–N–K. Analogously, nodes T and K are redundant, since both
have value “0” and are in the same path M–N–T–K. Nodes C and K are also
redundant, since both have value “0” and are in the path M–C–K. Removing
this type of hierarchical feature redundancy is the core task performed by the
hierarchical feature selection methods used in this work.

The problem of hierarchical feature selection as addressed in this paper is
defined as follows: Given a set of m features organized into a feature hierarchy
(a tree or a DAG) encoding “is-a” relationships, the goal is to select a subset
of s features (1 ≤ s ≤ m) which has reduced hierarchical redundancy, by com-
parison with the full set of m features, while still preserving features which are
useful for discriminating among the classes.

3 Hierarchical Feature Selection Methods – Select Hierarchical
Information-Preserving (HIP) Features and Select Most Relevant
(MR) Features

In our previous works (Wan and Freitas 2013; Wan et al 2015; Wan and
Freitas 2015; Wan 2015), we proposed three lazy learning-based hierarchical
feature selection methods to cope with the hierarchical feature redundancy
issue discussed in Section 2.6. These methods are called Select Hierarchical
Information-Preserving (HIP) features, Select Most Relevant (MR) features,
and the hybrid HIP–MR method. In general, both HIP and MR select a set of
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features without hierarchical redundancy, whereas HIP–MR usually generates
a set of features where the redundancy issue is only alleviated, but not elimi-
nated (Wan et al 2015). Hence, both HIP and MR select much fewer features,
and they obtained substantially greater predictive accuracy than the hybrid
HIP–MR in the experiments reported in (Wan et al 2015). Hence, we use only
HIP and MR in this work.

HIP and MR perform “lazy” feature selection, i.e., they select a specific
set of features for each testing instance, based on the feature values observed
in that instance. The HIP method selects only features whose values are not
implied by the value of any other feature in the current testing instance, due
to the hierarchical constraints (see Section 2.6). For instance, in Figure 3(a),
the value of node (feature) C is not implied by any other feature’s value, but
its value “1” implies that the values of its ancestors I, F, M, L, Q and O are
also “1”; the value of node A is also not implied by any other feature’s value,
but its value “0” implies that the values of nodes D, H, N, P and R are also
“0”. HIP will select nodes K, B, C, A and G for the example DAG of Figure
3(a), since this feature subset preserves all the hierarchical information – i.e.,
for any given instance, the values of the features in this subset imply the values
of all the other features.
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Fig. 3: Example of hierarchical feature selection by HIP and MR

The MR method selects the feature with maximal relevance value in the set
of features whose values equal to “1” or “0” in each path of the feature DAG.
If there exist more than one features having the maximal relevance value, only
the deepest (most specific) one (if the feature value is “1”) or the shallowest
(most generic) one (if the feature value is “0”) in that path will be selected.

There are many different functions that can be used to evaluate the quality
of a feature, such as information gain, chi-squared, etc. In the MR algorithm,
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as proposed in (Wan and Freitas 2013; Wan et al 2015), Equation (3) is used to
measure the relevance (R) (predictive power) of a binary feature X, which can
take value x1 or x2. In this equation, n denotes the number of classes and ci
denotes the i -th class label. Equation (3) measures the relevance of a feature as
a function of the difference in the conditional probabilities of each class given
different values (“1” or “0”) of the feature. This equation, which was adapted
from a similar equation for measuring feature relevance proposed in (Stanfill
and Waltz 1986), was chosen because it is simple to interpret in probabilistic
terms as a direct measure of a feature’s relevance for class discrimination, and
so it is naturally compatible with the use of Bayesian classification network
algorithms in our experiments. Future work could experiment with different
feature evaluation functions.

R(X) =

n∑
i=1

[P(ci|x1)−P(ci|x2)]2 (3)

In the example DAG in Figure 3(b), where the numbers on the left side of
nodes denote the corresponding relevance values and the numbers on the right
side of nodes denote the binary feature values, the MR method selects 7 nodes,
namely K, J, D, P, R, G and O. In detail, MR selects node O rather than node
Q, since the former has higher relevance value and both nodes have the value
“1” in the same path; and it selects node G rather than node E, since the
former is deeper than the latter and both nodes have value “1” in the same
path. Analogously, MR selects node J rather than node B, since the former
has higher relevance value and both nodes have the value “0” in the same
path; and it selects node D rather than node H, since the former is shallower
and both nodes have value “0” in the same path. Note that, in this case,
the features selected by MR will lead to some hierarchical information loss.
For example, the value “1” of selected node O does not imply that the value
of non-selected node Q is also “1”, and the Q’s value is not implied by the
value of any selected node (so the information that Q has value “1” was lost).
Similarly, the value “0” of selected node J does not imply that non-selected
node B has value “0”, and B’s value is not implied by the value of any selected
node.

Table 1: Summary of characteristics of the HIP and MR methods

Hierarchical FS
HIP MR

Algorithms

Merits
Eliminate hierarchical redundancy; Eliminate hierarchical redundancy;

Retain all hierarchical information Select highly relevant features

Drawbacks Ignore relevance of features;
Might lead to loss of

hierarchical information

Feature
Select fewer features than MR Select more features than HIP

Selectivity
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As summarized in Table 1, both HIP and MR have the merit of elimi-
nating hierarchical feature redundancy. However, they differ in other aspects,
with their own merits and drawbacks, i.e., HIP selects features retaining all
hierarchical information whilst ignoring the relevance of features with the class
attribute; whereas MR selects features having higher relevance to the class at-
tribute, but the selected features might not retain the complete hierarchical
information (i.e., leading to loss of hierarchical information).

The program codes of HIP and MR (in Java) are freely available from
https://github.com/andywan0125/AIRE-Journal.

4 Experimental Methodology and Computational Results

4.1 Dataset Creation

We constructed 28 datasets with data about the effect of genes on an organ-
ism’s longevity, by integrating data from the Human Ageing Genomic Re-
sources (HAGR) GenAge database (Build 17) (de Magalhães et al 2009) and
the Gene Ontology (GO) database (version: 2014-06-13) (The Gene Ontol-
ogy Consortium 2000). HAGR provides longevity-related gene data for four
model organisms, i.e., C. elegans (worm), D. melanogaster (fly), M. musculus
(mouse) and S. cerevisiae (yeast). For details of the dataset creation proce-
dure, see (Wan and Freitas 2013; Wan et al 2015). However, in (Wan and
Freitas 2013; Wan et al 2015) we created datasets using only Biological Pro-
cess GO terms; whilst in this current work we created datasets with all three
types of GO terms, each type associated with a hierarchy (see Section 2.6) in
the form of a DAG: Biological Process (BP), Molecular Function (MF) and
Cellular Component (CC) GO terms. Note that the different types of GO
terms are contained in DAGs whose sets of nodes do not intersect with each
other. This means that the hierarchical feature selection methods conduct the
feature selection process based on each individual DAG separately.

Gene\GO GO 1 GO 2 GO 3 ... GO m Class

Gene 1 1 0 0 ... 0 Pro

Gene 2 0 1 0 ... 1 Anti

Gene 3 0 0 0 ... 1 Pro

... ... ... ... ... ... ...

Gene n 1 0 1 ... 0 Pro

Fig. 4: Structure of the created datasets

https://github.com/andywan0125/AIRE-Journal
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In the created datasets, the instances represent aging-related genes, the fea-
tures represent hierarchical GO terms, and the class variable indicates whether
the gene contributes to increasing or decreasing the longevity of an organism.
For each model organism, we created 7 datasets, with all possible subsets of the
three GO term types, i.e., one dataset for each GO term type (BP, MF, CC),
one dataset for each pair of GO term types (BP and MF, BP and CC, MF and
CC), and one dataset with all 3 GO term types (BP, MF and CC). The struc-
ture of each created dataset is shown in Figure 4, where the feature value “1”
or “0” indicates whether or not (respectively) a GO term is annotated for each
gene. In the class variable, the values “Pro” and “Anti” mean “pro-longevity”
and “anti-longevity”. Pro-longevity genes are those whose decreased expression
(due to knock–out, mutations or RNA interference) reduces lifespan and/or
whose overexpression extends lifespan. Anti-longevity genes are those whose
decreased expression extends lifespan and/or whose overexpression decreases
lifespan (Tacutu et al 2013).

Note that GO terms with only one associated gene would be useless for
building a classification model because they are extremely specific to an indi-
vidual gene, and a model that includes these GO terms would be over-fitting
the data. However, GO terms associated with only a few genes might be valu-
able for discovering biological knowledge, since they might represent specific
biological information. In our previous work (Wan et al 2015), we did experi-
ments with different values of a threshold defining the minimum frequency of
occurrence of a GO term which is required in order to include that term (as
a feature) in a dataset, in order to perform effective classification. Based on
that work, the threshold value of at least 3 occurrences is used here, which
retains more biological information than higher thresholds while still leading
to high predictive accuracy. In addition, the root GO terms – i.e., GO:0008150,
GO:0003674 and GO:0005575, respectively for the DAG of biological process,
molecular function and cellular component terms – are not included in the
corresponding datasets, since the root GO terms have no predictive power (all
genes are trivially annotated with each root GO term).

The main characteristics of the created datasets are shown in Table 2,
which reports the number of features and edges in the GO DAG, the total
number of instances, the number (and percentage) of instances in each class,
and the degree of class imbalance. The degree of class imbalance is calculated
by Equation (4), where the degree (D) equals to the complement of the ratio
of the number of instances belonging to the minority class (No(Minor)) over
the number of instances belonging to the majority class (No(Major)).

D = 1− No(Minor)

No(Major)
(4)

All datasets used in our experiments are freely available from https://

github.com/andywan0125/AIRE-Journal.

https://github.com/andywan0125/AIRE-Journal
https://github.com/andywan0125/AIRE-Journal
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Table 2: Main characteristics of the created datasets

Caenorhabditis elegans (worm)

Feature (GO term) type BP MF CC BP+MF BP+CC MF+CC BP+MF+CC

No of Features 830 218 143 1048 973 361 1191

No of Edges 1437 259 217 1696 1654 476 1913

No of Instances 528 279 254 553 557 432 572

No (%) of Pro- 209 121 98 213 213 170 215

Longevity Instances 39.6% 43.4% 38.6% 38.5% 38.2% 39.4% 37.6%

No (%) of Anti- 319 158 156 340 344 262 357

Longevity Instances 60.4% 56.6% 61.4% 61.5% 61.8% 60.6% 62.4%

Degree of Class Imbalance 0.345 0.234 0.372 0.374 0.381 0.351 0.398

Drosophila melanogaster (fly)

Feature (GO term) type BP MF CC BP+MF BP+CC MF+CC BP+MF+CC

No of Features 698 130 75 828 773 205 903

No of Edges 1190 151 101 1341 1291 252 1442

No of Instances 127 102 90 130 128 123 130

No (%) of Pro- 91 68 62 92 91 85 92

Longevity Instances 71.7% 66.7% 68.9% 70.8% 71.1% 69.1% 70.8%

No (%) of Anti- 36 34 28 38 37 38 38

Longevity Instances 28.3% 33.3% 31.1% 29.2% 28.9% 30.9% 29.2%

Degree of Class Imbalance 0.604 0.500 0.548 0.587 0.593 0.553 0.587

Mus musculus (mouse)

Feature (GO term) type BP MF CC BP+MF BP+CC MF+CC BP+MF+CC

No of Features 1039 182 117 1221 1156 299 1338

No of Edges 1836 205 160 2041 1996 365 2201

No of Instances 102 98 100 102 102 102 102

No (%) of Pro- 68 65 66 68 68 68 68

Longevity Instances 66.7% 66.3% 66.0% 66.7% 66.7% 66.7% 66.7%

No (%) of Anti- 34 33 34 34 34 34 34

Longevity Instances 33.3% 33.7% 34.0% 33.3% 33.3% 33.3% 33.3%

Degree of Class Imbalance 0.500 0.492 0.485 0.500 0.500 0.500 0.500

Saccharomyces cerevisiae (yeast)

Feature (GO term) type BP MF CC BP+MF BP+CC MF+CC BP+MF+CC

No of Features 679 175 107 854 786 282 961

No of Edges 1223 209 168 1432 1391 377 1600

No of Instances 215 157 147 222 234 226 238

No (%) of Pro- 30 26 24 30 30 29 30

Longevity Instances 14.0% 16.6% 16.3% 13.5% 12.8% 12.8% 12.6%

No (%) of Anti- 185 131 123 192 204 197 208

Longevity Instances 86.0% 83.4% 83.7% 86.5% 87.2% 87.2% 87.4%

Degree of Class Imbalance 0.838 0.802 0.805 0.844 0.853 0.853 0.856
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4.2 Experimental Methodology and Predictive Accuracy Measure

We evaluate the two previously described hierarchical feature selection meth-
ods (HIP and MR) by comparing them with two other hierarchical feature
selection methods (SHSEL and GTD) and one “flat” feature selection method
(CFS). In essence, the SHSEL method selects the features having more rel-
evance and less redundancy with respect to other features in the same path
in the feature hierarchy. It consists of two stages (we used the pruneSHSEL
version, see (Ristoski and Paulheim 2014)). Firstly, it starts from each leaf
node of the feature hierarchy, removing the features having a relevance value
similar to their parent nodes’ relevance values – in this work, we adopt 0.99
as the threshold value for considering two features as similar, as suggested by
(Ristoski and Paulheim 2014). Then, in the second stage, SHSEL continues to
remove the features whose relevance values are less than the average relevance
value for all remaining features in the corresponding path.

The GTD method is based on the greedy top-down search strategy (Lu
et al 2013). It sorts features in each individual path according to their rele-
vance values and selects the feature having the highest relevance value in each
path, and then removes all other features in the path. In this work, the measure
used for evaluating a feature’s relevance value is the well-known Information
Gain for both the SHSEL and GTD methods.

CFS is a well-known feature selection method that tries to select a feature
subset where each feature has a high correlation with the class variable and
the features have a low correlation with each other (to avoid selecting redun-
dant features). Hence, CFS is an interesting baseline method because it tries
to remove redundant features in a “flat” sense, without exploiting the notion
of hierarchically redundant features that is at the core of HIP and MR.

Note that SHSEL, GTD and CFS follow the conventional eager learning ap-
proach, i.e., they select the same feature subset to classify all testing instances.
By contrast, HIP and MR follow the lazy learning approach (see Section 2.5),
performing feature selection separately for each testing instance. This gives
HIP and MR the flexibility to cope with a finer-grained concept of hierarchi-
cal redundancy, which depends on each instance’s specific feature values, as
discussed in Section 2.6.

We perform four sets of experiments, using NB, TAN, BAN and KNN as
classifiers. The well-known 10-fold cross validation procedure was adopted to
evaluate the predictive performance of these classifiers with different feature
selection methods. The Geometric Mean (GMean) of the Sensitivity (Sen.)
and Specificity (Spe.) is used to measure predictive accuracy, since the distri-
butions of classes in the datasets are imbalanced. As shown in Equation (5),
GMean is defined as the square root of the product of Sen. and Spe.; Sen.
denotes the percentage of positive (“pro-longevity”) instances that are cor-
rectly classified as positive, whereas Spe. denotes the percentage of negative
(“anti-longevity”) instances that are correctly classified as negative.

GMean =
√
Sen.× Spe. (5)
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4.3 Experimental Results

4.3.1 Feature selection results separately for each Bayesian classifier and the
K-Nearest Neighbors classifier

Tables 3, 4, 5 and 6 report the feature selection results separately for each
type of classifier, namely Näıve Bayes, TAN, BAN and KNN, respectively.
These tables have the same structure, reporting the results for 5 different fea-
ture selection methods in a pre-processing phase, namely 4 hierarchical feature
selection methods (HIP, MR, SHSEL, GTD) and the “flat” feature selection
method CFS; and also reporting results for not using any feature selection
method – so, 6 approaches are compared in total. Each table contains the
results for 28 datasets – 7 combinations of feature (GO term) types for each
of 4 model organisms. In each table, the best GMean value for each dataset
is shown in boldface. For each of the 28 datasets in each table, we compute a
ranking of the feature selection methods, where ranks 1 and 6 represent the
best and worst GMean values, respectively, in that dataset.

The distributions of rank values (across the 28 datasets) for different fea-
ture selection methods with different classifiers are shown in the boxplots in
Figures 5(a)-5(d), which summarize the results of Tables 3–6 for NB, TAN,
BAN and KNN, respectively. Each boxplot consists of a box whose left and
right boundaries denote the lower and upper quartile (respectively) of a dis-
tribution of rank values. The vertical line between these quartiles denotes the
median rank value, the red diamond denotes the average (mean) rank value,
and the horizontal lines extending from the left and the right boundaries of
the box end with vertical lines that denote the smallest and highest (respec-
tively) non-outlier rank values. Outliers are shown as separate points in the
plot. The difference between the upper and lower quartiles is the inter-quartile
range, and 50% of the rank values fall into this range. Note that in each of
Figures 5(a)-5(d) the boxplots of different feature selection methods are sorted
across the vertical axis according to their average rank – i.e., the boxplot of
the method with the lowest (best) average rank is at the bottom of the figure.

Table 3 reports the predictive accuracies obtained by Näıve Bayes. As
shown in Figure 5(a), HIP obtained the lowest (best) median rank (1.0) and
average rank (1.8), as well as the lowest lower and upper quartiles. The in-
terquartile range of HIP’s ranks is the narrowest among all methods, indicating
the small variability of its rank values across datasets. GTD+NB obtained the
second best median rank (2.0) and average rank (2.6). The other methods
obtained substantially worse results, with the following average and median
ranks, respectively: 3.7 and 4.0 for MR, 3.8 and 3.8 for NB without feature
selection, 4.3 and 4.8 for SHSEL, 4.8 and 5.0 for CFS.

Table 4 reports the predictive accuracies obtained by TAN. As shown in
Figure 5(b), HIP obtained again the best median rank (1.0) and average rank
(2.3); followed by MR, with median rank 2.0 and average rank 2.5. The other
methods obtained substantially worse results, with the following average and
median ranks, respectively: 3.3 and 3.0 for CFS, 3.7 and 4.0 for GTD, 4.2 and
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Fig. 5: Boxplots showing the distributions of ranks obtained by different feature
selection methods with each of 4 classifiers

4.3 for SHSEL, 5.0 and 5.8 for TAN without feature selection.
Table 5 reports the predictive accuracies obtained by BAN. As shown in

Figure 5(c), HIP obtained again the best median rank (1.0) and average rank
(1.3); and it has an extremely small inter-quartile range, so even the upper
quartile of its ranks is substantially lower (better) than the lower quartile of
all other methods. Hence, HIP clearly outperformed all other methods, whose
average and median ranks are, respectively: 2.5 and 2.0 for MR, 3.5 and 3.5
for SHSEL, 3.6 and 4.0 for CFS, 4.6 and 5.0 for GTD, 5.5 and 6.0 for BAN
without feature selection.

Table 6 reports the predictive accuracies obtained by KNN. As shown in
Figure 5(d), GTD obtained the best median rank (2.0) and average rank (2.6);
followed by HIP, with median rank 2.3 and average rank 3.0. The other meth-
ods obtained the following average and median ranks, respectively: 3.1 and 3.0
for MR, 3.6 and 3.0 for SHSEL, 4.3 and 4.5 for KNN without feature selection,
4.5 and 4.5 for CFS.
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Table 3: Predictive accuracy (%) for Näıve Bayes with hierarchical feature
selection methods HIP, MR, SHSEL, GTD and “flat” feature selection method
CFS

Feature NB without
HIP + NB MR + NB SHSEL + NB GTD + NB CFS + NB

Types Feature Selection

Caenorhabditis elegans datasets

Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM

BP 50.2±3.6 69.0±2.6 58.9 54.1±3.4 75.5±2.8 63.9 51.2±3.5 75.5±2.6 62.2 50.2±4.1 74.3±2.5 61.1 63.2±4.1 65.8±2.9 64.5 41.1±3.3 83.7±2.6 58.7

MF 57.9±4.1 46.2±5.5 51.7 45.5±4.7 51.9±5.1 48.6 38.8±2.9 63.3±3.8 49.6 36.4±5.7 70.9±5.6 50.8 52.9±3.1 55.1±5.4 54.0 58.7±6.8 46.8±5.5 52.4

CC 43.9±5.7 70.5±3.4 55.6 58.2±4.9 60.9±4.0 59.5 42.9±4.0 71.2±3.0 55.3 34.7±3.4 76.3±3.7 51.5 46.9±5.0 67.9±3.6 56.4 35.7±4.3 74.4±3.9 51.5

BP+MF 54.0±1.8 70.3±3.0 61.6 53.5±3.6 76.2±1.9 63.8 62.9±3.5 73.2±1.8 67.9 51.2±3.5 75.6±1.8 62.2 61.5±3.2 67.4±2.7 64.4 50.2±3.5 77.1±2.4 62.2

BP+CC 52.6±3.9 68.3±2.6 59.9 57.7±3.7 73.0±2.6 64.9 55.4±2.8 73.8±2.2 63.9 49.3±2.6 73.5±2.4 60.2 57.3±3.7 70.1±2.1 63.4 44.6±3.7 77.0±2.2 58.6

MF+CC 51.2±2.8 64.1±4.3 57.3 54.7±3.3 66.0±4.1 60.1 47.6±3.6 68.3±4.2 57.0 42.4±3.4 73.7±3.5 55.9 52.4±2.7 66.4±4.7 59.0 47.1±3.9 72.1±3.8 58.3

BP+MF+CC 52.1±4.4 70.0±2.3 60.4 55.3±3.6 71.7±2.7 63.0 55.8±3.6 70.6±2.4 62.8 49.8±4.4 70.9±2.3 59.4 54.4±3.5 69.2±2.3 61.4 51.6±4.4 74.8±2.1 62.1

Drosophila melanogaster datasets

Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM

BP 74.7±3.5 36.1±9.5 51.9 73.6±4.1 44.4±9.0 57.2 79.1±4.1 38.9±11.0 55.5 74.7±5.2 41.7±9.6 55.8 75.8±3.8 41.7±7.9 56.2 76.9±4.7 27.8±7.4 46.2

MF 82.4±4.6 35.3±8.6 53.9 69.1±6.1 52.9±7.3 60.5 80.9±4.2 44.1±7.6 59.7 77.9±5.5 41.2±8.3 56.7 83.8±5.4 35.3±6.4 54.4 86.8±4.0 35.3±7.2 55.4

CC 87.1±4.1 50.0±10.2 66.0 80.6±6.5 46.4±11.4 61.2 83.9±5.6 53.6±8.7 67.1 85.5±3.9 25.0±5.1 46.2 88.7±4.3 53.6±11.2 69.0 87.1±3.3 39.3±10.0 58.5

BP+MF 77.2±3.9 50.0±10.2 62.1 72.8±5.6 57.9±9.3 64.9 79.3±4.3 44.7±8.2 59.5 81.5±3.8 44.7±9.2 60.4 77.2±3.6 42.1±6.5 57.0 85.9±3.7 31.6±7.5 52.1

BP+CC 76.9±5.1 48.6±9.8 61.1 73.6±4.9 64.9±8.3 69.1 80.2±4.3 56.8±11.2 67.5 79.1±3.4 45.9±8.7 60.3 76.9±4.6 48.6±9.8 61.1 82.4±3.7 43.2±10.9 59.7

MF+CC 89.4±3.2 57.9±5.3 71.9 82.4±6.1 63.2±6.7 72.2 83.5±4.4 57.9±7.5 69.5 88.2±3.5 50.0±5.3 66.4 91.8±3.5 57.9±5.3 72.9 91.8±3.4 42.1±8.4 62.2

BP+MF+CC 81.5±5.3 55.3±8.2 67.1 76.1±4.9 68.4±5.3 72.1 77.2±4.5 63.2±7.7 69.9 84.8±3.4 57.9±8.4 70.1 78.3±4.7 57.9±6.5 67.3 90.2±3.1 47.4±8.7 65.4

Mus musculus datasets

Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM

BP 82.4±4.7 44.1±5.9 60.3 72.1±4.8 70.6±5.1 71.3 80.9±5.2 50.0±7.9 63.6 85.3±4.3 47.1±7.0 63.4 83.8±5.0 44.1±5.9 60.8 83.8±4.0 38.2±5.6 56.6

MF 69.2±7.4 48.5±11.2 57.9 78.5±4.4 45.5±12.2 59.8 83.1±4.1 39.4±10.7 57.2 83.1±4.5 30.3±11.8 50.2 81.5±5.5 42.4±11.1 58.8 80.0±5.2 36.4±10.5 54.0

CC 75.8±2.3 52.9±10.0 63.3 80.3±3.0 47.1±11.2 61.5 81.8±3.6 41.2±11.9 58.1 77.3±3.3 50.0±10.1 62.2 75.8±2.3 52.9±10.0 63.3 71.2±3.0 35.3±11.2 50.1

BP+MF 83.8±3.4 44.1±7.0 60.8 70.6±4.8 70.6±8.1 70.6 82.4±4.2 50.0±10.2 64.2 86.8±4.0 47.1±7.7 63.9 83.8±4.5 44.1±7.0 60.8 88.2±4.2 41.2±8.0 60.3

BP+CC 79.4±6.1 50.0±8.4 63.0 66.2±5.0 73.5±9.3 69.8 73.5±5.1 52.9±9.6 62.4 82.4±5.1 55.9±10.5 67.9 77.9±5.7 52.9±9.6 64.2 83.8±5.0 50.0±11.3 64.7

MF+CC 75.0±5.0 64.7±12.5 69.7 79.4±4.2 58.8±11.8 68.3 83.8±5.0 55.9±13.3 68.4 86.8±4.6 50.0±11.7 65.9 76.5±5.1 58.8±13.0 67.1 77.9±4.8 47.1±10.9 60.6

BP+MF+CC 82.4±4.2 47.1±9.3 62.3 73.5±5.1 73.5±9.8 73.5 85.3±4.3 50.0±6.9 65.3 86.8±4.5 55.9±7.0 69.7 83.8±4.0 47.1±9.3 62.8 83.8±3.3 52.9±6.8 66.6

Saccharomyces cerevisiae datasets

Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM

BP 40.0±8.3 84.9±3.5 58.3 63.3±6.0 78.4±3.1 70.4 33.3±8.6 85.9±2.9 53.5 20.0±5.4 93.0±2.1 43.1 43.4±7.1 86.5±2.9 61.3 20.0±5.4 91.4±2.6 42.8

MF 11.5±6.1 81.7±4.8 30.7 5.0±5.0 83.2±3.4 20.4 0.0±0.0 93.9±2.4 0.0 0.0±0.0 96.9±1.3 0.0 11.5±6.1 86.3±2.9 31.5 5.0±5.0 92.4±1.8 21.5

CC 25.0±7.1 86.2±3.0 46.4 29.2±10.2 82.9±4.2 49.2 20.8±6.9 91.9±2.7 43.7 20.8±7.5 89.4±2.6 43.1 25.0±7.1 87.0±3.2 46.6 20.8±7.5 94.3±1.7 44.3

BP+MF 33.3±11.1 85.4±1.7 53.3 76.7±7.1 74.0±3.3 75.3 23.3±5.1 89.1±2.5 45.6 30.0±9.2 92.2±2.1 52.6 46.7±10.2 88.0±1.6 64.1 33.3±9.9 90.6±1.5 54.9

BP+CC 53.3±8.9 85.8±3.0 67.6 70.0±7.8 79.4±3.2 74.6 40.0±8.3 84.8±2.7 58.2 30.0±6.0 92.6±2.0 52.7 53.3±5.4 89.2±2.6 69.0 40.0±8.3 91.2±1.8 60.4

MF+CC 34.5±10.5 87.3±2.1 54.9 31.0±8.0 82.2±3.5 50.5 17.2±6.3 89.8±2.3 39.3 13.8±6.3 91.4±1.7 35.5 34.5±9.2 89.8±1.3 55.7 13.8±6.3 91.9±1.9 35.6

BP+MF+CC 36.7±9.2 85.6±2.7 56.0 70.0±10.5 75.0±2.6 72.5 30.0±9.2 86.5±2.6 50.9 49.8±4.4 70.9±2.3 59.4 54.4±3.5 69.2±2.3 61.4 36.7±10.5 92.8±1.9 58.4
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Table 4: Predictive accuracy (%) for TAN with hierarchical feature selection
methods HIP, MR, SHSEL, GTD and “flat” feature selection method CFS

Feature TAN without
HIP + TAN MR + TAN SHSEL + TAN GTD + TAN CFS + TAN

Types Feature Selection

Caenorhabditis elegans datasets

Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM

BP 34.0±3.2 79.6±2.3 52.0 52.2±2.3 67.7±3.5 59.4 55.0±2.4 73.0±1.8 63.4 36.8±3.9 79.0±1.5 53.9 44.0±3.6 78.4±2.7 58.7 45.9±3.7 79.3±2.2 60.3

MF 37.2±5.8 61.4±5.0 47.8 43.0±5.6 50.6±4.5 46.6 33.1±3.5 65.2±4.0 46.5 25.6±4.6 74.7±5.9 43.7 43.8±3.8 61.4±5.1 51.9 24.8±4.8 74.7±4.0 43.0

CC 39.8±3.0 78.2±2.2 55.8 44.9±2.7 62.2±4.7 52.8 37.8±3.4 74.4±2.7 53.0 34.7±3.4 76.3±3.6 51.5 39.8±3.0 74.4±2.4 54.4 34.7±4.3 76.9±3.2 51.7

BP+MF 35.2±1.9 80.3±2.2 53.2 54.5±3.2 72.1±2.4 62.7 61.0±4.3 71.8±2.3 66.2 40.8±3.6 81.8±2.0 57.8 42.3±3.9 79.7±0.9 58.1 46.0±3.2 80.6±2.0 60.9

BP+CC 42.7±3.1 81.7±2.7 59.1 59.2±3.9 69.2±2.9 64.0 56.3±3.0 77.3±2.2 66.0 39.0±2.7 79.1±2.1 55.5 48.4±3.1 79.9±2.8 62.2 45.1±2.8 80.8±2.0 60.4

MF+CC 40.6±3.4 74.4±3.6 55.0 45.3±2.2 67.2±3.5 55.2 45.9±3.8 70.6±3.0 56.9 38.8±2.5 76.0±3.2 54.3 45.3±3.8 71.0±2.7 56.7 47.1±3.5 73.7±3.5 58.9

BP+MF+CC 39.5±2.8 80.1±2.6 56.2 60.0±5.5 71.4±2.2 65.5 54.4±4.2 76.5±2.3 64.5 37.2±3.6 77.6±2.5 53.7 48.4±4.1 78.4±2.4 61.6 45.6±5.0 77.3±2.2 59.4

Drosophila melanogaster datasets

Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM

BP 92.3±2.9 19.4±8.4 42.3 58.2±6.5 72.2±5.4 64.8 76.9±3.6 50.0±9.6 62.0 83.5±2.9 36.1±8.8 54.9 90.1±3.1 22.2±7.5 44.7 79.1±5.1 25.0±5.9 44.5

MF 91.2±3.3 20.6±5.0 43.3 73.5±5.5 32.4±7.1 48.8 83.8±4.5 41.2±7.4 58.8 79.4±4.3 35.3±9.5 52.9 85.3±4.3 35.3±7.9 54.9 85.3±4.3 32.4±7.1 52.6

CC 90.3±3.6 32.1±11.6 53.8 79.0±3.6 50.0±11.3 62.8 75.8±6.6 42.9±8.3 57.0 79.0±5.5 25.0±5.1 44.4 87.1±4.1 39.3±11.6 58.5 87.1±3.8 42.9±10.2 61.1

BP+MF 92.4±3.3 23.7±6.9 46.8 52.2±4.0 73.7±5.8 62.0 80.4±2.8 47.4±9.5 61.7 87.0±3.2 39.5±9.3 58.6 87.0±3.1 26.3±6.5 47.8 85.9±2.9 31.6±5.3 52.1

BP+CC 86.8±4.0 18.9±7.6 40.5 59.3±5.7 67.6±7.2 63.3 82.4±3.8 40.5±8.0 57.8 80.2±3.1 37.8±10.3 55.1 85.7±3.7 32.4±7.7 52.7 79.1±5.0 48.6±10.4 62.0

MF+CC 90.6±3.3 31.6±5.0 53.5 76.5±4.9 60.5±9.3 68.0 72.9±6.4 52.6±6.9 61.9 88.2±3.6 39.5±4.1 59.0 88.2±3.5 42.1±5.3 60.9 89.4±3.8 52.6±5.8 68.6

BP+MF+CC 92.4±2.4 18.4±5.3 41.2 60.9±7.6 78.9±6.9 69.3 77.2±4.5 60.5±8.5 68.3 82.6±3.8 47.4±7.9 62.6 89.1±2.4 42.1±8.4 61.2 85.9±1.8 47.4±8.7 63.8

Mus musculus datasets

Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM

BP 89.7±3.7 41.2±4.9 60.8 42.6±5.3 73.5±7.2 56.0 73.5±7.1 50.0±10.0 60.6 80.9±6.4 47.1±7.9 61.7 85.3±5.6 47.1±5.3 63.4 82.4±3.6 47.1±6.2 62.3

MF 89.2±4.0 33.3±9.4 54.5 69.2±7.7 66.7±7.6 67.9 83.1±6.6 54.5±9.1 67.3 83.1±3.3 48.5±11.7 63.5 84.6±5.3 39.4±13.0 57.7 86.2±4.0 30.3±9.6 51.1

CC 75.8±4.4 41.2±8.3 55.9 72.7±5.1 50.0±10.1 60.3 74.2±4.3 44.1±9.8 57.2 86.4±5.0 35.3±11.6 55.2 71.2±3.0 38.2±9.7 52.2 75.8±3.2 38.2±12.6 53.8

BP+MF 86.8±3.4 35.3±5.4 55.4 42.6±4.9 79.4±9.3 58.2 79.4±4.3 55.9±8.6 66.6 79.4±3.8 55.9±8.6 66.6 85.3±3.7 41.2±6.6 59.3 88.2±4.2 41.2±8.0 60.3

BP+CC 88.2±3.6 47.1±9.7 64.5 48.5±4.4 82.4±6.8 63.2 70.6±5.9 58.8±8.9 64.4 75.0±6.0 55.9±9.3 64.7 80.9±6.0 47.1±9.7 61.7 83.8±5.0 41.2±8.7 58.8

MF+CC 88.2±4.2 41.2±10.0 60.3 63.2±3.1 64.7±12.7 63.9 82.4±3.6 55.9±11.5 67.9 80.9±3.6 47.1±9.9 61.7 83.8±6.9 47.1±11.3 62.8 77.9±3.8 52.9±10.8 64.2

BP+MF+CC 91.2±3.2 41.2±8.6 61.3 45.6±8.0 82.4±5.2 61.3 75.0±5.7 58.8±7.9 66.4 77.9±5.7 52.9±7.8 64.2 80.9±4.3 47.1±7.5 61.7 77.9±4.9 55.9±7.0 66.0

Saccharomyces cerevisiae datasets

Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM

BP 3.3±3.3 98.9±1.1 18.1 56.7±10.0 68.6±2.0 62.4 30.0±7.8 87.0±2.7 51.1 20.0±5.4 95.7±1.6 43.7 6.7±4.4 97.3±1.2 25.5 33.3±7.0 91.9±2.4 55.3

MF 0.0±0.0 97.7±1.2 0.0 26.9±6.2 78.6±2.7 46.0 0.0±0.0 87.8±2.9 0.0 0.0±0.0 96.2±1.3 0.0 0.0±0.0 96.9±1.3 0.0 5.0±5.0 94.7±1.2 21.8

CC 16.7±7.0 95.9±2.1 40.0 25.0±10.6 85.4±4.0 46.2 20.8±6.9 95.1±2.1 44.5 12.5±6.9 92.7±2.2 34.0 16.7±7.0 95.1±1.8 39.9 16.7±7.0 93.5±1.6 39.5

BP+MF 3.3±3.3 99.0±0.7 18.1 63.3±9.2 67.7±3.1 65.5 20.0±7.4 93.2±1.4 43.2 23.3±7.1 93.8±2.0 46.7 10.0±7.1 98.4±0.8 31.4 30.0±6.0 93.8±1.7 53.0

BP+CC 10.0±5.1 99.0±0.7 31.5 63.3±6.0 73.5±3.8 68.2 30.0±9.2 89.2±2.1 51.7 33.3±7.0 94.6±1.7 56.1 10.0±5.1 99.5±0.5 31.5 33.3±8.6 94.1±1.6 56.0

MF+CC 5.0±5.0 98.5±0.8 22.2 31.0±9.9 81.7±2.5 50.3 10.3±6.1 93.4±2.5 31.0 6.9±5.7 93.4±1.6 25.4 10.3±6.1 98.5±0.8 31.9 10.3±6.1 94.4±1.4 31.2

BP+MF+CC 0.0±0.0 99.0±0.6 0.0 70.0±9.2 69.7±3.0 69.8 36.7±9.2 89.4±2.1 57.3 13.3±7.4 94.7±1.8 35.5 48.4±4.1 78.4±2.4 61.6 33.3±9.9 91.8±2.1 55.3
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Table 5: Predictive accuracy (%) for BAN with hierarchical feature selection
methods HIP, MR, SHSEL, GTD and “flat” feature selection method CFS

Feature BAN without
HIP + BAN MR + BAN SHSEL + BAN GTD + BAN CFS + BAN

Types Feature Selection

Caenorhabditis elegans datasets

Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM

BP 28.7±2.2 86.5±1.8 49.8 54.5±3.2 73.4±2.7 63.2 52.2±3.1 74.0±2.2 62.2 50.2±4.4 73.7±2.8 60.8 31.6±2.2 85.3±1.9 51.9 45.0±2.6 80.9±2.5 60.3

MF 34.7±4.5 66.5±4.5 48.0 43.8±4.5 52.5±5.2 48.0 35.5±3.0 63.3±3.4 47.4 26.4±4.0 82.3±3.8 46.6 46.3±5.4 64.6±5.3 54.7 31.4±6.6 70.9±6.0 47.2

CC 33.7±4.5 81.4±2.2 52.4 55.1±5.0 63.5±4.0 59.2 40.8±4.3 73.1±2.6 54.6 35.7±4.0 76.3±3.7 52.2 32.7±4.0 77.6±2.1 50.4 35.7±4.3 74.4±3.9 51.5

BP+MF 30.0±2.7 84.7±1.7 50.4 55.9±3.2 74.1±2.5 64.4 63.8±2.2 73.2±2.1 68.3 49.8±3.6 75.6±1.9 61.4 37.6±2.8 80.9±1.3 55.2 52.1±3.7 77.6±2.2 63.6

BP+CC 29.1±2.1 86.6±1.7 50.2 58.7±3.6 72.7±2.5 65.3 54.0±2.8 74.7±2.3 63.5 50.2±2.7 72.4±2.4 60.3 37.1±3.0 84.3±2.2 55.9 47.4±2.7 79.1±1.5 61.2

MF+CC 35.3±2.9 80.2±3.2 53.2 55.9±3.1 64.5±3.6 60.0 47.1±3.4 70.2±3.9 57.5 37.6±4.1 78.2±2.5 54.2 41.8±4.9 77.9±3.4 57.1 46.5±4.1 72.1±4.0 57.9

BP+MF+CC 31.2±2.9 85.2±1.5 51.6 58.1±3.8 73.4±2.6 65.3 55.3±4.0 72.0±2.6 63.1 48.4±4.2 72.3±2.4 59.2 37.2±3.3 82.6±1.9 55.4 50.7±4.1 75.4±2.1 61.8

Drosophila melanogaster datasets

Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM

BP 100.0±0.0 0.0±0.0 0.0 75.8±4.4 52.8±8.6 63.3 80.2±3.5 44.4±10.2 59.7 74.7±5.2 41.7±9.6 55.8 97.8±2.2 8.3±5.7 28.5 78.0±4.1 25.0±7.8 44.2

MF 91.2±3.3 26.5±3.4 49.2 64.7±7.2 50.0±10.0 56.9 80.9±5.2 47.1±9.1 61.7 83.8±4.5 38.2±7.9 56.6 91.2±3.3 20.6±4.8 43.3 85.3±4.3 32.4±7.1 52.6

CC 93.5±2.6 28.6±11.1 51.7 79.0±6.6 46.4±11.4 60.5 85.5±4.6 42.9±10.2 60.6 87.1±3.3 25.0±5.1 46.7 93.5±2.6 32.1±11.6 54.8 88.7±3.5 46.4±11.4 64.2

BP+MF 97.8±1.5 0.0±0.0 0.0 72.8±3.9 63.2±9.3 67.8 80.4±3.7 44.7±8.2 59.9 82.6±4.2 42.1±8.5 59.0 97.8±1.5 5.3±3.3 22.8 83.7±3.5 28.9±6.2 49.2

BP+CC 98.9±1.1 0.0±0.0 0.0 73.6±4.7 62.2±8.4 67.7 80.2±4.1 51.4±10.9 64.2 79.1±3.4 45.9±8.7 60.3 95.6±2.5 8.1±3.8 27.8 82.4±4.4 40.5±10.2 57.8

MF+CC 95.3±1.9 31.6±5.3 54.9 80.0±6.2 60.5±7.6 69.6 83.5±4.9 55.3±8.2 68.0 89.4±3.2 47.4±5.8 65.1 91.8±3.7 47.4±5.8 66.0 90.6±3.0 52.6±4.5 69.0

BP+MF+CC 98.9±1.1 2.6±2.5 16.0 73.9±4.7 68.4±5.3 71.1 81.5±3.7 63.2±7.7 71.8 84.8±3.4 60.5±8.5 71.6 97.8±1.5 7.9±5.5 27.8 88.0±2.6 44.7±8.2 62.7

Mus musculus datasets

Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM

BP 98.5±1.4 26.5±5.0 51.1 75.0±5.1 70.6±5.1 72.8 88.2±4.7 44.1±7.7 62.4 85.3±4.3 47.1±7.0 63.4 98.5±1.4 38.2±4.7 61.3 85.3±4.3 44.1±5.9 61.3

MF 90.8±3.3 27.3±10.0 49.8 84.6±3.0 45.5±12.2 62.0 87.7±3.0 39.4±10.6 58.8 83.1±4.5 30.3±11.8 50.2 87.7±3.0 33.3±12.5 54.0 87.7±2.9 30.3±9.6 51.5

CC 86.4±3.3 35.3±11.2 55.2 80.3±3.0 50.0±10.1 63.4 78.8±3.8 44.1±11.1 58.9 77.3±3.3 50.0±10.1 62.2 81.8±3.9 44.1±11.1 60.1 78.8±3.3 38.2±12.6 54.9

BP+MF 98.5±1.4 29.4±6.4 53.8 69.1±5.8 70.6±8.1 69.8 86.8 ±4.0 41.2±9.6 59.8 86.8±4.0 47.1±7.7 63.9 97.1±1.9 35.3±7.0 58.5 89.7±2.2 41.2±8.0 60.8

BP+CC 98.5±1.4 29.4±6.4 53.8 66.2±6.0 76.5±8.0 71.2 77.9±5.3 52.9±9.6 64.2 82.4±5.1 55.9±10.5 67.9 98.5±1.4 41.2±7.9 63.7 82.4±5.6 47.1±11.7 62.3

MF+CC 91.2±3.2 26.5±8.8 49.2 79.4±4.2 61.8±12.5 70.0 83.8±5.0 58.8±13.1 70.2 86.8±4.6 41.2±10.2 59.8 89.7±3.2 41.2±11.0 60.8 79.4±4.8 44.1±9.6 59.2

BP+MF+CC 98.5±1.4 26.5±10.5 51.1 70.6±6.0 76.5±8.8 73.5 86.8±4.0 50.0±6.9 65.9 86.8±4.5 55.9±7.0 69.7 97.1±1.9 35.3±10.2 58.5 83.8±3.3 52.9±8.4 66.6

Saccharomyces cerevisiae datasets

Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM

BP 0.0±0.0 100.0±0.0 0.0 63.3±6.0 76.8±3.1 69.7 33.3±8.6 89.7±2.5 54.7 20.0±5.4 93.0±2.1 43.1 0.0±0.0 100.0±0.0 0.0 20.0±5.4 94.6±1.9 43.5

MF 0.0±0.0 99.2±0.8 0.0 23.1±6.7 80.2±3.9 43.0 0.0±0.0 90.8±3.0 0.0 0.0±0.0 97.7±1.2 0.0 0.0±0.0 98.5±1.0 0.0 0.0±0.0 94.7±1.6 0.0

CC 12.5±6.1 99.2±0.8 35.2 29.2±10.2 83.7±4.1 49.4 20.8±6.9 93.5±2.7 44.1 16.7±7.6 90.2±2.5 38.8 16.7±7.0 96.7±1.3 40.2 20.8±7.5 93.5±1.6 44.1

BP+MF 0.0±0.0 100.0±0.0 0.0 73.3±6.7 71.9±3.0 72.6 23.3±7.1 89.6±2.6 45.7 30.0±9.2 92.7±2.2 52.7 0.0±0.0 100.0±0.0 0.0 26.7±8.3 96.4±1.1 50.7

BP+CC 0.0±0.0 100.0±0.0 0.0 63.3±10.5 78.4±2.9 70.4 40.0±8.3 87.3±2.5 59.1 33.3±7.0 92.6±2.3 55.5 0.0±0.0 100.0±0.0 0.0 26.7±6.7 96.6±1.1 50.8

MF+CC 0.0±0.0 100.0±0.0 0.0 41.4±8.3 80.7±3.0 57.8 13.8±6.3 88.8±2.3 35.0 13.8±6.3 91.4±1.7 35.5 3.4±0.0 99.0±0.7 18.3 13.8±6.3 93.4±1.5 35.9

BP+MF+CC 0.0±0.0 100.0±0.0 0.0 76.7±7.1 73.6±2.8 75.1 33.3±5.0 87.0±2.5 53.8 20.0±7.4 90.4±2.3 42.5 0.0±0.0 100.0±0.0 0.0 23.3±8.7 94.2±1.6 46.8
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Table 6: Predictive accuracy (%) for KNN (k=3) with hierarchical feature
selection methods HIP, MR, SHSEL, GTD and “flat” feature selection method
CFS

Feature KNN without
HIP + KNN MR + KNN SHSEL + KNN GTD + KNN CFS + KNN

Types Feature Selection

Caenorhabditis elegans datasets

Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM

BP 48.3±4.8 74.0±3.0 59.8 51.7±2.8 77.4±3.5 63.3 47.4±2.9 73.4±2.2 59.0 54.1±3.3 65.2±3.2 59.4 48.8±5.2 73.7±3.0 60.0 63.6±3.5 49.5±4.3 56.1

MF 41.3±3.3 54.4±4.4 47.4 36.4±4.4 53.2±4.5 44.0 40.5±4.0 62.0±5.9 50.1 32.2±7.4 69.0±7.2 47.1 37.2±4.1 58.2±3.7 46.5 16.5±3.1 75.9±2.9 35.4

CC 39.8±6.5 67.9±3.3 52.0 40.8±4.0 68.6±2.9 52.9 34.7±7.5 64.1±1.9 47.2 32.7±5.2 69.2±6.1 47.6 45.9±6.2 67.3±2.7 55.6 35.7±4.6 65.4±4.7 48.3

BP+MF 49.3±3.5 72.9±1.2 59.9 52.6±3.4 74.1±1.7 62.4 49.3±3.1 74.7±1.9 60.7 56.3±3.5 64.1±3.8 60.1 50.2±4.9 76.8±1.9 62.1 65.3±4.1 50.6±4.3 57.5

BP+CC 42.7±3.4 72.7±2.7 55.7 45.1±3.2 77.0±1.9 58.9 43.7±4.3 74.1±2.2 56.9 51.2±3.5 67.7±2.8 58.9 45.5±3.4 74.1±3.1 58.1 67.1±2.6 53.2±5.9 59.7

MF+CC 44.7±2.7 68.3±2.6 55.3 47.1±2.5 71.4±2.9 58.0 44.7±2.0 67.9±3.1 55.1 48.8±4.4 66.8±4.1 57.1 47.6±2.2 71.0±2.6 58.1 40.6±4.2 75.2±2.7 55.3

BP+MF+CC 47.9±3.6 72.0±2.4 58.7 47.4±3.9 75.1±1.7 59.7 48.8±4.3 74.5±1.5 60.3 47.4±2.5 65.8±3.2 55.8 46.5±2.3 74.8±2.5 59.0 59.1±4.2 51.3±3.9 55.1

Drosophila melanogaster datasets

Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM

BP 80.2±4.9 38.9±7.5 55.9 84.6±3.8 50.0±10.0 65.0 68.1±5.4 63.9±8.3 66.0 62.6±7.3 58.3±9.0 60.4 78.0±4.4 52.8±7.5 64.2 49.5±4.6 69.4±7.9 58.6

MF 77.9±5.6 32.4±5.2 50.2 69.1±5.7 44.1±7.0 55.2 61.8±5.2 41.2±5.5 50.5 55.9±5.0 58.8±7.0 57.3 76.5±5.6 35.3±3.7 52.0 27.9±4.8 70.6±7.6 44.4

CC 83.9±5.6 46.4±10.0 62.4 82.3±4.7 46.4±12.2 61.8 79.0±6.2 53.6±12.4 65.1 64.5±5.2 60.7±11.2 62.6 83.9±6.1 50.0±12.4 64.8 50.0±5.0 53.6±7.5 51.8

BP+MF 79.3±5.1 42.1±9.9 57.8 78.3±4.7 52.6±9.7 64.2 71.7±4.4 57.9±7.5 64.4 67.4±5.1 50.0±8.7 58.1 78.3±6.6 44.7±9.0 59.2 51.1±3.6 68.4±7.5 59.1

BP+CC 78.0±5.4 37.8±8.9 54.3 83.5±3.0 51.4±6.0 65.5 78.0±3.2 56.8±7.3 66.6 65.9±4.1 48.6±7.9 56.6 78.0±5.0 51.4±7.4 63.3 56.0±4.8 64.9±8.1 60.3

MF+CC 91.8±3.1 42.1±6.7 62.2 82.4±5.2 57.9±5.3 69.1 76.5±6.8 44.7±8.4 58.5 74.1±4.1 52.6±4.5 62.4 89.4±4.0 47.4±7.3 65.1 43.5±4.7 71.1±7.3 55.6

BP+MF+CC 81.5±3.8 52.6±6.9 65.5 84.8±3.0 63.2±7.7 73.2 80.4±4.6 63.2±9.3 71.3 72.8±3.4 52.6±4.5 61.9 81.5±4.4 52.6±8.7 65.5 60.9±4.3 73.7±6.5 67.0

Mus musculus datasets

Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM

BP 86.8±3.4 41.2±4.7 59.8 82.4±5.9 64.7±8.8 73.0 86.8±4.0 47.1±8.9 63.9 85.3±4.8 50.0±13.4 65.3 88.2±4.2 47.1±7.2 64.5 86.8±3.4 35.3±8.8 55.4

MF 78.5±4.5 39.4±10.4 55.6 89.2±5.1 39.4±8.1 59.3 84.6±3.3 45.5±10.0 62.0 84.6±3.9 42.4±13.5 59.9 83.1±5.7 45.5±8.7 61.5 89.2±3.1 30.3±9.4 52.0

CC 74.2±7.7 41.2±9.4 55.3 75.8±4.4 38.2±10.2 53.8 65.2±6.4 50.0±9.0 57.1 80.3±5.7 35.3±9.3 53.2 71.2±6.4 32.4±9.9 48.0 74.2±4.3 38.2±10.2 53.2

BP+MF 83.8±4.0 47.1±7.3 62.8 83.8±4.0 52.9±11.7 66.6 86.8±4.0 55.9±8.2 69.7 85.3±2.1 52.9±6.7 67.2 85.3±3.7 55.9±7.3 69.1 85.3±4.3 44.1±8.1 61.3

BP+CC 86.8±5.8 47.1±10.1 63.9 77.9±5.3 50.0±9.1 62.4 86.8±4.0 58.8±6.8 71.4 82.4±3.6 50.0±6.0 64.2 88.2±5.6 55.9±8.8 70.2 85.3±3.0 41.2±8.6 59.3

MF+CC 77.9±4.3 61.8±6.9 69.4 80.9±4.8 50.0±8.9 63.6 73.5±4.7 50.0±11.6 60.6 86.8±5.0 41.2±7.6 59.8 79.4±5.7 55.9±9.2 66.6 75.0±4.7 52.9±11.9 63.0

BP+MF+CC 83.8±4.5 50.0±10.8 64.7 85.3±6.4 55.9±8.5 69.1 80.9±3.7 58.8±10.8 69.0 86.8±5.0 58.8±8.8 71.4 83.8±4.5 47.1±9.7 62.8 86.8±3.3 41.2±9.6 59.8

Saccharomyces cerevisiae datasets

Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM

BP 10.0±5.1 95.7±1.9 30.9 10.0±5.1 91.4±1.8 30.2 26.7±8.3 92.4±2.3 49.7 16.7±5.6 93.0±1.8 39.4 30.0±9.2 94.1±1.7 53.1 23.3±5.1 94.1±2.2 46.8

MF 11.5±6.9 90.1±3.0 32.2 3.8±0.0 96.2±1.3 19.1 7.7±4.4 91.6±1.8 26.6 11.5±6.1 93.9±2.5 32.9 15.4±7.0 90.1±1.7 37.2 19.2±6.9 91.6±1.4 41.9

CC 12.5±6.9 93.5±2.1 34.2 12.5±6.9 93.5±2.1 34.2 12.5±6.9 93.5±2.0 34.2 12.5±6.1 96.7±1.3 34.8 20.8±11.7 87.8±3.1 42.7 16.7±7.0 93.5±2.4 39.5

BP+MF 13.3±5.4 94.8±1.8 35.5 16.7±7.5 93.8±1.5 39.6 26.7±6.7 95.8±1.3 50.6 23.3±8.7 93.8±1.7 46.7 30.0±6.0 94.3±1.8 53.2 23.3±8.7 94.8±1.1 47.0

BP+CC 20.0±5.4 96.6±1.1 44.0 26.7±6.7 97.1±0.8 50.9 16.7±5.6 92.6±1.8 39.3 33.3±7.0 93.6±1.7 55.8 33.3±7.0 95.6±1.4 56.4 30.0±7.8 97.1±0.8 54.0

MF+CC 17.2±8.0 94.9±1.3 40.4 13.8±11.4 95.9±1.7 36.4 13.8±6.3 94.9±1.7 36.2 10.3±6.1 92.4±1.8 30.8 10.3±6.1 95.9±1.3 31.4 17.2±8.0 91.4±1.7 39.6

BP+MF+CC 20.0±7.4 95.7±1.1 43.7 30.0±9.2 97.1±1.5 54.0 13.3±7.4 94.7±1.5 35.5 23.3±7.1 95.2±1.7 47.1 33.3±9.9 94.7±1.3 56.2 20.0±7.4 95.7±1.7 43.7
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4.3.2 Global comparison of all 24 pairs of a feature selection method and a
classifier

This section considers each pair of a feature selection approach combined with
a type of classifier as a whole “classification approach”, and compares the
predictive performance of the 24 classification approaches used in our exper-
iments, rather than evaluating the results of each feature selection approach
separately for each type of classifier like in the previous section. Note that
we have 24 classification approaches because there are 6 feature selection ap-
proaches (5 feature selection methods and the no feature selection approach)
and 4 classifiers. Figure 6 shows the boxplots displaying the distribution of
ranks (based on Gmean values) for each classification approach, across the 28
datasets. Table 7 shows the number of wins (where the highest GMean value
was obtained) by each classification approach.

HIP+BAN achieved the best results among all classification approaches,
with median rank 2.0, average rank 3.3, and 22 wins. HIP+NB achieved the
second best results, with median rank 2.0, average rank 3.9 and 19 wins.
Clearly both HIP+BAN and HIP+NB obtained substantially better results
than all other 22 classification approaches, as shown in Figure 6 and Table 7.
The third best approach in Figure 6 was GTD+NB, with median rank 6.0 and
average rank 7.3. The third best approach in Table 7 was HIP+TAN, with 15
wins. In addition, looking at the last row of Table 7, with the total number
of wins for each feature selection method across all four classifiers, HIP was
clearly the best method with 61 wins, followed by MR with 22 wins and GTD
with 17 wins.

Table 7: Number of wins (best Gmean values) obtained by each combination
of a feature selection approach and a classifier

# Wins HIP MR SHSEL GTD CFS NoFS

NB 19 1 0 7 0 2

TAN 15 7 2 2 2 1

BAN 22 4 0 1 1 0

KNN 5 10 2 7 2 2

Σ Wins 61 22 4 17 5 5
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Fig. 6: Boxplots showing the distributions of ranks obtained by 24 classification
approaches across all 28 datasets

5 Discussion

5.1 Results of Statistical Significance Tests on Predictive Accuracy

We adopted the Friedman test, followed by the Holm post-hoc test, to con-
duct statistical significance tests on the differences between the GMean values
of the feature selection methods, when using NB, TAN, BAN and KNN as
classifiers. The Friedman test is a non-parametric statistical test based on the
ranks of each classifier’s GMean value on each dataset (Japkowicz and Shah
2011; Derrac et al 2011). The Friedman test determines whether or not the
differences between the results of the methods being compared as a whole are
significant. If they are, then the Holm post-hoc test is adopted to cope with the
multiple hypothesis testing problem when using significance tests, by adjust-
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Table 8: Holm post-hoc test results for the methods’ GMean values

NB TAN

FS Method Ave. Rank P-value Adjusted α FS Method Ave. Rank P-value Adjusted α

HIP+NB (ctrl.) 1.79 N/A N/A HIP+TAN (ctrl.) 2.27 N/A N/A

GTD+NB 2.63 9.30E-02 5.00E-02 MR+TAN 2.54 5.89E-01 5.00E-02

MR+NB 3.70 1.33E-04 2.50E-02 CFS+TAN 3.32 3.57E-02 2.50E-02

NB 3.80 5.82E-05 1.67E-02 GTD+TAN 3.71 3.98E-03 1.67E-02

SHSEL+NB 4.34 3.40E-07 1.25E-02 SHSEL+TAN 4.18 1.33E-04 1.25E-02

CFS+NB 4.75 3.22E-09 1.00E-02 TAN 4.98 5.96E-08 1.00E-02

BAN KNN

FS Method Ave. Rank P-value Adjusted α FS Method Ave. Rank P-value Adjusted α

HIP+BAN (ctrl.) 1.30 N/A N/A GTD+KNN (ctrl.) 2.55 N/A N/A

MR+BAN 2.52 1.47E-02 5.00E-02 HIP+KNN 2.98 3.90E-01 5.00E-02

SHSEL+BAN 3.54 7.46E-06 2.50E-02 MR+KNN 3.14 2.38E-01 2.50E-02

CFS+BAN 3.57 5.63E-06 1.67E-02 SHSEL+KNN 3.61 3.40E-02 1.67E-02

GTD+BAN 4.55 8.03E-011 1.25E-02 KNN 4.27 5.82E-04 1.25E-02

BAN 5.52 3.17E-017 1.00E-02 CFS+KNN 4.45 1.45E-04 1.00E-02

ing the significance level (α) for pairwise method comparisons (Demsǎr 2006).
The Holm test compares a control feature selection method (the best method)
against each of the other methods. All uses of the Friedman test in our analy-
ses indicated a significant difference between the methods being compared as
a whole (in all cases the p-value was smaller than 0.001), so we report next
the detailed results of the uses of the Holm post-hoc test.

We firstly applied significance tests on the results for different feature se-
lection approaches working with each of the four classifiers (results for exper-
iments in Section 4.3.1). The Holm tests results are shown in Table 8. The
difference between average GMean ranks between the best (control) method
and another method is considered significant if, in the row for that latter
method, the P-value is smaller than the Adjusted α. The few non-significant
results are highlighted in boldface in Table 8.

As shown in the top-left 4 columns in Table 8, when working with NB,
HIP obtained the best predictive accuracy and significantly outperformed 4 of
the other 5 methods, the exception being GTD.

The top-right 4 columns show that when working with TAN, HIP obtained
again the best predictive accuracy, which is not significantly different from the
accuracy of MR and CFS, but is significantly better than the accuracy of the
other 3 methods.

The bottom-left 4 columns show that when working with BAN, HIP ob-
tained the best predictive accuracy and significantly outperformed all other 5
methods.

The bottom-right 4 columns show that when working with KNN, GTD
obtained the best predictive accuracy, but it significantly outperformed only
the worst two methods (CFS and KNN without feature selection), i.e., there
was no significant difference between the accuracies of GTD, HIP, MR and
SHSEL.



Title Suppressed Due to Excessive Length 23

Table 9: Holm post-hoc test results comparing 24 classification approaches

Classification
Average rank P-value Adjusted α

approach

HIP+BAN (ctrl.) 3.29 N/A N/A

HIP+NB 3.91 7.43E-01 5.00E-02

GTD+NB 7.25 3.62E-02 2.50E-02

MR+NB 9.07 2.22E-03 1.67E-02

MR+BAN 9.20 1.77E-03 1.25E-02

HIP+TAN 9.41 1.20E-03 1.00E-02

NB 9.48 1.06E-03 8.33E-03

MR+TAN 10.46 1.48E-04 7.14E-03

GTD+KNN 10.64 1.01E-04 6.25E-03

HIP+KNN 10.88 5.92E-05 5.56E-03

SHSEL+NB 11.59 1.12E-05 5.00E-03

MR+KNN 11.70 8.59E-06 4.55E-03

CFS+NB 13.13 1.92E-07 4.17E-03

SHSEL+BAN 13.45 7.62E-08 3.85E-03

SHSEL+KNN 13.71 3.51E-08 3.57E-03

CFS+TAN 13.84 2.36E-08 3.33E-03

CFS+BAN 14.13 9.69E-09 3.13E-03

KNN 15.23 2.65E-10 2.94E-03

GTD+TAN 15.95 2.10E-11 2.78E-03

CFS+KNN 16.71 1.24E-12 2.63E-03

SHSEL+TAN 16.95 4.90E-13 2.50E-03

GTD+BAN 18.95 1.16E-16 2.38E-03

TAN 19.00 9.33E-17 2.27E-03

BAN 22.09 2.57E-23 2.17E-03

We then applied significance tests to the results of all 24 classification ap-
proaches – all pairs of a feature selection approach and a classifier. The results
for the Holm test are shown in Table 9, where the only two non-significant
results are highlighted in boldface. As shown in this Table, the Holm test re-
sults indicate that the predictive accuracy of the best classification approach,
namely HIP+BAN (with average rank 3.29), is significantly better than the
accuracies of 21 of the other 23 approaches. The only two exceptions are the
accuracies of the second best approach, HIP+NB (with average rank 3.91),
and the third best approach, GTD+NB (with average rank 7.25). The rea-
son why the large difference between the average rank of HIP+BAN (3.29)
and GTD+NB (7.25) was not significant according to the Holm test seems
to be the multiple hypothesis testing problem associated with executing this
test 23 times. Interestingly, in Table 9 the two worst classification approaches
are BAN and TAN without feature selection; but when these classifiers are
combined HIP, the resulting classification approaches become the best and
the sixth best approaches (respectively), out of all the 24 approaches. This is
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further evidence of the effectiveness of the HIP feature selection method.
In summary, HIP was clearly the best feature selection method overall. As

shown in Table 7, it obtained the best predictive performance in 61 cases, fol-
lowed by 22 wins for MR and 17 wins for GTD, considering all four classifiers.
Also, the classification approaches of HIP+BAN and HIP+NB obtained much
lower (better) average ranks than all the other 22 classification approaches,
and HIP+BAN obtained statistically significantly better predictive accuracies
than 21 classification approaches.

5.2 Results Regarding the Numbers of Selected Features

Figures 7(a)-(d) show the number of features selected by the HIP, MR, SHSEL,
GTD and CFS methods for 7 different types of datasets for each model organ-
ism, each dataset with a different set of GO term types, as explained earlier.
Broadly speaking, HIP selected somewhat more features than SHSEL and
CFS, but less features than MR and GTD. GTD always selected the largest
number of features across the 4 model organisms.
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(a) Caenorhabditis elegans datasets
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(b) Drosophila melanogaster datasets
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(c) Mus musculus datasets
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(d) Saccharomyces cerevisiae datasets

Fig. 7: Average number of features selected by HIP, MR, SHSEL, GTD and
CFS for each of the feature (GO term) types
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5.3 Robustness of Predictive Performance Against Imbalanced Class
Distributions

As shown in Figure 8, the degree of class imbalance (calculated by Equation
(4)) for the datasets range from 0.35, for the C. elegans datasets, to 0.84, for
the S. cerevisiae datasets.
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Fig. 8: Average degree of class imbalance for each of the 4 model organisms
datasets – averaged over the 7 feature (GO term) types

We evaluated HIP, MR, SHSEL, GTD and CFS from the perspective of
robustness of predictive performance against large degrees of class imbalance,
by computing the linear correlation coefficient (r) between the degree of class
imbalance (D) and GMean values over the 28 datasets. Note that r values
close to 0 indicate that the GMean values are not influenced by the degree of
class imbalance, while large negative values of r indicate that GMean values
are significantly reduced as the degree of class imbalance increases.

In Figure 9, the scatter plots show the relationships between GMean and
D values, while the red straight lines indicate the fitted linear regression mod-
els. Regarding the classification approaches without feature selection, Figures
9(a)-(d) show that the NB classifier is the most robust against class imbalance
(r = –0.258), while TAN is largely negatively affected by class imbalance (r
= –0.801).

When the feature selection methods work with NB, HIP (Figure 9(e)) and
GTD (Figure 9(q)) improve the robustness against class imbalance, as their r
values are –0.035 and –0.198 respectively. The r values for the other feature
selection methods range from –0.453 to –0.483, indicating a weak robustness
to class imbalance.

When the feature selection methods work with TAN, all methods enhanced
the robustness of TAN against class imbalance. HIP obtained the biggest im-
provement over TAN without feature selection, since its r value is just 0.088.
GTD had the weakest robustness to class imbalance, with r = –0.668.

Analogously, when the feature selection methods work with BAN, HIP
again obtained the biggest improvement on robustness, with r = 0.103, whereas
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GTD again obtained the weakest robustness, with r = –0.830.
When the feature selection methods work with KNN, CFS obtained the

biggest improvement on robustness, with r = –0.334. GTD obtained the second
biggest improvement, with r = –0.405, while other feature selection methods
obtained r values ranging from from –0.541 to –0.558.

Overall, HIP showed the strongest robustness to class imbalance, since it
obtained the biggest improvements on robustness for NB, TAN and BAN clas-
sifiers, and its r values are in most cases close to “0” (indicating the strongest
robustness). The other feature selection methods have in general substantially
large negative values of r, which means that their predictive accuracy tends
to decrease substantially with an increase on the degree of class imbalance.

The fact that HIP is much more robust to class imbalance than all other
feature selection methods contributes substantially to HIP’s better GMean re-
sults, as explained next. First of all, note that in general HIP, MR, SHSEL,
GTD and CFS tend to achieve higher accuracy in the prediction of major-
ity class instances than in the prediction of minority class instances. This
can be seen by noting the following two general patterns (although there are
exceptions) in Tables 3, 4, 5 and 6. First, HIP, MR, SHSEL, GTD and CFS
exhibit in general substantially larger Specificity (Spe.) than Sensitivity (Sen.)
for C. elegans and S. cerevisiase datasets, where Spe. measures the accuracy
in the prediction of instances of the majority class (“anti-longevity” in these
datasets). Second, HIP, MR, SHSEL, GTD and CFS exhibit in general sub-
stantially larger Sen. than Spe. for D. melanogaster and M. musculus datasets,
where Sen. measures the accuracy in the prediction of instances of the major-
ity class (“pro-longevity” in these datasets).

Next, to quantify the imbalance between Sen. and Spe. obtained by each
feature selection method, we computed the difference (Diff) between these
two terms as given by Equation (6), where Max and Min return the max-
imum and minimum among their two arguments, respectively. Equation (6)
returns a positive value proportional to the difference (“imbalance”) between
Sen. and Spe. Recall that GMean =

√
Sen.× Spe., which means that in order

to maximize GMean one has to find a balance between maximizing both Sen.
and Spe., rather than maximizing one at the expenses of minimizing the other.
Then, we further calculated the linear correlation coefficient (r) between Diff
and the degree of class imbalance given by Equation (4), as shown in Figure
10. In this Figure, it is clear that all feature selection methods except HIP have
a large positive r value, varying from 0.670 to 0.892, when working with three
Bayesian classifiers; whilst when working with the KNN classifier all 5 feature
selection methods have large positive values, ranging from 0.631 to 0.881. This
means that, for the MR, SHSEL, GTD and CFS methods, a higher degree of
class imbalance tends to lead to a large Diff value for all 4 classifiers. This
tendency is overall much weaker for HIP, which tends to obtain more balanced
Sen. and Spe. values, leading to higher GMean values than MR, SHSEL, GTD
and CFS, as observed in Tables 3, 4, 5 and 6 in general.

Diff = Max(Sen, Spe)−Min(Sen, Spe) (6)
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(c) BAN
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(d) KNN
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(e) HIP+NB
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(f) HIP+TAN
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(g) HIP+BAN
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(h) HIP+KNN
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(i) MR+NB
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(j) MR+TAN
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(k) MR+BAN
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(l) MR+KNN

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

Degree of Class Imbalance

G
M

ea
n

-S
H

S
E

L
+

N
B

r = -0.453

(m) SHSEL+NB
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(o) SHSEL+BAN
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(p) SHSEL+KNN
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(q) GTD+NB

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

Degree of Class Imbalance

G
M

ea
n

-G
T

D
+

T
A

N

r = -0.668
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(u) CFS+NB
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(v) CFS+TAN
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(w) CFS+BAN
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Fig. 9: Linear relationship between the degree of class imbalance and GMean
values
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(b) TAN
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(c) BAN
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(d) KNN
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(e) HIP+NB
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(f) HIP+TAN
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(g) HIP+BAN
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(h) HIP+KNN
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(i) MR-NB
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Fig. 10: Linear relationship between Diff and GMean values
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5.4 Computational time cost for different feature selection methods

The running times (in seconds) for different feature selection methods are re-
ported in Table 10. In each row, the reported times refer to the running times
on the largest dataset for the model organism shown in the first column, i.e.,
the dataset using all BP, MF and CC features. The top part of this table re-
ports the running times to run each feature selection method in a preprocessing
phase, before running a classifier. The bottom part reports the running times
to run both each feature selection method and the Näıve Bayes classifier ap-
plied to the selected features. We focus on results for Näıve Bayes because this
is a very computationally efficient (fast) classifier in general and it sill obtained
very good predictive accuracy results with most feature selection methods –
in particular, in Table 9, comparing the average rank of 24 classification ap-
proaches, 3 out of the best 5 approaches used Näıve Bayes (with HIP, GTD
and MR). The running times were measured by using a Lenovo desktop with
Intel i3-3220 CPU@3.30GHz, 8.00GB ram and 64-bit Windows 8.1 operation
system.

Generally, in terms of feature selection methods only, MR and CFS had
by far the longest running times for all 4 datasets. Note that, although both
MR and HIP are lazy learning-based methods designed to remove hierarchical
redundancy, MR is much slower than HIP, since MR (unlike HIP) has to select
the feature(s) having maximum relevance value among a set of features when
processing each path of the feature DAG. The other 3 methods are eager
learning-based methods. Among these, CFS takes much longer to run, which

Table 10: Running time (in seconds) for 5 feature selection methods and for
combinations of these methods with the NB classifier

Running time of feature selection methods only

Dataset HIP MR SHSEL GTD CFS

C. elegans 494.6 31475.8 9.1 30.6 18999.9

D. melanogaster 382.7 5462.7 6.4 28.7 6067.1

M. musculus 605.1 6351.0 9.1 27.5 28376.9

S. cerevisiae 406.9 10581.9 6.0 25.3 7828.8

Running time of feature selection methods + NB

Dataset HIP+NB MR+NB SHSEL+NB GTD+NB CFS+NB NB

C. elegans 698.3 32269.1 10.2 130.2 19001.0 591.0

D. melanogaster 395.6 5490.2 7.2 41.5 6067.2 42.5

M. musculus 626.9 6385.4 10.7 50.4 28377.0 71.9

S. cerevisiae 434.5 10669.7 6.3 47.4 7829.0 100.3
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seems partly because it has to consider redundancy between potentially any
pair of features regardless of their position in the feature hierarchy (since CFS
ignores the structure of this hierarchy). By contrast, SHSEL and GTD (like
HIP and MR) consider redundancy in a much more focused way, considering
only the hierarchical redundancies among features in the same path. GTD
takes longer to run than SHSEL (although both are fast in general), which
seems mainly due to GTD’s sorting process for features in each path.

Regarding the time required to run both a feature selection method and
Näıve Bayes with the selected features, the results are analogous to the previ-
ous ones. That is, MR+NB and CFS+NB are by far the slowest classification
approaches, due to the much longer running time of MR and CFS in the feature
selection stage. Note that SHSEL+NB and GTD+NB have a shorter running
time than NB without feature selection, due to NB being applied to a reduced
feature subset, in those approaches. HIP+NB takes longer than NB without
feature selection (since HIP is not so fast), but this increase in computational
time is in general a small price to pay for the much better predictive accuracy
of HIP+NB, as discussed earlier.

5.5 Summary of the Empirical Comparisons Between Hierarchical Feature
Selection Methods

Overall, HIP was the best feature selection method when working with Näıve
Bayes, TAN and BAN; whilst GTD was the best method when working with
the KNN classifier. In addition, HIP showed the strongest robustness against
class imbalance, when working with Näıve Bayes, TAN and BAN. In our pre-
vious work in (Wan et al 2015), using only biological process GO terms as
features, there was no statistically significant difference between HIP and MR
when working with Näıve Bayes. In this work we performed experiments with
more types of GO terms used as features – viz., biological process, molecular
function and cellular component, and different combinations of these types. In
these extended experiments, we conclude that HIP, which eliminates hierarchi-
cal redundancy and selects the features that preserve the complete hierarchical
information, performed statistically significantly better than MR, SHSEL and
CFS when working with Naive Bayes. When working with TAN, HIP was sig-
nificantly better than GTD and SHSEL. When working with BAN, HIP was
significant better than all other feature selection methods (MR, SHSEL, CFS
and GTD). When working with KNN, GTD was the best method, but it was
not significantly better than HIP, MR and SHSEL. For details, see Table 8
and its corresponding discussion.

6 Identifying the GO Terms (Features) Most Often Used for
Classification

As the HIP method performed best overall, we computed the ranks of GO
terms selected by HIP in the BP+MF+CC datasets, for each of the 4 model
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organisms. Broadly speaking, the top-ranked terms identified in this analysis
are also top-ranked terms when considering the individual datasets for each
feature type (BP, MF and CC) separately. The top-ranked terms are shown
in Table 11. The first four columns of this table have self-explanatory names.
The rank in column 5 is based on two criteria. The first one is the “Frequency
of Selection” in column 6, which means the number of times the GO term
was selected by HIP for classifying the testing instances. The second, tie-
breaking ranking criterion is the “Frequency in Edges” in column 7, which
means the number of edges containing the GO term in the trees built by TAN
for classifying the test instances. Recall that, for building the tree, each feature
can have at most one parent feature, but each feature can be the parent for
more than one features. Hence, a feature could act as a “hub” node, if that
feature is the parent for many nodes. Note that the value of “Frequency in
Edges” will always be greater than or equal to the value of “Frequency of
Selection”, since one selected feature should be included in at least one edge.

As shown in Table 11, several GO terms were very often selected across
three model organisms: Synapse (GO:0045202), Extracellular Region (GO:000-
5576), and Antioxidant Activity (GO:0016209) are top-ranked terms in the
Caenorhabditis elegans, Drosophila melanogaster and Mus musculus datasets.
Other GO terms were selected across two model organisms: Reproduction
(GO:0000003) and Electron Carrier Activity (GO:0009055) are top-ranked
in the Caenorhabditis elegans and Drosophila melanogaster datasets; Protein
Binding Transcription Factor Activity (GO:0000988) in the Caenorhabditis el-
egans and Saccharomyces cerevisiae datasets; Receptor Activity (GO:0004872)
and Enzyme Regulator Activity (GO:0030234) in the Drosophila melanogaster
and Saccharomyces cerevisiae datasets.

Briefly, several of these very often selected GO terms fit well with some
aging-related hypotheses. For example, oxidative processes produce byprod-
ucts, i.e., ROS (reactive oxygen species), which can cause damage and crosslink
DNA (Vijg and Campisi 2008); and antioxidant activity, which can mitigate
the harmful effects of high-levels of ROS and is also related to the hypoth-
esis that calorie restriction can delay aging, was found to be able to extend
the longevity of model organisms like Caenorhabditis elegans, Mus musculus
and Drosophila melanogaster (Walker et al 2005; Wood et al 2004; Sohal and
Weindruch 1996; Sohal et al 1994). As another example, in terms of the link
between reproduction and aging, in Caenorhabditis elegans, mutations in the
daf-2 gene reduce insulin/insulin-like growth factor-1 (IGF-1) signaling and
lead to extended lifespan and delayed reproduction (Kenyon 2010).

7 Conclusions

In summary, we evaluated the predictive performance of four hierarchical fea-
ture selection methods and compared them with the well-known “flat” feature
selection method CFS (Correlation-based Feature Selection), by using Näıve
Bayes, Tree Augmented Näıve Bayes, Bayesian Network Augmented Näıve
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Table 11: Information about the GO terms most frequently selected by the
HIP method

Model
GO Term ID

GO Term
GO Term Name Rank

Freq. of Freq. in Predicted

Organism Type Selection Edges Class

GO:0045202 CC synapse 1 572 2394 Anti

GO:0000003 BP reproduction 2 572 1929 Anti

GO:0005576 CC extracellular region 3 572 1095 Anti

Caenorhabditis
GO:0016209 MF antioxidant activity 4 572 697 Pro

elegans
GO:0040007 BP growth 5 572 633 Pro

GO:0022610 BP biological adhesion 6 568 1046 Pro

GO:0000988 MF protein binding transcription factor activity 7 567 801 Pro

GO:0009055 MF electron carrier activity 8 567 779 Anti

GO:0031974 CC membrane-enclosed lumen 9 567 769 Anti

GO:0009055 MF electron carrier activity 1 130 199 Pro

GO:0005576 CC extracellular region 2 130 193 Pro

GO:0000003 BP reproduction 3 130 184 Anti

Drosophila
GO:0044456 CC synapse part 4 130 174 Pro

melanogaster
GO:0045202 CC synapse 5 130 152 Pro

GO:0016209 MF antioxidant activity 6 127 354 Pro

GO:0005198 MF structural molecule activity 7 127 180 Pro

GO:0030234 MF enzyme regulator activity 8 126 144 Anti

GO:0004872 MF receptor activity 9 125 189 Anti

GO:0044456 CC synapse part 1 102 354 Anti

GO:0005198 MF structural molecule activity 2 102 344 Pro

GO:0005576 CC extracellular region 3 102 270 Pro

Mus
GO:0005623 CC cell 4 102 191 Anti

musculus
GO:0045202 CC synapse 5 102 124 Anti

GO:0030054 CC cell junction 6 99 248 Anti

GO:0016209 MF antioxidant activity 7 99 246 Pro

GO:0023052 BP signaling 8 99 207 Pro

GO:0031012 CC extracellular matrix 9 99 176 Pro

GO:0005085 MF guanyl-nucleotide exchange factor activity 1 238 358 Anti

GO:0004872 MF receptor activity 2 238 282 Anti

GO:0022414 BP reproductive process 3 234 511 Anti

Saccharomyces
GO:0009295 CC nucleoid 4 234 321 Anti

cerevisiae
GO:0005933 CC cellular bud 5 231 479 Anti

GO:0000988 MF protein binding transcription factor activity 6 231 340 Anti

GO:0005622 CC intracellular 7 231 283 Anti

GO:0032126 CC eisosome 8 231 243 Anti

GO:0030234 MF enzyme regulator activity 9 230 403 Anti
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Bayes and k-Nearest Neighbors classifiers over 28 aging-related gene datasets
where hierarchies of Gene Ontology (GO) terms were used as predictive fea-
tures. The experimental results showed that in general the HIP method per-
formed best in terms of predictive accuracy, and it showed more robustness
against a large degree of class imbalance than the other feature selection meth-
ods. We further computed the ranking of GO terms based on how often they
were selected by the HIP method for classifying test instances, and identified
GO terms that are among the top-ranked terms for more than one model or-
ganisms.

An interesting future research direction would be to propose new hierar-
chical feature selection methods for coping with classification datasets where
the features are non-binary – e.g., real-valued features. Another research direc-
tion would be to distinguish between the different evidence codes associated
with GO term annotations in our datasets – e.g., comparing the results of us-
ing computationally inferred vs. experimentally validated GO terms (usually
considered more reliable) as features.
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