Groner, VP;
Claussen, M;
Reick, C;
(2015)
Palaeo plant diversity in subtropical Africa – ecological assessment of a conceptual model of climate–vegetation interaction.
Climate of the Past
, 11
(10)
pp. 1361-1374.
10.5194/cp-11-1361-2015.
Preview |
Text
cp-11-1361-2015.pdf - Published Version Download (650kB) | Preview |
Abstract
We critically reassess a conceptual model here, dealing with the potential effect of plant diversity on climate–vegetation feedback, and we provide an improved version adjusted to plant types that prevailed during the African Humid Period (AHP). Our work contributes to the understanding of the timing and abruptness of vegetation decline at the end of the AHP, investigated by various working groups during the past 2 decades using a wide range of model and palaeo-proxy reconstruction approaches. While some studies indicated an abrupt collapse of vegetation at the end of the AHP, others suggested a gradual decline. Claussen et al. (2013) introduced a new aspect in the discussion, proposing that plant diversity in terms of moisture requirements could affect the strength of climate–vegetation feedback. In a conceptual model study, the authors illustrated that high plant diversity could stabilize an ecosystem, whereas a reduction in plant diversity might allow for an abrupt regime shift under gradually changing environmental conditions. In the light of recently published pollen data and the current state of ecological literature, the conceptual model by Claussen et al. (2013) reproduces the main features of different plant types interacting together with climate, but it does not capture the reconstructed diversity of AHP vegetation. Especially tropical gallery forest taxa, indirectly linked to local precipitation, are not appropriately represented. With a new model version adjusted to AHP vegetation, we can simulate a diverse mosaic-like environment as reconstructed from pollen, and we observe a stabilizing effect of high functional diversity on vegetation cover and precipitation. Sensitivity studies with different combinations of plant types highlight the importance of plant composition on system stability, and the stabilizing or destabilizing potential a single plant type may inherit. The model's simplicity limits its application; however, it provides a useful tool to study the roles of real plant types in an ecosystem and their combined climate–vegetation feedback under changing precipitation regimes.
Type: | Article |
---|---|
Title: | Palaeo plant diversity in subtropical Africa – ecological assessment of a conceptual model of climate–vegetation interaction |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.5194/cp-11-1361-2015 |
Publisher version: | https://doi.org/10.5194/cp-11-1361-2015 |
Language: | English |
Additional information: | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Genetics, Evolution and Environment |
URI: | https://discovery.ucl.ac.uk/id/eprint/10044999 |
Archive Staff Only
View Item |