EPIDEMIOLOGY OF PATIENTS WITH WILMS TUMOUR REGISTERED IN SUCCESSIVE UK-TRIALS THROUGH 38 YEARS

Kayo Nakata^{1,2}, Suzanne Tugnait¹, Maria Pia Falcone¹, Nathalie Galea³, Federica Ceroni^{1,4}, Reem Al-Saadi¹, Mirza Chagtai¹, Richard Williams¹, William Mifsud¹, Jesper Brok^{1,5}, Charles Stiller⁶, Veronica Moroz⁷, Anna Kelsey⁸, Gordan Vujanic⁹ and Kathy Pritchard-Jones¹

¹Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK ²Department of Cancer Strategy, Cancer Control Center, Osaka International Cancer Center

³Paediatric and Adolescent Cancer Unit, Mater Dei hospital, Malta ⁴Paediatric Department, Watford General Hospital, UK

⁵Dept. of Paediatric Oncology and Haematology, Rigshospitalet, Copenhagen, Denmark.

⁶National Cancer Registration and Analysis Service, Public Health England, Oxford, UK

⁷Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK ⁸Royal Manchester Children's Hospital, Manchester, UK

⁹Department of Cellular Pathology, University Hospital of Wales, Heath Park, Cardiff, United Kingdom,

Background

Since 1979, 2,510 patients with Wilms tumour (WT) have been registered in five consecutive UK clinical trials (UKW1-3, SIOP-2001, and IMPORT). We reviewed all trial data with focus on congenital abnormalities (CA) and laterality.

Methods

We categorised patients with WT into five mutually exclusive groups; WT and aniridia with/without urogenital malformations (WA), urogenital/renal malformations including Denys-Drash syndrome (UM), hemi-hypertrophy including Beckwith-Wiedemann syndrome (HH), other congenital abnormalities (other-CA), and without CA (non-CA). We compared distribution of sex, age at diagnosis, stage, histology and 5-year overall survival (OS) of each group to those of non-CA. Bilateral vs unilateral tumours were compared for similar outcomes.

Results

Numbers and proportions in each group were: WA (n=24, 1%); UM (n=79, 3%); HH (n=65, 3%); other-CA (n=116, 5%); non-CA (n=2,226, 88%). Bilateral (n=181, 7%); unilateral(n=2,309, 92%).

Patients in WA, UM and other-CA groups had younger median age of diagnosis and higher proportion of bilateral disease compared to non-CA (20m, 21m and 30m vs 39m, and 33%, 19%, 17% vs 6%, respectively). HH patients showed no significant difference compared to non-CA group (41m and 11%). UM had male predominance (M/F ratio 1.72 vs 0.88 in non-CA).

There were no significant differences in 5-year OS for each group compared to non-CA [83% (WA), 88% (UM), 91% (HH), 87% (other-CA), vs 88% (non-CA)].

Compared to unilateral disease, the bilateral group had female excess (M/F ratio 0.62 vs 0.93), younger age at diagnosis (24m vs 39m) and poorer 5-year OS (82% vs 89%, p=0.003) that had improved to 90% for cases diagnosed since 2002.

Conclusions

About one in nine patients with WT had congenital abnormalities. These patients are diagnosed at earlier age, have more frequent bilateral tumours but 5-year survival rate seems very similar. Compared to unilateral, bilateral WT were younger and had poorer survival.