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Abstract: 
 

The postsynaptic proteome of excitatory synapses comprises ~1,000 highly conserved 

proteins that control the behavioral repertoire and mutations disrupting their function 

cause >130 brain diseases. Here, we document the composition of postsynaptic 

proteomes in human neocortical regions and integrate it with genetic, functional and 

structural magnetic resonance imaging, positron emission tomography imaging, and 

behavioral data. Neocortical regions show signatures of expression of individual proteins, 

protein complexes, biochemical and metabolic pathways. The compositional signatures 

in brain regions involved with language, emotion and memory functions were 

characterized. Integrating large-scale GWAS with regional proteome data identifies the 

same cortical region for smoking behavior as found with fMRI data. The neocortical 

postsynaptic proteome data resource can be used to link genetics to brain imaging and 

behavior, and to study the role of postsynaptic proteins in localization of brain functions. 
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Introduction: 
 

For almost two centuries, scientists have pursued the study of localization of function in 

the human cerebral neocortex using diverse methods including neuroanatomy, 

electrophysiology, imaging and gene expression studies. The frontal, parietal, temporal 

and occipital lobes of the neocortex have been commonly subdivided into Brodmann 

areas (BA)1 based on cytoarchitectural features, and specific behavioral functions have 

been ascribed to these regions. One of the hallmarks of the neocortex is its high density 

of excitatory synaptic connections2 and these synapses are endowed with over 1,000 

postsynaptic proteins that control the behavioral repertoire and are disrupted by mutations 

causing over 130 brain diseases3,4. However, the compositional and functional 

differences in synapse proteomes in the neocortical regions remains unknown. The 

recent development of reliable methods for the direct quantification of human neocortical 

synapse proteomes from post-mortem tissue makes it feasible to analyze the molecular 

composition of synapses directly in human brain regions5. 

 

In the last two decades, proteomic mass spectrometry has been used to systematically 

characterize the protein composition of synapses and has expanded our view of the 

postsynaptic terminal from being a simple connector to a sophisticated signaling 

machine6,7 assembled from multiprotein complexes and super-complexes8-12. The 

characterization of the postsynaptic proteome in humans3-5, mice3,13, rats14-16 and 

zebrafish17 reveals a highly conserved “vertebrate postsynaptic density proteome” 

(vPSD)17 comprised of ~1,000 proteins. In addition to these conserved proteins, there are 

lineage-specific postsynaptic proteins that contribute to functional variation17. It is also 

evident that there must be compositional differences in the synapse proteome across 

different brain regions because immunohistochemical staining of individual synaptic 

proteins shows non-uniform distributions18. The importance of studying brain regional 

variation in synapse proteomes is that the large and comprehensive datasets can be used 

with genetic and anatomy-based resources, such as the Human Connectome Project19, 

to better understand the localization of neocortical functions including behavior.  
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Here, we generate the first map of the human postsynaptic proteome across frontal, 

parietal, temporal and occipital lobes of the neocortex focusing on 12 BAs (Table 1, Figure 

1A). These BAs are involved in many aspects of behavior including executive functions, 

language, motor functions, vision and memory. Localized pathology in these regions is 

associated with many disorders including schizophrenia, dementias, stroke, trauma and 

substance abuse. We show that diversity in the composition of PSD proteins generates 

a characteristic molecular signature for each BA. Integration of these data with genetic, 

Positron Emission Tomography (PET), functional and structural Magnetic Resonance 

Imaging (MRI) data show that synapse proteome data can be used to address a variety 

of questions about the localization of functions in the neocortex. The large-scale dataset 

we describe and make freely available is a valuable resource for a wide range of future 

studies on the human brain, behavior and brain imaging. 

 

RESULTS 
 

Isolation of the postsynaptic proteome from neocortex  
 

Post-mortem human brain tissue obtained from the MRC Edinburgh Brain Bank was 

screened for synaptic proteome preservation using HUSPIR (HUman Synapse Proteome 

Integrity Ratio)5 and four non-diseased cases suitable for synapse proteomics were 

identified (Supplementary Table 1). We focused on 12 BAs from frontal, parietal, temporal 

and occipital lobes of the neocortex (Figure 1A, Table 1). A wide range of behavioral 

functions has been ascribed to these areas (Table 1). The postsynaptic density (PSD) 

fraction was isolated from each tissue sample as previously described5 and LC-MS/MS 

analysis performed on a total of 48 samples. Label-free quantitation of peptide intensity 

for all proteins identified 1,213 proteins (Supplementary Table 2). Proteins identified with 

a minimum of 2 unique peptides and having a mean peptide intensity of 1.5-fold or greater 

in one brain region compared to any other and determined to be significant with a p-value 

< 0.05 were scored as differentially expressed (Supplementary Table 2). One hundred 

forty-nine proteins were differentially expressed in at least one BA compared to all others 

(Supplementary Table 3, Supplementary Figure 1). 
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We first compared the complexity of this proteome dataset with two previously published 

human postsynaptic proteome neocortex datasets4,5 and found an overlap of 75% 

between all three (Supplementary Figure 2A). Twenty five percent of proteins in this study 

had not been previously detected (Supplementary Table 4), which may reflect the many 

new BAs investigated. Consistent with this, we compared our human dataset with whole 

forebrain datasets obtained in mice and rats and found a 96.3% overlap (Supplementary 

Figure 2B). Thus, the sampling of 12 BAs across the human neocortex likely captures the 

diversity of postsynaptic proteins found in the mammalian brain. 

 

Validation of pooling of individual samples 
 

Prior to pooling datasets from the individuals, we examined reproducibility of expression 

between individuals using the Differential Stability (DS) approach that was previously 

applied in the transcriptome analysis of adult human brain regions20. DS analysis was 

performed on the MS intensity values obtained for the 1,213 proteins to identify the subset 

with highly reproducible expression patterns across the four independent human brains. 

As in Hawrylycz et al.20, we quantified the average pairwise Pearson correlation ρ over a 

set of 12 anatomical regions and obtained the DS values ranging from 0.83 to -0.25 with 

37 proteins (3% of total) having a ρ-value ³ 0.5, highly correlated between all 4 individuals 

(Supplementary Table 5). The proteins with highest DS were CPNE6 (ρ-value = 0.82), 

LGI3 (ρ-value = 0.75), NEFH (ρ-value = 0.72) and CAMK2D (ρ-value = 0.71). The 37 

PSD proteins displaying a high DS correlation in their expression patterns were enriched 

in membrane targeting proteins (q-value = 3.49 x 10-03) and calcium-dependent 

membrane targeting proteins (q-value = 5.83 x 10-03) (Supplementary Table 6). We next 

asked if these high-DS proteins corresponded to those described in the transcriptome 

analysis of human brain regions20 and found a very high overlap (35/37; 95%, p-value = 

2.04 x 10-16). Although the total percentage of high DS samples is higher in the 

transcriptome analysis20, the estimated correlation coefficient between the DS results for 

all postsynaptic proteins and their respective transcripts was small (R2 = 0.18) but highly 

significant (p-value = 1.218 x 10-09). As a second approach, we examined differences 



 6 

between the brain regions of all 4 individuals by performing hierarchical clustering on 

protein abundances (Supplementary Figure 3). All 12 BAs clustered into two main 

branches; one large branch containing seven or eight similar regions and a second 

branch of three or four similar regions. In addition, Tukey’s HSD test showed no significant 

difference between the mean values of four individuals at a confidence level of 95% 

(Supplementary Figure 4A, B). We also examined the effect of removing brain B (female) 

or brain D (longest post-mortem interval) on biochemical modules. Although this perturbs 

some modules (specifically modules 5 and 6), we noticed that combining these brains 

mutually compensated for this disturbance (see section: Neocortical architecture of the 

postsynaptic proteome; Supplementary Figure 5). We therefore decided to proceed with 

combined data from all four individuals. Individual proteins and their abundances across 

all 12 BAs are listed in Supplementary Table 7 and 8 (ranked regional abundance). 

 

A core anatomically invariant component of the postsynaptic proteome 
 

Prior to analyzing the proteins that may contribute to different functions in neocortical 

regions, we sought to identify the invariant proteins that may provide core functions in all 

12 BAs. Using the method of Le Bihan et al21 we performed a Two One-Sided T-Test 

(TOST-test) using mean MS intensity values (n = 4) for the 1,213 proteins and a Ɛ 

sensitivity factor (see Materials and Methods) of 0.045: this identified 27 proteins 

(Supplementary Table 9). The proteins with the lowest variability between regions were 

ANK3 (p-value = 0.008), RHOT1 (p-value = 0.012), MYO18A (p-value = 0.015) and 

DYNCLI1 (p-value = 0.018). The 27 proteins were enriched in components of the 

cytoskeleton (q-value = 8.91 x 10-05), protein complex (q-value = 9.55 x 10-05) and 

microtubules (q-value = 8.73 x 10-03) (Supplementary Table 10). This indicates that this 

set of postsynaptic proteins with the lowest variability between brain regions is enriched 

in key structural elements of the cytoskeleton and are representative of a universal core 

of proteins that maintain the structural integrity of the postsynaptic proteome throughout 

the neocortex.  

 
Neocortical architecture of the postsynaptic proteome 
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We proceeded to study the differences between brain regions using a series of analyses 

beginning with candidate proteins of known functional importance, then methods that 

exploit the large datasets to identify a modular molecular architecture of the postsynaptic 

proteome that underpins regional organization. 

 

We first examined the expression of 41 well-known candidate proteins representing 11 

protein classes including glutamate and GABA receptors, scaffold proteins and other ion 

channels, which are known to play a key role in synaptic physiology and cognitive 

functions (Supplementary Table 11). AMPA receptors are protein complexes that mediate 

fast synaptic transmission and we found Gria1/AMPA1 is differentially expressed 

throughout the neocortex, being most abundant in BA20 and least abundant in BA4 

having z-scores of 0.24 and 0.34 above the mean, respectively. Conversely, other AMPA 

receptor subunits, Gria3/AMPA3 and Gria4/AMPA4, were detectable at very low levels 

and uniformly in all regions examined with average z-scores of -0.6 and -0.7 below the 

mean. The NMDA receptor subunits, which also assemble protein complexes9,12 and 

mediate synaptic plasticity, were differentially expressed: Grin1/NR1 and Grin2B/NR2B, 

being least abundant in BA4 and BA19 and highly abundant in BA20. NMDA receptor 

complexes assemble with MAGUK (Membrane Associated Guanylate Kinase) scaffold 

protein complexes to form supercomplexes9,12 and paralogs of this family (Dlg1/SAP97, 

Dlg2/PSD93, Dlg3/SAP102, Dlg4/PSD95) were also differentially abundant across all 

regions (Supplementary Table 11). These findings indicate that different regions of the 

neocortex express differing amounts of synaptic proteins and their complexes. 

 

We next used the full complement of proteome data and hierarchical clustering to 

compare BAs. This approach allows us to group BAs into those that are similar and 

different in terms of PSD protein expression, as well as identify subsets (or modules) of 

postsynaptic proteins that are co-regulated in the BAs. Each BA had a distinct molecular 

signature and the similarities of these signatures was hierarchically organized into groups, 

including four main branches which we refer to as “Brodmann Area Groups” (BAG 1-4) 

(Figure 1B, C). Several organizational principles emerge: First, there is diversity of 
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postsynaptic proteomes in all four lobes of the cerebrum (frontal, temporal, parietal and 

occipital). Second, two regions from different lobes can be more similar to each other than 

two adjacent regions in the same lobe. For example, BA19 from the occipital lobe is 

similar to BA4 and BA6 in the frontal lobe (all are in BAG1), and distinct to its adjacent 

regions BA37 and BA39 (in BAG4). Third, adjacent regions can either be similar or 

different; of 10 pairs of adjacent BAs, 4 were in the same BAG. The similar pairs of 

adjacent regions were temporal lobe areas BA20 (inferior temporal area) and BA38 

(anterior temporal lobe), both in BAG2; dorsolateral prefrontal cortex area BA9 and pars 

opercularis of the inferior frontal gyrus BA44; primary motor cortex BA4 and premotor 

cortex BA6; the angular area of the parietal cortex BA39 and the occipitotemporal area 

BA37 of the occipital lobe. These findings indicate that postsynaptic proteome 

compositional differences contribute to the diversity of BAs and that this reveals a novel 

hierarchical relationship between these areas. 

 

To understand how this anatomical organization arises from the differential expression of 

postsynaptic proteins we identified clusters of co-regulated groups of postsynaptic 

proteins, which we call Postsynaptic Proteome Modules (PPM) (Figure 1B) 

(Supplementary Table 12). The seven PPMs were selected based on the best 

combination of indices provided by nbClust R package (Methods). To validate the 

robustness of these PPMs, we performed bootstrapping with hClust, k-means and the 

pam method (see Methods and Supplementary Figure 4A). To visualize the distribution 

of the different PPMs across the 12 BAs, Circos visualization was performed using those 

proteins whose abundances are above the mean and thus enriched (having a positive z-

score in their protein abundance trends for a given region compared to all other regions 

analyzed) (Supplementary Figure 6). We found that while certain PPMs exhibited only 

subtle differences in distribution, others, such as PPM1 and PPM2, showed very different 

abundance patterns between brain regions. PPM1 contains NMDA receptor subunits 

Grin1/NR1 and Grin2b/NR2B and PPM2 contains MAGUK proteins Dlg4/PSD95, 

Dlg3/SAP102 and Dlg2/PSD93, which assemble multiprotein signaling complexes9,12 

controlling synaptic plasticity.  We also found that key components of inhibitory synapses 

were also part of differentially distributed protein modules: PPM1 contained Gabrb1, 



 9 

Gabrb3 and Gabbr2; PPM2 contained Gabra1, Gabrb2 and Gabarapl2; PPM6 contained 

Gabbr1, Gabra2 and Gabrg2. Taken together, these results demonstrate that differential 

distribution of PPMs and their key functional proteins contribute to the hierarchical 

organization of BAs. 

 

Electrophysiological validation of proteome differences in Brodmann areas  
 

To test the functional significance of the differential expression of synaptic molecules in 

BAs, we examined the electrophysiological properties of Xenopus oocytes injected with 

synaptosomes isolated from frozen human brain tissue22. We specifically examined the 

β1 GABAA receptor subunit between regions BA20/BA39 and BA4/BA19 (Figure 2).  

BA20/BA39 were chosen because they were the two regions showing the largest 

differential expression, in contrast to BA4/BA19, which shows small differential 

expression (see Gabrb1 differential distribution in Supplementary Tables 9, 10). Similar 

amounts of synaptosomes from BA20 and BA39 were injected in oocytes and two days 

later ion currents were measured using the two-electrode voltage clamp technique. 

Application of 1 mM of the agonist GABA resulted in much larger responses (p<0.001, 

unpaired t-test) in oocytes injected with synaptosomes from BA20 (82 ± 2 nA; n = 6) than 

in oocytes injected with synaptosomes from BA39 (35 ± 5 nA; n = 6) (Figure 2A). Similar 

results were obtained with synaptosomes from the same two brain regions obtained from 

two other brain donors. In these two further cases, 1 mM GABA-induced responses were 

25 ± 2 nA (n = 7) for BA20 and 3 ± 1 nA (n = 7) for BA39 for one donor, and 9 ± 3 nA (n 

= 7) for BA20 and 1.4 ± 0.4 nA (n = 8) for BA39 for the other donor, respectively (Figure 

2A). In contrast to BA20/BA39 differences, no significant differences in 1 mM GABA-

evoked responses were found between BA4 and BA19, the two brain regions with similar 

β1 GABAA subunit protein levels (Figure 2B). Different expression levels in ion currents 

between donors is expected given the variation in quality of the original tissues22. These 

electrophysiological experiments indicate the differential synaptosome proteome 

composition reflects functional differences in ion channel activity in Brodmann areas. 

 

Neocortical localization of biochemical pathways  
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We next turned our attention from the ion channels and receptor mechanisms to the wider 

range of postsynaptic biochemical functions found in the highly complex proteome and 

asked if these functions showed differential neocortical localization. We used two related 

strategies: KEGG pathway enrichment analysis of PPMs or in the ranked abundance of 

proteins in each BA.  The results for the first strategy are shown in Figure 3A, revealing 

differential biochemical pathway enrichment in PPMs. For example, PPM1 was enriched 

in synaptic vesicle functions, synaptic plasticity (long-term potentiation and depression 

pathways), whereas PPM7 was particularly enriched in oxidative phosphorylation, 

Alzheimer’s, Parkinson’s and Huntington’s disease pathways. In the second strategy, 

KEGG pathway enrichment was performed on the ranked protein abundances for each 

of the 12 BAs and hierarchical clustering performed (Figure 3B). Complementary to the 

organization of Brodmann Area Groups (BAGs, Figure 1B), which were based on 

abundance of proteins, we find that each BA has a unique biochemical “pathway 

signature” (Figure 3B). Interestingly, the dendrogram shows three major divisions: 1) 

many signal transduction mechanisms, 2) synaptic plasticity and other signaling 

processes, 3) neurodegenerative diseases and metabolic mechanisms.  

 

PET imaging of postsynaptic metabolic mechanisms 
 

Human brain imaging is the major tool for examining the localization of functions in the 

human neocortex. We sought to investigate the possibility that regional differences in the 

postsynaptic proteome was relevant to brain imaging. Positron Emission Tomography 

(PET) has been used to document differences between Brodmann areas for several 

metabolic parameters including cerebral metabolic rate for oxygen (CMRO2), cerebral 

metabolic rate for glucose (CMRGlu), cerebral blood flow, and two derived indices 

(oxygen-glucose index, OGI; glycolytic index, GI), in normal resting human subjects23. 

The postsynaptic density is known to contain glycolytic and other metabolic enzymes that 

generate ATP used by signaling enzymes involved with synaptic plasticity3,4,13,14,16,24. 

Using published PET data23  reporting metabolic parameters from brain regions (spatial 

resolution 3-5 mm), we correlated these metabolic data with protein abundances in the 
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PPMs and found significant correlations that were robust to perturbation analysis (nregions 

= 12, P < 10-4)(Figure 4A)(Methods). For example, the mean regional protein abundance 

of PPM1 (which contains high levels of the mitochondrial Complex I & IV proteins and 

enzymes involved in the OXPHOS pathway) displayed a positive correlation with the OGI 

value and negative correlation with GI, CMRGlu and CMRO2 values; the mean regional 

protein abundances for PPMs 2 and 3, which contain glycolytic enzymes PGAM and 

PKM2 proteins, were positively correlated with values of these metabolic parameters. 

These findings indicate that regional differences in the composition of the postsynaptic 

proteome correlate with functional signals measured in PET metabolic imaging. 

 

Task-specific fMRI signals correlate with regional postsynaptic proteomes  
 

Magnetic resonance imaging (MRI) is another imaging modality that is widely used to 

study structural and functional organization of the neocortex. Behavioral responses can 

be detected in regions of the neocortex using functional MRI (fMRI) and postsynaptic 

proteins are important for many human behaviors4. We therefore hypothesized that 

compositional differences between the postsynaptic proteomes in different BAs would be 

linked to specific behavioral responses detected with fMRI. To test this hypothesis, we 

obtained data from the Human Connectome Project (HCP), which used high-quality MRI 

data to define the structural and functional parcellation of neocortical regions19. The HCP 

uses myelin content and cortical thickness from MRI images to define the structural 

architecture of neocortex and has mapped correlates with the functional activation of brain 

regions in response to a battery of behavioral tests, called task-fMRI (tfMRI). These tasks 

activate well-characterized neural systems including: 1) visual and somatosensory-motor 

systems; 2) category-specific representations; 3) language function (semantic and 

phonological processing); 4) attention systems; 5) working memory/cognitive control 

systems; 6) emotion processing; 7) decision-making/reward processing; and 8) episodic 

memory systems25 (see Methods and Supplementary Table 13 for the nomenclature of 

the specific tasks). 
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First, we identified the parcellated regions from the HCP that corresponded to the 12 BAs 

(Supplementary Figure 7; Methods). The fMRI structural marker myelin marker showed a 

high correlation with the expression values of four myelin proteins (Mog, Plp1, Omg and 

Pmp2) in our proteomic data (R2 = 0.7-0.8, p-value < 0.0001) (Supplementary Figure 7A, 

Supplementary Table 14). Next, we computed the correlation of the behavioral tfMRI 

scores (19 scores) with proteome expression abundances (1,213 proteins) over 12 BAs 

(Supplementary Table 15) (Figure 4B). Perturbation analysis identified 1,154 significant 

(P <0.05) scores (Supplementary Table 16). We then performed hierarchical clustering of 

all HCP structural (myelin and cortical thickness) and behavioral scores from the fMRI 

datasets with postsynaptic protein abundance and found a clear division into 4 quadrants 

(Figure 4B).  

 

Strikingly, the structural and functional fMRI traits were separated into two major groups: 

language and motor functions were clustered with the myelin structural marker, whereas 

emotion and working memory were clustered with the cortical thickness marker. To further 

explore the biochemical features of the postsynaptic proteomes associated with these 

behavioral traits, we correlated tfMRI scores with PPM protein abundances (similar to the 

PET analysis above) and found significant correlations that were robust to perturbation 

analysis (nregions = 12, p < 0.05) (Supplementary Figure 8). PPM5, which contains the four 

myelin proteins in our study (Mog, Plp1, Omg and Pmp2), correlated with the myelin 

structural marker. Other PPMs correlated with behavioral tasks, such as 

language/mathematical functions that correlated with PPM4 and PPM6. These data 

indicate that fMRI responses to behavioral tasks are associated with biochemical 

properties of the postsynaptic proteome in the respective brain regions.  

 

Postsynaptic composition localizes genetic mechanisms of behavior 
 

Because each BA expresses a specific signature of postsynaptic proteins and human 

genetic studies show many diseases and behavioral traits are associated with genetic 

variants in postsynaptic proteins, it follows that combining our proteomic datasets with 

genetic data may reveal brain regions where those variants exert their influence on 



 13 

phenotypes. If so, this could provide a bridge between genetics and functional brain 

imaging. To assess this possibility, we used Genome Wide Association Study (GWAS) 

data on disease and cognitive traits to ask if variation in the composition of the synaptic 

proteomes in different BAs revealed the neocortical localization of these genetically-

influenced traits. 

 

We utilized summary statistics from some of the largest available GWAS studies to test 

for association with mental disorders (schizophrenia, autism, Alzheimer's disease, 

migraine, eating disorders and major depression) and cognitive traits (aggression, years 

in education and smoking). We also included a set of other traits/disorders including 

height, Type 2 Diabetes, cholesterol levels, triglyceride levels, Ulcerative Colitis, Crohn's 

Disease and Inflammatory Bowel Disease; while these are generally thought of as non-

neuronal traits and are intended to be considered as controls, some are genetically 

correlated with core neuronal phenotypes such as the number of years spent in 

education26. For each BA, we partitioned the genes into deciles based on their specificity 

for that region (Figure 5A,D), wherein specificity to brain region X is defined as the 

proportion of the protein’s total mean expression which is found within brain region X. We 

assumed that SNPs would primarily have an impact upon their nearest genes. Partitioned 

Linkage Disequilibrium Score Regression (LDSC) to evaluate the enrichment of the 

common-variant single-nucleotide polymorphism (SNP) heritability for each GWAS in 

each decile. We then tested the hypothesis that disease association increases as brain 

region specificity increases by fitting a linear model to the enrichment z-scores for each 

of the deciles. 

 

Prior to multiple correction testing, four GWAS studies showed significant enrichments in 

heritability as regional specificity increased: smoking (current vs former) (BA9, P = 

0.00012)(Figure 5B), schizophrenia (BA11, P = 0.01290), smoking (never vs ever) (BA44, 

P = 0.01485) and years in education (BA37, P = 0.02078). Note that this does not depend 

on significant enrichments within any particular decile, just that the more specific deciles 

are significantly more associated with the trait than the least specific deciles. After 

correcting for multiple testing, one region remained significant: BA9, the medial 
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dorsolateral prefrontal cortex was associated with smoking cessation (P = 0.00012, 

Figure 5B). No other traits (e.g. height, Figure 5C) were significantly associated with BA9 

(nor any other region), nor do other regions show enrichment for smoking (nor other) traits 

(e.g. BA44, Figure 5E,F). This result indicates that the postsynaptic proteins that are 

differentially expressed in BA9 of healthy individuals are encoded by genes that are 

associated with smoking cessation. Our findings are in agreement with MRI and PET 

imaging studies that have demonstrated the involvement of BA9 in smoking and 

substance abuse27-30. 

 

Discussion 
 

We have analyzed the postsynaptic proteome in 12 Brodmann areas of the human 

neocortex and found each one has a signature of compositional differences that underlie 

functional differences. Key postsynaptic proteins, including ion channels and 

neurotransmitter receptors, and biochemical pathways controlling physiology and 

disease, were differentially distributed in neocortical regions. MRI and PET imaging are 

widely used for structural and functional assessment of brain regions and we have shown 

that regional diversity in postsynaptic proteomes is potentially relevant to the 

interpretation of these imaging modalities. We also demonstrate that synapse proteome 

brain maps can be used to link genetics, brain imaging and behavior. 

 

From the compositional differences in the postsynaptic proteome, we see evidence of a 

molecular logic to the synaptic organization of the neocortex. The postsynaptic proteome 

is highly complex and comprises a diverse set of protein classes ranging from 

neurotransmitter receptors, adhesion and scaffold proteins to signaling, metabolic, 

structural and trafficking proteins3-6,8,13,15,16,31,32. Combinations of these proteins are 

physically assembled into supramolecular multiprotein complexes, which are building 

blocks of synapses9,12,33. We found differential expression of the protein components of 

complexes, including AMPA, NMDA and GABA receptors, indicating that postsynaptic 

multiprotein complexes are differentially distributed in neocortical regions. We also found 

that key components of postsynaptic signaling complexes were in different proteome 
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modules (e.g. module 1 contains Grin1/NR1, Grin2b/NR2B, and module 2 contains 

Dlg4/PSD95, Dlg3/SAP102 and Dlg2/PSD93 proteins), which are differentially 

distributed. Using electrophysiological recordings of GABA receptors, we confirmed the 

differential expression of functional ion channel complexes in synapses from different 

brain regions.  Thus, the regional diversity in postsynaptic proteome composition must 

reflect the differential allocation of protein complexes into subtypes of synapses and 

populations of these subtypes define each brain region.  

 

The regional diversity of postsynaptic proteome composition revealed organizational 

principles. Compositionally distinct areas were found within all four lobes of the cerebrum, 

with most adjacent regions showing distinct composition. Some regions in different lobes 

showed similar composition, suggesting anatomically distant regions are composed of 

synapses with similar signaling properties. The molecular differences between regions 

would likely influence the vulnerability of those regions to disease-causing mutations that 

disrupt postsynaptic proteins4. This is supported by the observed enrichments in some 

regions of disease pathways. Interestingly, we found enrichments of pathways involved 

with neurodegeneration and metabolism in similar regions, suggesting that the 

vulnerability of synapses to neurodegenerative disorders may by influenced by their 

metabolic properties, consistent with previous results23,34,35. 

 

While it has been evident from PET and MRI imaging that there is localization of 

behavioral traits in the neocortex, and that these traits have a genetic underpinning, the 

mechanistic links between genetics, traits and brain regions remain poorly understood. 

Our finding that GWAS data and synapse proteomics can be combined to identify brain 

regions associated with smoking is an important proof-of-principle result. The composition 

of synapse proteomes has not (to our knowledge) been previously considered as a factor 

in the regional signals of fMRI data. The correlations between the regional localization of 

postsynaptic compositional signatures and language, mathematical ability and emotional 

traits support the view that the genetic mechanisms for these traits are associated with 

the synaptic properties of the cognate brain regions. Given the rich literature describing 

human brain imaging in behavioral tasks and the advances in genetics of behavior, we 
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expect that more comprehensive datasets will lead to the identification of further links 

between brain regions, traits and genetics. 

 

Our findings also provide new insight into the biological basis of smoking behavior.  Our 

analysis indicates that the ease with which individuals can cease smoking (or their 

susceptibility to try to give up) may be related to the function of postsynaptic proteins in 

BA9 in the prefrontal cortex. We also note an interesting potential convergence between 

smoking, schizophrenia, the dorsolateral prefrontal cortex and the postsynaptic 

proteome: this brain region is involved with schizophrenia36, eighty percent of 

schizophrenia patients smoke37 and the genetic susceptibility to schizophrenia is enriched 

in postsynaptic proteins38-40.  

 

The technical obstacles for synapse proteomics from post-mortem human brain material 

have been largely overcome and it is now feasible to conduct much more detailed 

examination of human brain regions in normal and diseased cases. This comparative 

dataset provides a robust foundation for future studies of the human neocortex in health 

and disease and is freely available in the Edinburgh DataShare database 

(http://hdl.handle.net/10283/2362). 
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Methods: 
 

PSD protein preparations for mass spectrometry: 

 

Post-mortem human brain tissue from obtained from the MRC Brain bank – Edinburgh 

and processed as previously described5. Briefly, dissected tissue was homogenized by 

performing 12 strokes with a Dounce homogenizer containing 2 mL of ice cold 

homogenization buffer (320 mM sucrose, 1mM HEPES, pH = 7.4) containing 1X 

Complete EDTA-free protease inhibitor (Roche) and 1X Phosphatase inhibitor cocktail 

set II (Calbiochem). Insoluble material was pelleted by centrifugation at 1,000 x g for 10 

minutes at 4˚C.  The supernatant (S1) was removed and the pellet was resuspended in 

1 mL of homogenization buffer and an additional 6 strokes were performed. Following a 

second centrifugation at 1,000 x g for 10 minutes at 4˚C, the supernatant (S2) was 

removed and pooled with S1. The combined supernatants were then applied to a sucrose 

gradient to isolate pure PSD fractions suitable for quantitative LC-MS/MS analysis. 

 

Sample preparation and LC-MS/MS analysis: 

 

All chemicals were purchased from Sigma-Aldrich, UK unless otherwise stated. 

Acetonitrile and water for HPLC-MS/MS and sample preparation were HPLC quality and 

were purchased from Thermo-Fisher, UK. Formic acid was supra-pure (90-100%) 

purchased from Merck (Darmstadt, Germany) while trypsin sequencing grade purchased 

from Promega (UK). All HPLC-MS connector fittings were purchased either from 

Upchurch Scientific or Valco (Hichrom and RESTEK, UK). Proteins were acetone 

precipitated, the pellet reconstituted in 8M urea and diluted to 2 M, samples were 

trypsinised in a similar manner as described48. Resulting peptide extracts were then dried 

under low pressure and acidified with 7 µl of 0.05% TFA and were filtered with Millex filter 

(Millipore, UK) before subjecting to HPLC-MS analysis. Nano-HPLC-MS/MS analysis was 

performed using an on-line system consisting of a nano-pump (Dionex Ultimate 3000, 

Thermo-Fisher, UK) coupled to a QExactive instrument (Thermo-Fisher, UK) with a pre-

column of 300 µm x 5 mm (Acclaim Pepmap, 5 µm particle size) connected to a column 
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of 75 µm x 50 cm (Acclaim Pepmap, 3 µm particle size). Samples were analyzed on a 90 

min gradient in data dependent analysis (1 survey scan at 70k resolution followed by the 

top 10 MS/MS). 

 

Data analysis: 

 

Data from MS/MS spectra were searched using MASCOT Version 2.4 (Matrix Science 

Ltd, UK) against the Homo sapiens (34,284 protein sequences) subset of the National 

Center for Biotechnology Information (NCBI) with maximum missed-cut value set to 2. 

Following features were used in all searches: i) variable methionine oxidation, ii) fixed 

cysteine carbamidomethylation, iii) precursor mass tolerance of 10 ppm, iv) MS/MS 

tolerance of 0.05 amu, v) significance threshold (p) below 0.05 (MudPIT scoring) and vi) 

final peptide score of 20.  

 

Progenesis Version 4 (Nonlinear Dynamics, UK) was used for HPLC-MS label-free 

quantitation. Only MS/MS peaks with a charge of 2+, 3+ or 4+ were taken into account 

for the total number of ‘Feature’ (signal at one particular retention time and m/z) and only 

the five most intense spectra per ‘Feature’ were included.  Each LC-MS run is normalized 

by multiplying a scalar factor. The scalar factor is a ratio in log space of the median 

intensity of the selected features against the median intensity of the selected feature of a 

reference spectra. The associated unique peptide ion intensities for a specific protein 

were then summed to generate an abundance value, from which was then transformed 

using an ArcSinH function. Based on the abundance values, within group means were 

calculated and from there the fold changes (in comparison to control) were evaluated. 

One-way analysis of variance (ANOVA) was used to calculate the p-value based on the 

transformed abundance values. P-values were adjusted for multiple comparisons and 

were calculated either from Progenesis Version 4 (Nonlinear Dynamics, UK) or using R49 

based on Benjamini and Hochberg50. Further analysis was performed by extracting z-

score calculated on ArcsinH average group. 
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Differentially expressed proteins were only considered significant in current study if the 

following conditions were fulfilled: i) adjusted p-values (pair-wise) less than 0.05, ii) 

number of unique peptides detected and used in quantification per protein was at least 1 

(for the 1,902 dataset) or 2 (for the 1,215 dataset), and iii) absolute fold change was at 

least 1.5 fold for up-regulated proteins and ≤ 0.667 fold for down-regulated proteins).  

 

Preparation of Functional Synaptosomes from post-mortem Human Brain Tissue: 

 

Synaptosomes were purified with a sucrose gradient as described22. In brief, human 

frozen tissue was homogenized ten times with a Teflon homogenizer in 9 ml/g of ice-cold 

0.3 M sucrose containing 50 mM Tris-HCl (pH 7.4), 50mM EGTA, 50 mM EDTA and both 

protease (Roche) and phosphatase (Calbiochem) inhibitor cocktails. The homogenate 

was centrifuged at 1,500 g for 20 minutes at 4°C. The supernatant fraction (S1) was 

centrifuged at 16,000 g for 30 minutes at 4°C. The resulting pellet (P2) was re-suspended 

in 5 mM Tris-HCl (pH 8.0), homogenized three times with a Teflon homogenizer and left 

on ice for 45 minutes. The P2 fraction was homogenized again for ten times, re-

suspended in sucrose to make a 34% (w/w) solution and layered onto a discontinuous 

sucrose density gradient consisting of, from bottom up, equal volume of sample, and 

buffer containing 0.85 M and 0.3 M sucrose, respectively. After centrifugation at 60,000 

g for 2 hours with a Beckmann SW41Ti swing bucket rotor, the synaptosomal fraction 

(layer between 0.8 and 1.2 M sucrose) was collected and diluted with two volumes of ice-

cold 50 mM TrisHCl (pH 7.4) and centrifuged at 48,000 g for 30 minutes. The resulting 

synaptosomal pellet was re-suspended in 50mM Tris. 

 

Assay for Measurement of GABA Currents from post-mortem Human Brain Tissue: 

 

Xenopus oocytes (stages V–VI) were removed from sacrificed frogs and de-folliculated 

after treatment with collagenase type I (5 mg/ml calcium-free Barth’s solution) for 4 hours 

at room temperature. 60 nL of synaptosome (1mg/ml) suspension was injected per oocyte 

using a Drummond (Broomall, PA) variable volume micro-injector. After injection oocytes 

were incubated at 18°C in a modified Barth’s solution containing 88 mM NaCl, 1 mM KCl, 
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2.4 mM NaHCO3, 0.3 mM Ca(NO3)2, 0.41 mM CaCl2, 0.82 mM MgSO4, 15 mM HEPES, 

and 50 mg/l neomycin (pH 7.6 with NaOH; osmolarity 235 mOsm). Experiments were 

performed on oocytes after 2 days of incubation.  

 

Oocytes were placed in a recording chamber (internal diameter 3 mm), which was 

continuously perfused with a saline solution (115 mM NaCl, 2.5 mM KCl, 1.8 mM CaCl2, 

1 mM MgCl2, 30 µM glycine, 10 mM HEPES (pH 7.4) at a rate of approximately 10 ml/min. 

Dilutions of drugs in external saline were prepared immediately before the experiments 

and applied by switching between control and drug-containing saline using a BPS-8 

solution exchange system (ALA Scientific Inc., Westbury, NY). Between responses, the 

oocytes were washed for 2 minutes. Oocytes were impaled by two microelectrodes filled 

with 3 M KCl (0.5–2.5 MΩ) and voltage-clamped using a Geneclamp 500B amplifier (Axon 

Instruments, Union City, CA). The external saline was clamped at ground potential by 

means of a virtual ground circuit using an Ag/AgCl reference electrode and a Pt/Ir current-

passing electrode. The membrane potential was held at −100 mV. The current needed to 

keep the oocyte’s membrane at the holding potential was measured. Membrane currents 

were low-pass filtered (four-pole low-pass Bessel filter, −3 dB at 10 Hz), digitized (50 Hz), 

and stored on disc for offline computer analysis. Data are expressed as nano-Ampere 

(nA) of current, (mean ± S.E.M). All experiments were performed at room temperature. 

Tests of significance were performed using the Student’s t-test, and p-values less than 

0.05 were considered significant. 

 

Bioinformatic analysis and Visualization: 

 

The majority of analysis was performed in R.  Tukey tests  

(https://www.jstor.org/stable/3001913?seq=1#page_scan_tab_contents) were 

performed with FactoMineR (http://factominer.free.fr), which provides several useful 

functions for Exploratory Multivariate Analysis; correlations were visualised with corrplot 

(https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html); heat maps 

were generated with use of heatmap.2 function from the gplot R library (https://cran.r-

project.org/web/packages/gplots/index.html).  
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Differential stability (DS) analysis was performed as described20, namely for each protein 

in the list, an average Pearson correlation coefficient was calculated from six pairwise 

Pearson coefficients for four brain samples.  

 

Hierarchical clustering and comparison of dendrograms was performed with dendextend, 

which allows building and comparison of multiple dendrograms Galili et al., 2015)44. The 

number of stable clusters was independently assessed with nbClust package51, which 

provides several methods and indices to determine the optimal number of clusters. We 

selected a set of seven clusters supported by three indices, which was the second best 

split. Although the best split (five indices) proposed a two-cluster split, that split was not 

obviously biologically meaningful or useful.  

 

Cluster robustness was estimated by a bootstrap approach using ClusterCons52. 

Specifically, clustering was performed 1,000 times removing 20% proteins each time and 

performing hierarchical clustering using hClust (ward.D), k-means, and pam methods. 

The membership of the obtained clusters was combined and for each of the individual 

brains as well as combinations AC, ACD and ABC and compared to assess the specific 

impact of potential confounders (brains B and D). 

 

We used ClusterProfiler for Gene Ontology (GO) and KEGG enrichment analysis 

(http://www.ncbi.nlm.nih.gov/pubmed/22455463) and ReactomePA for pathway over-

representation analysis 

(http://bioconductor.org/packages/release/bioc/html/ReactomePA.html) 

 

GO enrichment for all protein modules was performed using the ranked list for all proteins 

identified in a given protein module based on the mean abundances (n = 4), using Gorilla 

(http://cbl-gorilla.cs.technion.ac.il/). GO enrichment and KEGG pathway enrichment 

analysis was performed using DAVID (https://david-d.ncifcrf.gov/) and were searched 

against a curated list of all previously published mammalian synaptic proteins as the 

background list. Disease enrichment was performed using Toppcluster 
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(https://toppcluster.cchmc.org/) and KEGG pathway enrichment was then performed by 

searching ranked protein lists obtained using GSea v 2.1.0 

(http://software.broadinstitute.org/gsea/index.jsp) as previously described53.  

 

We assessed the non-changing proteins between the brain regions of all four individual 

cases by performing a Two One-Sided T-Test (TOST-test) in a similar manner as 

described21, using R. An Epsilon equivalency interval of 0.045, where differences within 

this range are considered substantively unimportant, was used and gave the highest 

number of hits without including any proteins being identified as significantly differentially 

expressed between the different brains regions.   

 

Circular hierarchical clustering of protein modules for the visualization of inter-region 

molecular interactions was performed using Circos (http://circos.ca)54. A Circos 

configuration file was created representing brain regions as ‘karyotypes’. All proteins were 

grouped into “modules” according to their abundance similarity. Proteins that have 

positive abundance in more than one region were shown as links between regions. All 

pre-processing of the relative abundance information and generation of appropriate 

Circos files was performed in R.  

 

PET analysis 

 

To assess the significance of correlations between protein abundances with regional PET 

metabolic parameters23 we performed 10,000 reshufflings of the modules; this resulted in 

random assignment of the module numbers (1 to 7) preserving the module size. Each 

randomized module list was processed to obtain the mean module abundances and 

correlated with PET data. The mean correlation matrix obtained by averaging each cell 

over 10,000 reshuffled samples is shown below for module2/GI and module3/GI pairs. 

Note that that the observed correlation values (vertical black line) lie far from the random 

distribution, indicating that the observed correlation with PET data is extremely unlikely 

to have occurred by chance (p < 10-4). 
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MRI and fMRI analysis 

 

MRI and fMRI data from the parcellated human cortex was taken from Glasser et al.,19 

via the Human Connectome DB. Corresponding Brodmann maps were generated using 

the Human Connectome Workbench visualization software developed by Marcus et al.55 

Each BA had many parcels and we therefore selected those that were most similar to one 

another by comparing the HCP myelin marker from the fMRI with the expression values 

of four myelin proteins (Mog, Plp1, Omg and Pmp2) in our proteomic data, which were 

highly correlated (R2 = 0.7-0.8, p-value < 0.0001) (Supplementary Figure 7A). From a 

total of 96 parcellated regions we identified 40 (Supplementary Figure 7B, Supplementary 

Table 14) that most significantly correlated with average myelin expression values from 

our study (R2 = 0.79, p-value = 0.001865; av1 shown in Supplementary Figure 7A). The 

HCP structural (myelin and cortical thickness) and behavioral scores for the selected 40 

parcels were averaged with respect to the corresponding BAs. For illustration, the 

following four Glasser parcels: L_LO1_ROI, L_V2_ROI, L_V3_ROI, BA1 and 

L_V3CD_ROI were found to match to BA19, so their values for respective functions were 

averaged and assigned to BA19. As a result, each BA combines values from 2-4 Glasser 

parcels. These averaged values were tested for Pearson correlation with protein 

abundances across the 12 BA regions. Correlation scores are shown in Supplementary 

Table 15 and Figure 4B. Given the high dimensionality (1,213* 19) of the task we 

performed an additional perturbation analysis to test which of those correlation values 

were likely to be significant. For that, we shuffled the abundance values for each of the 

1,213 proteins a total of 10,000 times to obtain 100,000 matrices of 1,213 proteins with 
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randomly assigned abundance values. Each of 10,000 matrices was correlated to the 

activity tasks matrix to get 10,000 correlation matrices, which were compared to the 

original correlation matrix. Following perturbation analysis (10,000x) and correction for 

multiple testing, 1,154 values remained significant (P <0.05) (Supplementary table 16). 

We also correlated the mean abundance values for Postsynaptic Proteome Modules 

(PPMs) with Glasser terms (Supplementary Figure 8) and similar to the analysis for PET, 

described above, we assessed the significance of correlations by performing 10,000 

reshufflings of the module assignment. Each randomized module list was processed to 

obtain the mean module abundances and correlated with fMRI data. The coefficients with 

absolute value above 0.53 were significant at the FDR level 5%. 

 

Task-fMRI nomenclature 

 

The nomenclature used for the task-fMRI (tfMRI) data is fully described in Glasser et al., 

2016, Supplementary Information File 3, Table 319. The tfMRI terms used for comparison 

with the proteomic data generated in this study are listed and fully described in 

Supplementary Table 13. Briefly, the tfMRI data measured the working memory (WM) of 

individuals tested to recognize images of body (WM_BODY), faces (WM_FACE), places 

(WM_PLACES) and tools (WM_TOOLS). The ability to match objects based on verbal 

category (MATCH) and ability to distinguish between two objects (RELATIONAL), as well 

as response to viewing emotional faces (EMOTION_FACES) versus neutral objects 

(EMOTION_SHAPES) was also measured. The various motor (MOTOR) function tasks 

measured by tfMRI and compared with our proteomics data, i.e., squeezing of left or right 

toes (MOTOR_LF_AVG or MOTOR_RF_AVG), tapping of left or right fingers 

(MOTOR_LH_ABG or MOTOR_RH_AVG), moving the tongue (MOTOR_T_AVG), and 

average of a LF, RF, LH, RH and T (MOTOR_AVG). 
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Calculation of regional synaptic proteome expression proportion. 

 

A key metric used for our genetic enrichment analyzes is the proportion of expression for 

a given protein in a particular brain region. This is a measure of regional specificity scaled 

so that a value of 1 implies that the protein is exclusive to a region and a value of 0 implies 

the protein is not expressed in that region. We denote this specificity metric as s",$ for 

protein g and region c. Values of s",$ were calculated for each HGNC symbol which could 

be mapped from the RefSeq peptide IDs (mapping between ID’s was done using 

biomaRt) 

(https://www.bioconductor.org/packages/devel/bioc/vignettes/biomaRt/inst/doc/biomaRt.

html) 

 

Let us denote that the proteome dataset contains measures from w cells associated with 

k brain regions. Each of the k regions is associated with a numerical index from the set 
{1, . . , k}. The region annotations for sample i are stored using a numerical index in L, such 

that l+,,-=5 indicates that the 1,005th sample is from the 5th region. We denote N$ as the 

number of samples from the region indexed by c. The expression proportion for protein g 

and region c (where r",0 is the expression of protein g in sample i) is given by:  

 s",$ = 	
∑ 4(",0,$)7
89: ;<⁄

	∑ >∑ 4(",0,?)7
89: ;@⁄ AB

@9:
  F(g, i, c) = G

r",0, l0 = c
0, l0 ≠ c  

 

LD Score Regression (LDSC) and partitioning heritability 

 

To partition heritability using LDSC (URLs)56, it is necessary to pass LDSC annotation 

files (one per chromosome) with a row per SNP and a column for each sub-annotation 

(1=a SNP is part of that sub-annotation). To map SNPs to genes, we used dbSNP 

annotations (URLs, build 147 and hg19/NCBI Build 37 coordinates). All SNPs not 

annotated in this file were given a value of 0 in all sub-annotations. Template annotation 

files obtained from the LDSC Github repository were used as the basis for all region and 

gene set annotations (“cell_type_group.1*”). Only SNPs present in the template files were 

used. If an annotation had no SNPs, then 50 random SNPs from the same chromosome 
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were selected as part of the annotation (if no SNPs are selected then the software fails 

to calculate heritability).  

 

Annotation files were created for each region for which we applied partitioned LDSC. 

Twelve sub-annotations were created for each region. The first represented all SNPs 

which map onto named regions that are not HGNC annotated genes. The second 

contained all SNPs which map onto genes whose protein products were not detected in 

the regional synaptic proteome. The other 10 sub-annotations are associated with genes 

with increasing levels of expression specificity for that region. To assign these, the deciles 

of s",$ were calculated over all values of g (separately for each value of c) to give ten 

equal length sets of genes. These are then mapped to SNPs as described above. To 

partition heritability amongst the gene sets (not the regions), a single set of annotation 

files was created with each of the gene sets used as a sub-annotation column.  

 

LDSC was then run using associated data files from phase 3 of the 1000 Genomes 

Project57. We computed LD scores for region annotations using a 1 cM window (--ld-wind-

cm 1). As recommended (LDSC Github Wiki, URLs), we restricted the analysis to using 

Hapmap3 SNPs, and, as in the original report56, these analyzes excluded the major 

histocompatibility region due to its unusual gene density (second highest in the human 

genome) and exceptionally high LD (highest in the genome). The LDSC 

“munge_sumstats.py” script was used to prepare the summary statistics files. The 

heritability is then partitioned to each sub-annotation. We used LD scores calculated for 

HapMap3 SNPs, excluding the MHC region, for the regression weights available from the 

Github page (files in the ‘weights_hm3_no_hla’ folder).  

 

For the LD score files used as independent variables in LD Score regression we used the 

full baseline model56 and the annotations described above. We used the ‘--overlap-annot’ 

argument and the minor allele frequency files (‘1000G_Phase3_frq’ folder via the ‘--frqfile-

chr’ argument, URLs).  
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Partitioned LDSC computes the proportion of heritability associated with each annotation 

column while taking into account all other annotations. Based on the proportion of total 

SNPs in an annotation, LDSC calculates an enrichment score and an associated 

enrichment P-value (one-tailed as we were only interested in annotations showing 

enrichments of heritability). A linear model was then fit to the enrichment z-scores for the 

12 gene categories for each region and GWAS, and the one-tailed probability calculated 

that the slope is positively associated with increasing regional specificity in the synaptic 

proteome. The slope of this model is then used to generate the plots in Figure 5.  

 

Comparison GWA results for other traits 

 

We included comparisons for a selected set of brain and non-brain diseases, disorders, 

and traits. The GWA results were from the following sources: autism spectrum disorders 

and major depression58; schizophrenia58 from the PGC; Migraine59; Anorexia 

(www.med.unc.edu/pgc/results-and-downloads); Alzheimer’s disease60; aggression61; 

educational attainment62; smoking63; type 2 diabetes mellitus64; height65; Crohn’s disease, 

inflammatory bowel disease and ulcerative colitis66; and low-density lipoprotein (LDL), 

high-density lipoprotein (HDL), total cholesterol, and triglyceride levels67. The summary 

statistics files can all be found through the PGC website (www.med.unc.edu/pgc) and 

LDHUB68. 
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Table 1 

 

 

 

Table 1. Brodmann areas in frontal, temporal, parietal and occipital lobes of the neocortex 

and summary of their functions and pathology. Color code as in Figure 1A.  
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Figure 1 

 

 
 

Figure 1. Postsynaptic proteome composition in 12 Brodmann Areas (BA).  (A) Twelve 

BAs distributed into frontal, temporal, parietal and occipital lobes (color coded as in Table 

1). (B) Hierarchical clustering by BA (x-axis) and protein abundance (y-axis) shows each 

BA has a unique signature of postsynaptic proteome composition. The 12 BAs were 

clustered into four Brodmann Area Groups (BAG 1-4) and the 1,213 proteins into seven 

Postsynaptic Proteome Modules (PPM 1-7). (C) Neuroanatomical map of BAGs color 

coded as in (B). 
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Figure 2  

 
 

Figure 2. Functional characterization of GABAA receptors from different cortical brain 

areas reconstituted in Xenopus oocytes. ai) Oocytes injected with synaptosomes 

prepared from brain area BA20 responded with large 1 mM GABA-evoked chloride 

currents and aii) oocytes injected with synaptosomes prepared from brain area BA39 

responded with smaller 1 mM GABA-evoked chloride currents. aiii) Summary of the 

average size of the GABA-evoked currents obtained with the two brain areas. The 1 mM 

GABA evoked ion currents had amplitudes of 82 ± 2 nA (n = 6) and 35 ± 5 nA (n = 6) for 

BA20 and BA39, respectively. These values were statistically different (p<0.001) b) 

Oocytes injected with synaptosomes prepared from brain areas BA4 and BA19 

responded to application of 1 mM GABA with ion currents that did not statistically differ in 

their amplitudes. bi) Example of 1 mM GABA-induced response of an oocyte expressing 

GABAA receptors from BA4. bii) Example of 1 mM GABA-induced response of an oocyte 

expressing GABAA receptors from BA19. biii) Summary of the average size of the GABA-

evoked currents obtained with these two brain areas. 1 mM GABA evoked ion currents 

with amplitudes of 24 ± 2 nA (n = 8) and 23 ± 2 nA) (n = 8), for BA4 and BA19, respectively. 
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Figure 3 
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Figure 3. Biochemical pathways and functions in Brodmann areas (BA) and Postsynaptic 

Proteome Modules (PPM). (A) KEGG pathway terms (y-axis) enrichment in PPMs (x-axis) 

with the number of proteins contributing to KEGG enrichment indicated in brackets. Size 

of the dots represents the number of genes associated with that pathway (GeneRatio) 

and the significance indicated by the p-adjust color bar. (B) Heatmap of the KEGG 

biochemical pathway and disease enrichment terms (y-axis) based on the ranked 

abundance of post-synaptic proteins in each BA (x-axis). Shown is the significance (p-

value) of enrichment, where red (near 0 values) corresponds to highly enriched terms (< 

0.01) and blue (default value set to 2) - to non-enriched. Three clusters of terms are 

bracketed: 1) many signal transduction mechanisms, 2) synaptic plasticity and other 

signaling processes, 3) neurodegenerative diseases and metabolic mechanisms. The 

dashed blue line represents mean value.  
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Figure 4 

 

Figure 4. PET imaging of metabolism and fMRI imaging of behavior. (A) Correlation 

between brain region-specific metabolism in human brain regions and protein modules. 

PET data of metabolic measures (CMRO2, cerebral metabolic rate for oxygen; CMRGlu, 
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cerebral metabolic rate for glucose; GI, glycolytic index; OGI, oxygen-glucose index)23 

correlated with PPM abundances (PPM1-7). Color scale bar and Pearson’s R2 shown on 

right-hand side proportional to dot size. (B) Hierarchical clustering between neocortical 

localization of behavioral responses (task-specific fMRI) and brain region-specific 

postsynaptic proteome abundance. Two major clusters of behaviors and postsynaptic 

proteomes indicated by dotted lines. Each row corresponds to one protein; color bar 

represents the transformed correlation values from Supplementary Table 13 on the 

spatial correlation between that protein abundance levels and activation.  
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Figure 5 

 

 

 

Figure 5. Genetic association of smoking to BA9 

The genetic association with smoking increases, the more specifically the proteins are 

localized to BA9 (A-C). (A) Distribution of BA9 specificity values for all synaptic proteins 

divided into deciles (represented by colored blocks). B) Genetic association with smoking 

(current vs former smokers) increases in decile groups that are more specific to BA9 

(color coded as in A). The two leftmost dots do not represent specificity decile groups, 

and instead represent respectively: all SNPs which map onto named regions which are 

not HGNC annotated genes; and all SNPs which map onto genes whose protein products 

were not detected in the regional synaptic proteome. The values shown are enrichment 

values and not enrichment z-scores. Error bars indicate the 95% confidence intervals. C) 
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Absence of a genetic association with height as the decile groups become more specific 

to BA9. D) Distribution of BA44 specificity values for all synaptic proteins divided into 

deciles (represented by colored blocks). E) Absence of a genetic association with 

smoking as the decile groups become more specific to BA44. F) Absence of a genetic 

association with height as the decile groups become more specific to BA44.     

 

 

 

 

 

 

 


