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Abstract
Objective
To determine whether sensorimotor beta-frequency oscillatory power is raised during motor
preparation in patients with functional movement disorders (FMD) and could therefore be
a marker of abnormal “body-focused” attention.

Methods
We analyzed motor performance and beta-frequency cortical oscillations during a precued
choice reaction time (RT) task with varying cue validity (50% or 95% congruence between
preparation and go cues). We compared 21 patients with FMDwith 13 healthy controls (HCs).

Results
In HCs, highly predictive cues were associated with faster RT and beta desynchronization in the
contralateral hemisphere (contralateral slope −0.045 [95% confidence interval (CI) −0.057 to
−0.033] vs ipsilateral −0.033 [95% CI −0.046 to −0.021], p < 0.001) and with a tendency for
reaching lower contralateral end-of-preparation beta power (contralateral −0.482 [95%
CI −0.827 to −0.137] vs ipsilateral −0.328 [95% CI −0.673 to 0.016], p = 0.069). In contrast,
patients with FMD had no improvement in RTs with highly predictive cues and showed an
impairment of beta desynchronization and lateralization before movement.

Conclusions
Persistent beta synchronization during motor preparation could reflect abnormal explicit
control of movement in FMD. Excessive attention to movement itself rather than the goal
might maintain beta synchronization and impair performance.
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Glossary
CI = confidence interval; FMD = movement disorders; HC = healthy control; IQR = interquartile range; Ln = natural
logarithm; RT = reaction time; SF-36 = Short Form-36 Health Survey.

Sprinters waiting for the starting pistol to fire represent
a fairly extreme example of movement preplanning and its
benefits: movement preparation typically results in faster
reaction times (RTs). One experimental method for
probing this effect is the Posner paradigm whereby pre-
paratory cues are given before a cue to move. When the
preparatory cue provides useful information about the na-
ture of the movement that will be required, RTs are char-
acteristically faster.

Patients with functional (psychogenic) movement disorders
(FMD) break this rule of normal movement. We previously
found, using a version of the Posner paradigm, that patients
with FMDwere unable to take advantage of highly predictable
conditions to improve performance.1 This is in keeping with
a key clinical characteristic of their abnormal movement:
movement that is explicitly controlled, for example, being
asked to make a specific movement as part of neurologic
examination, is abnormal, but when the same movement
occurs in an unattended fashion, it is normal. We have pre-
viously proposed that this is due to an excessive attentional
focus on movement, specifically a misdirection of attention
away from the goal of movement and toward the mechanics of
moving, i.e., monitoring the current state of the limb to be
moved.1

If this hypothesis is correct, then we should be able to detect
neural correlates of this misdirected attention. One poten-
tially relevant correlate is power in the beta band of the EEG.
Beta power characteristically suppresses and lateralizes before
voluntary movement, and these changes are faster and more
prominent before movement that is highly predicted.2,3 Beta
power has been proposed to constitute an index of motor
attention, with lower power reflecting higher attention to
upcoming movement.4

We hypothesized that, in a precued RT task, patients with
FMD would not improve their RTs when the precue was
predictive of the upcoming movement and that this impair-
ment would be associated with persistent beta synchroniza-
tion and a failure to lateralize beta suppression compared to
healthy controls (HCs).

Patients with FMD who were recruited into this study were
about to start physiotherapy-based treatment for their
symptoms. Therefore, we also hypothesized that clinical im-
provement at follow-up would be associated with improved
RT in the setting of predictive precues and that this would be
reflected by normalization of beta power suppression and
lateralization before movement.

Methods
Participants
Patients with FMD were recruited from the same pool of
patients who were being enrolled in the randomized feasi-
bility study comparing specialized with standard physio-
therapy for FMD.5 These were patients ≥18 years of age and
with a clinically established diagnosis of FMD according to
the Gupta and Lang6 criteria. Detailed inclusion and exclu-
sion criteria have been published elsewhere.5 An additional
exclusion criterion for the current study was persistent se-
vere head tremor. HCs were healthy individuals matched for
age and sex.

Participants with FMD were tested twice: before starting
treatment (baseline) and at least 2 weeks after completing
treatment (follow-up). HCs were assessed once. Participants
with FMDwere, as part of the feasibility study, randomized to
receive specialized or standard physiotherapy.5 Treatment
strategies are characterized elsewhere.5

Demographic and clinical information was collected at base-
line and follow-up. Clinical improvement at follow-up was
assessed with the Physical Function domain of the Short
Form-36 Health Survey (SF-36) (version 1).5,7

Precued choice RT task with varying
cue validity
Our behavioral experiment consisted of a Posner-type pre-
cued choice RT task with varying cue validity1,8 (figure 1).
Before starting the formal paradigm, all participants com-
pleted a training block to ensure that they had optimal per-
formance before proceeding to the main task.

Subsequently, there were 2 experimental conditions. In the
highly predictable condition, preparation cues accurately
predicted go cues in 95% of the trials (95% congruence). In
the unpredictable condition, preparation cues accurately
predicted go cues in only 50% of the trials (i.e., they had no
predictive value).

The experiment was organized in 8 blocks of 50 trials each.
Four blocks were highly predictable, and the other 4 were
unpredictable. Block order was pseudo-randomized. Partic-
ipants were instructed to press the key corresponding to the
go cue as quickly as possible (either the left Ctrl key with left
index finger or right Ctrl key with right index finger). They
were also informed that in some blocks the preparation cues
accurately predicted the go cues, while in the others they did
not. They were not explicitly informed which type of block
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they were about to perform on each occasion. No feedback
was given on accuracy or response time.

Response time in milliseconds (time from presentation of the
go cue to key press) was calculated for each trial. Trials in
which the preparation cue accurately predicted the go cue
(congruent) were separated from those in which the pre-
diction was incorrect (incongruent). Response times were
separately averaged across trials for congruent and in-
congruent trials in each of the 2 conditions (95% and 50%
congruence).

Recording beta-frequency oscillatory activity
Continuous EEG was recorded from Ag/AgCl surface elec-
trodes with a 32-channel ANT-EEG system conforming to
the 5% electrode system. Electrode impedances were <5 kΩ.
The sampling rate was 2,048 Hz.

Our reference was an average of all electrodes. All recordings
were visually inspected for artifacts, and trials with prom-
inent artifacts were discarded. We restricted our analysis to
correct trials only and discarded trials in which participants
pressed the wrong key or did not press any key (henceforth
failed trials).

Preprocessing
Statistical Parametric Mapping (12b, Wellcome Trust
Centre for Neuroimaging, University College London,
UK) and MATLAB (MathWorks, Natick, MA) were used
for data processing. First, data were down-sampled from
2,048 to 250 Hz. It was then epoched to frames from −1 to
4 seconds relative to the onset of the preparation cue. Time
frequency decomposition was performed with the Multi-
taper method.9 We averaged power over frequencies in the
beta range (13–33 Hz). Data were rescaled by calculating
the log ratio of the beta power relative to a baseline period
ranging from −1 to 0 seconds relative to the onset of
preparation cue.

Preprocessing resulted in baseline corrected beta power as
a function of time for 4 different conditions: (1) 95% trial,

right key press; (2) 95% trial, left press; (3) 50% trial, right
press; and (4) 50% trial, left press.

For each of those conditions, we averaged the data from
the FC1 and C3 electrodes (left hemisphere) and from the
FC2 and C4 electrodes (right hemisphere), which are
thought to record oscillatory activity from the sensorimo-
tor cortex.

We next collapsed across the left/right distinction by aver-
aging contralateral and ipsilateral beta power for each pre-
dictability setting (95% or 50%): left hemisphere activity
during a right key press and right hemisphere activity during
left key press, “contralateral” activity; and left hemisphere
activity during a left key press and right hemisphere activity
during right key press, “ipsilateral” activity.

The result was 4 datasets of beta power for each participant: (1)
95% condition, contralateral; (2) 95% condition, ipsilateral; (3)
50% condition, contralateral; and (4) 50% condition, ipsilateral.

Participants could preplan forthcoming the key press in the
interval between the appearance of preparation and go cues.
We focused on the period of maximum preparation by
restricting our analysis to the second half of that interval (975
milliseconds preceding the go cue).

Statistical analysis
Statistical analysis was performed with Stata (version 13.1,
StataCorp, College Station, TX). Continuous variables were
expressed as mean (SD) if normally distributed or median
(interquartile range [IQR]) if not normally distributed. Cat-
egorical variables were expressed as frequencies and
proportions.

The normality assumption was assessed by visual inspection
of the distribution of the continuous variable and confirmed
by Kolmogorov-Smirnov testing.

RTs were nonnormally distributed and were therefore
transformed into their natural logarithm (Ln) to fulfill the

Figure 1 Trial structure

Total duration is 5950 milliseconds. Preparation-to-move interval duration is 1,950 milliseconds, including preparation cue (200 milliseconds) and in-
terstimulus interval (1,750milliseconds). Participantswere instructed to place the left index finger over the left Ctrl key and the right index finger over the right
Ctrl key of a QWERTY computer keyboard.
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normality assumption and thus be able to fit a multilevel
mixed-effect linear model.

Our outcome measures were RT and beta power (see Pre-
processing), including rate of beta desynchronization, repre-
senting the rate of beta power decrease in the second half of
preparation to move, and end-of-preparation beta power,
representing the level of beta power attained at the end of
preparation to move (last 150 milliseconds before go cue).

Mixed-effects multilevel linear modeling allowed us to take
into account the dependency in data caused by repeated
measurements within participants for both RT and beta
power. We fitted 3 models:

1. For RT, including the effects of group, predictability, and
cue congruence, their interactions, and an individual-level
random-effects factor. We performed 2 pairwise compar-
isons: Ln RT in congruent cue trials in 95% vs 50%
conditions in both groups.
2. For rate of beta desynchronization, with the effects of
group, predictability, laterality, and time, their interactions,
and individual-level random-effects factors for intercept and
slope.
3. For end-of-preparation beta power, with the effects of
group, predictability, laterality, their interactions, and an
individual-level random-effects factor.

For models 2 and 3, we performed 4 pairwise comparisons of
contralateral and ipsilateral beta-band activity within 95% and
50% conditions for each group. Statistical significance was
predefined as p < 0.05.

Standard protocol approvals, registrations,
and patient consents
The study was approved by the local ethics committee. Par-
ticipants gave their informed written consent to take part in
the studies.

Results
Clinical and demographic characteristics
We recruited 21 patients with FMD and 13 HCs, who were all
assessed at baseline (table 1). Among patients with FMD, 11
were randomized to undergo specialized physiotherapy and
another 12 to receive standard physiotherapy. They were then
evaluated after a mean period of 4.7 (SD 1.7) weeks after
treatment. Follow-up behavioral data (RT) from 1 patient with
FMD were lost because of a technical problem on recording.1

At baseline, groups were well matched for age and sex. The
proportion of left-handed participants was also similar between
groups. After treatment, patients with FMD reported an in-
crease in their SF-36 physical functional domain score (mean
30 [21.6 SD] at baseline vs 40 [30.0] at follow-up, p = 0.029).

Main analysis: Patients with FMD at baseline
vs HCs
HCs failed 1.3% (IQR 1.3%–2.3%) of trials, while patients
with FMD failed 4.8% (IQR 1.5%–9.5%) (p = 0.022).

Behavioral effect of predictive and nonpredictive cues
In HCs, response times for trials with predictive precues were
faster than for nonpredictive precues [mean Ln(RT) differ-
ence −0.058, 95% confidence interval (CI) −0.112 to −0.005,
p = 0.032] (figure 2 and table e-1, links.lww.com/WNL/A41).
In contrast, there was no difference in response time in
patients with FMD between predictive and nonpredictive
precues [mean Ln(RT) difference −0.027, 95% CI −0.07 to
0.015, p = 0.206].

Beta desynchronization and end-of-preparation beta
power with predictive and nonpredictive cues
We compared, using mixed linear modeling, the rates of
beta desynchronization before the go cue in the ipsilateral
and contralateral hemispheres for blocks with predictive
and nonpredictive precues in patients with FMD and HCs
(figure 3 and table e-2, links.lww.com/WNL/A41). We
found that only in HCs in blocks with predictive precues,
there was a faster rate of beta desynchronization in the
contralateral hemisphere (slopes: contralateral −0.045
[95% CI −0.057 to −0.033] vs ipsilateral −0.033 [95% CI
−0.046 to −0.021], p < 0.001). In contrast, there was no
difference in rate of beta desynchronization in HCs in
blocks with nonpredictive cues (p = 0.664) and in patients
with FMD with predictive (p = 0.801) or nonpredictive
(p = 0.777) cues.

We also compared the baseline-corrected beta power at the
end of preparation to move in the ipsilateral and contralateral
hemisphere, for blocks with predictive and nonpredictive

Table 1 Demographic and clinical characteristics of
participants at baseline and follow-up

Groups Patients with FMD Healthy controls

Total, n 21 13

M/F, n 4/17 4/9

Age (mean, SD), y 42.7 (12.1) 41.2 (14.4)

Preferred hand (R/L), n 19/2 11/2

Main symptoms, n

Weakness 11

Tremor 8

Gait 7

Sensory 3

Bradykinesia 2

Myoclonus 2

Dystonia 1

Abbreviation: FMD = functional movement disorders.
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precues, in patients with FMD and HCs (figure 3 and table
e-2, links.lww.com/WNL/A41).

Again, only in HCs and for blocks with predictive precues,
there was a tendency for lower end-of-preparation beta power
in the contralateral hemisphere (means: contralateral −0.482
[95% CI −0.827 to −0.137] vs ipsilateral −0.328 [95% CI
−0.673 to 0.016], p = 0.069). In contrast, end-of-preparation
beta power was similar in contralateral and ipsilateral hemi-
spheres in HCs in blocks with nonpredictive cues (p = 0.602)
and in patients with FMD with predictive (p = 0.300) or
nonpredictive (p = 0.696) cues.

Exploratory analysis: patients with FMD at
follow-up vs baseline
Patients with FMD failed 4.8% (IQR 1.5%–9.5%) of trials at
baseline and 2.9% (IQR 1.6%–10.8%) at follow-up (p = 0.117).

Behavioral effect of predictive and nonpredictive cues
Response times for trials with congruent cues were similar in
blocks with predictive and nonpredictive precuing at both
baseline (p = 0.430) and follow-up (p = 0.203) (table e-3,
links.lww.com/WNL/A41).

Beta desynchronization and end-of-preparation beta
power with predictive and nonpredictive cues
Contralateral and ipsilateral rates of beta desynchronization
were similar at baseline in blocks with predictive (p = 0.874)

and nonpredictive (p = 0.859) precueing and at follow-up for
predictive (p = 0.302) and nonpredictive (p = 0.208) con-
ditions (table e-4, links.lww.com/WNL/A41).

At follow-up after treatment, in blocks with predictive pre-
cues, there was a tendency for lower end-of-preparation beta
power in the contralateral hemisphere (mean −0.068 [95% CI
−0.313 to 0.176] vs 0.146 [95% CI −0.1 to 0.390], p = 0.065).
In contrast, contralateral and ipsilateral beta powers were
similar both at follow-up in blocks with nonpredictive cues
(p = 0.717) and at baseline in predictive (p = 0.553) and
nonpredictive (p = 0.823) conditions.

Discussion
The behavioral data in this study replicate data from our
previous study in people with FMD, showing that they appear
unable to take advantage of precues that accurately predict the
nature of an upcoming movement.1 They were different in
this respect from HCs, who had faster response times when
precues were informative.

Here, we demonstrate a neural correlate of this behavioral
phenomenon. In HCs, beta power suppressed more deeply
and lateralized more strongly during movement preparation
in response to precues that were strongly predictive of the
upcoming movement compared to when they were not. In

Figure 2 Natural logarithms of reaction times per group, predictability, and cue congruence

Group: patients with functional movement disorders (FMD) vs healthy controls (HCs). Predictability: predictive (cuing blocks 95%) vs nonpredictive (cuing
blocks 50%). Cue congruence: congruent (C) vs incongruent (I).
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contrast, people with FMD showed no such effect and had
abnormally high and poorly lateralized beta power even in the
setting of highly predictive precues.

We have previously proposed a key role for self-directed
attention in the pathophysiology of FMD. Misdirected
attention toward the body could, we have argued, both
directly impair access to normal movement and activate ab-
normally strong top-down predictions related to abnormal
movement.1,10 This could provide an explanation for the
worsening of symptoms when attention can be focused on
movement in contrast to improvement when movement
happens in the setting of distraction.

Here, we have used an experimental paradigm that compares
response times when movement can and cannot be prepared
in advance of the cue to move. Healthy people are faster when
they can prepare, but patients with FMD are not. We hy-
pothesized that this effect relates to abnormal attentional fo-
cus onto the current sensorimotor state of the limb instead of
focus toward the goal of upcoming movement. If this is cor-
rect, we would expect to see a failure of beta power sup-
pression and lateralization in patients with FMD. This is
indeed what we found in the patient group: their impaired
task performance was associated with abnormally maintained
beta power and failure of beta lateralization compared to HCs.

We suggest that abnormally maintained beta power in this
experimental paradigm represents a state of abnormal atten-
tion toward the current sensorimotor state of the limb.
However, we recognize that there are differences of opinion
and much still to learn about the origins of changes in beta
power before movement. There is a degree of consensus that
beta power is at least related to the likelihood of a voluntary
movement occurring or a change in the status quo.11 Current
models of movement control suggest a system in which in-
formation regarding current sensory state and future move-
ment plans is represented by probability distributions, the SD
of which provides some measure of their relative strength or
precision. Movement can be understood as a change in sen-
sory state and occurs when future movement plans are
stronger (more precise) than the current sensory state.12 We
suggest that beta power is a candidate marker for precision in
this context, and given how it decreases in preparation for
movement, we suggest that it could index the strength (or
precision) of the current sensory state of the body.

Our study is only the second to provide follow-up neurobi-
ological data in functional neurologic disorders after treat-
ment.13 Our exploratory comparison of patients with FMD
before and after treatment did not confirm a behavioral im-
provement in the task (indexed by RTs) in spite of a signifi-
cant increase in SF-36 scores indicating an overall

Figure 3 Baseline: FMD vs HCs

Baseline-corrected beta power (log ratios) as a function of time. Blue trace shows contralateral hemisphere; red trace shows ipsilateral hemisphere. Beta
power change (AU) was obtained by rescaling beta power, which consisted of calculating the log ratio of beta power relative to a baseline period ranging from
−1 to 0 seconds relative to the onset of preparation cue. Beta slopeswere obtained by kernel-weighted local polynomial regression of beta power change (AU)
(yvar) on time (xvar). AU = arbitrary units; FMD = functional movement disorder; HC = healthy control; 50% = unpredictable blocks; 95% = highly predictable
blocks; 0 (milliseconds) = prepare cue appearance; 975 (milliseconds) = halfway through the preparation-to-move period; 1,950 (milliseconds) = go cue
appearance.
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improvement in symptoms. Nevertheless, at follow-up after
treatment, we observed a tendency for recovery of lateralized
beta suppression during motor preparation in the setting of
predictive cuing conditions. Within the group, there was
a lot of variability in response to physiotherapy treatment,
and this may have obscured an effect on RT and beta
desynchronization.

We acknowledge some limitations to our study. First, we
analyzed averaged power over frequencies in the whole beta
range from 13 to 33 Hz. This approach might have over-
shadowed any specific involvement of narrower ranges of
frequencies within the beta band. Second, we analyzed data
from the FC1 and C3 electrodes (left hemisphere) and FC2
and C4 electrodes (right hemisphere). Although these elec-
trodes are thought to record oscillatory activity from the
sensorimotor cortex, the spatial resolution of 32-channel EEG
is known to be limited. This might also have contributed to
between-participant heterogeneity in beta power measure-
ments. Third, our sample size did not allow the performance
of potentially interesting subgroup comparisons of patients
with FMD at follow-up (e.g., responders vs nonresponders to
treatment). Fourth, our analysis did not account for upper
limb involvement by FMD, lateralized symptoms, or hyper-
kinetic vs hypokinetic phenomenologies. Fifth, our hypothe-
sis is that abnormal beta power during movement preparation
reflects excessive attention toward the body, but we accept
that there are other possible causes. Finally, future studies
could also examine other components of beta modulation
related to movement, e.g., postmovement beta rebound.

Our data suggest that persistent beta synchronization and lack
of lateralized beta desynchronization during motor prepara-
tion are signatures of abnormal explicit movement control in
FMD. We propose that excessive self-directed attention,
which is associated with an explicit mode of motor control,
might interfere with beta desynchronization and through this
impair motor performance.
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Study question
Is sensorimotor beta power, an index of “motor attention,”
altered during motor preparation in individuals with func-
tional movement disorders (FMD)?

Summary answer
Beta-frequency cortical oscillations showed impaired
desynchronization and lateralization before movement in
subjects with FMD.

What is known and what this paper adds
Preparatory cues for movement provide important information
about the nature of the required movement and decrease re-
sponse times in healthy subjects. The ability to use these cues
for explicit movement is compromised in FMD. We hypoth-
esized that this deficit would be related to the misdirection of
motor attention during movement preparation.

Participants and setting
Twenty-one participants with clinically established FMD
were recruited from the enrollment pool of a randomized
feasibility study evaluating specialized and standard physio-
therapy for FMD. Thirteen healthy persons matched for age
and sex were enrolled as the control group.

Design, size, and duration
Participants with FMD completed EEG testing before and
at least 2 weeks after the feasibility study physiotherapy in-
tervention. The behavioral experiment consisted of a Posner-
type precued choice reaction time task with varying predictive
cue validity (a highly predictable condition with 95% congru-
ence and an unpredictable condition with 50% congruence).

Primary outcomes
The primary outcomes were response time and beta-
frequency oscillatory activity.

Main results and the role of chance
The control group showed faster response times in the pre-
dictable condition than in the unpredictable condition, whereas
there was no significant difference between conditions in the

FMD group. Predictive motor cues elicited beta desynchroni-
zation in the contralateral hemisphere and lower contralateral
vs ipsilateral end-of-preparation beta power in the control
group. In contrast, the FMD group showed impaired beta
desynchronization and lateralization before movement.

Bias, confounding, and other reasons
for caution
The analysis was performed over the whole beta range and
therefore may have masked the specific involvement of nar-
rower ranges within the beta band. Other limitations include
the spatial resolution of 32-channel EEG and a small sample
size, which prohibited subgroup comparisons.

Generalizability to other populations
The generalizability of these findings is limited by a small
number of subjects.
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