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Abstract

This work presents the development and testing of an efficient, high resolution algorithm developed for the solution

of equilibrium and non-equilibrium chromatographic problems as a means of simultaneously producing high fidelity

predictions with a minimal increase in computational cost. The method involves the coupling of a high-order WENO

scheme, adapted for use on non-uniform grids, with a piecewise adaptive grid (PAG) method to reduce runtime while

accurately resolving the sharp gradients observed in the processes under investigation. Application of the method to

a series of benchmark chromatographic test cases, within which an increasing number of components are included

over short and long spatial domains and containing shocks, shows that the method is able to accurately resolve the

discontinuities and that the use of the PAG method results in a reduction in the CPU runtime of upto 90 %, without

degradation of the solution, relative to an equivalent uniform grid.
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Introduction1

Chromatography is an effective process which plays a central role in a great many industrial separation and puri-2

fication systems. Not surprisingly therefore, the modelling and optimisation of these processes has received a great3

deal of attention in recent years (von Lieres and Andersson, 2010; Enmark et al., 2011; Close et al., 2014; Zhang4

et al., 2017; Hahn et al., 2014). A particular case is liquid batch chromatography, which is achieved by the injection5

of a pulse of solute into the chromatographic column where the differential adsorption results in the separation of the6

solute between the liquid and solid phases. The steep fronts that occur during such an operation can be a particular7

challenge to simulate due to the discontinuities that may form in the solution profile (Mazzotti, 2009).8

A number of models of increasing complexity have been proposed for modelling chromatography problems (Guio-9

chon et al., 2006), notably the general rate model (GRM) (Guiochon et al., 2006; Püttmann et al., 2016), lumped10

kinetic model (LKM) (Zhang et al., 2017; Pais et al., 1998) and equilibrium-dispersion model (EDM) (Enmark et al.,11

2011; Chan et al., 2008). All of these models effectively describe the convection dominated flow of the solute through12

the bed along with mass transfer with the stationary phase. These models are composed of complex systems of partial13
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differential-algebraic equations (PDAE), for which a particular challenge is numerically resolving the formation of14

discontinuities, or shock waves, in the solution profiles.15

A number of high resolution numerical schemes with the ability to resolve these shocks have been proposed and16

applied in the literature, ranging from Finite Volume flux-limiting based (Javeed et al., 2011b; Medi and Amanullah,17

2011), weighted essentially non-oscillatory (WENO) (von Lieres and Andersson, 2010) to Discontinuous Galerkin18

Finite Element (Javeed et al., 2011a) methods. However, an important aspect to consider when selecting an appropriate19

numerical method is that the simulation of a single process is often performed as part of either an estimation of20

parameters (Hahn et al., 2014; Püttmann et al., 2016) against experimental data or for the optimisation of a process21

design, and hence the solution of a large number of simulations is required. Computational efficiency of the scheme22

selected is therefore key. While they deliver greater accuracy, one disadvantage of the use of high resolution schemes23

described above is that they necessarily result in an increase in the CPU run times over simpler, though less accurate,24

methods. As additional computational weight is proportional to the size of the discretisation, one means of addressing25

this issue is to adopt an adaptive mesh refinement (AMR) strategy to reduce the mesh size used.26

The application of AMR for CFD is widespread (Pelanti and LeVeque, 2006; Gourma et al., 2013; Brown et al.,27

2014), with various methodologies applied ranging from the popular hierarchical box-structured techniques, first28

described by Berger and Oliger (1984), to moving grid methods (see for example Tang and Tang, 2003; Kelling et al.,29

2014; Coimbra et al., 2004; Sereno et al., 1991). While not requiring such complex data structures as the former, the30

moving grid technique has the drawback of requiring the solution of additional equations. The Piecewise Uniform31

Adaptive Grid (PAG) method (Fraga and Morris, 1996; Brown et al., 2015a), originally developed for the capture of32

soliton waves in dispersive wave equations, benefits from a relatively simple structure. It employs a single, piecewise33

uniform grid in which the spatial discretisation and time stepping algorithm are wholly decoupled and the opportunity34

to apply various solvers for the temporal evolution of the problem exists.35

The use of the PAG method requires the use of numerical schemes which may be applied to non-uniform meshes.36

Most Finite Volume schemes, however, assume uniformity in the discretisation. Additionally, while the Discontinuous37

Galerkin method is inherently geometrically flexible to deal with discontinuities, it is necessary either to apply a38

limiter (Javeed et al., 2011a), which has been shown to introduce errors in the steady state profile, or to include39

artificial diffusion. Recently however, a high order compact, central WENO reconstruction has been developed for40

non-uniform grids which provides the geometric flexibility required for use with PAG (Semplice et al., 2015).41

A disadvantage of using high resolution schemes, such as WENO, in problems containing steep gradients is42

that there is commonly a necessity to include additional artificial diffusion to ensure the convergence of the implicit43

Backwards Difference Formula (BDF) methods (see, for example, von Lieres and Andersson, 2010) typically applied44

for temporal resolution. Given that the explicit modelling of mass transfer in the GRM and LKM can result in stiff45

behaviour, an implicit temporal solver is required; however, the use of Implicit-Explicit (IMEX) Runge Kutta methods46

(Ascher et al., 1997), where the potentially stiff mass transfer and the convection-diffusion terms are treated essentially47

independently using implicit and explicit techniques respectively, offer the ability to resolve both the mass transfer48
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dynamics and sharp gradients without resorting to artificial diffusion.49

The purpose of this work is two-fold, firstly we present the application of the compact WENO reconstruction to50

an upwind scheme for chromatography problems and investigate the effectiveness of the PAG method in reducing the51

computational runtime associated with the use of this third order scheme. Secondly, the efficacy of the IMEX, relative52

to BDF, methods in solving relevant problems, in terms of accuracy and computational efficiency, is investigated.53

This work is arranged as follows. Section 2 presents the non-equilibrium and equilibrium chromatography models54

used and Section 3 presents briefly the PAG adaptive grid algorithm. Section 4 describes the numerical methods,55

Section 4.1 presents the spatial discretisation including the compact upwind WENO scheme applied herein, and56

Section 4.2 presents the implicit and implicit-explicit temporal solvers that are tested. Four numerical case studies are57

used to demonstrate the effectiveness and efficiency of the combined adaptive grid and numerical schemes considered.58

The Lumped Kinetic Model (LKM)59

In this work, the non-equilibrium LKM for chromatography is used. This accounts for the internal and external60

mass transport resistances with a mass transfer coefficient, k. The model assumes that the bed is isothermal and61

packed homogeneously, while the radial gradients are neglected. With these assumptions the mass balance equations62

for species n can be written as:63

∂cn
∂t

+ v
∂cn
∂x

= Da
∂2cn
∂x2

+ ka
qn − q∗n

ε
(1)

∂qn
∂t

= −ka
qn − q∗n
(1− ε) (2)

q∗n = f (cn) (3)

for n = 1, 2, . . . , Nc and where Nc is the number of species in the mixture, cn and qn are the liquid concentration and64

solid concentration of component n respectively, v is the interstitial velocity, ε is the porosity, Da is the dispersion65

coefficient while t and x are the time and axial coordinates respectively. q∗n is equilibrium relationship for the nth66

component which describes thermodynamics behaviour underlying the chromatographic separation process and f is67

the associated isotherm.68

An alternative model, the Equilibrium Dispersive Model (EDM) which is a limiting case of the LKM, is also69

considered in the study as it retains the spatial behaviour of the LKM without the additional relaxation behaviour70

that requires the application of a complex temporal solver; furthermore, this simpler model admits analytical solu-71

tions in simple cases. The EDM results from taking the limit kn → ∞, so that mass transfer is assumed to occur72

instantaneously. The resulting set of equations is:73
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∂cn
∂t

+
1− ε
ε

∂qn
∂t

+ v
∂cn
∂x

= Da
∂2cn
∂x2

(4)

qn = f (cn) , n = 1, 2, . . . , Nc (5)

In order to close the above model, appropriate initial and boundary conditions must be imposed for each problem.74

Where not described explicitly in Section 5 it is assumed that the domain is initially empty (i.e. cn = 0, n =75

1, 2, . . . , Nc); similarly, unless otherwise stated the problems involve the injection of a species concentration into the76

domain from the left hand boundary and a Neumann condition is imposed on the right.77

The piecewise uniform adaptive grid (PAG) method78

The PAG method (Fraga and Morris, 1992, 1996; Brown et al., 2015a) is based on identifying regions of the spatial79

domain that require refinement through the analysis of the geometry of the solution profile. The original application80

domain was the solution of soliton-generating (Zabusky and Kruskal, 1965) nonlinear dispersive wave equations.81

Geometric analysis was used to identify the locations of solitons, based on the assumption that the critical regions of82

the spatial domain were those where the solitons were present. No other criteria, such as a posteriori error estimation,83

were used in defining the adapted grid. Subsequently, the method was applied to the simulation of a fixed bed reactor84

system (Fraga, 1998) where the geometric analysis was applied to a numerical approximation of the first derivative of85

the solution profile. This enabled the method to refine the grid in locations of high gradients.86

An important property of the grid generated by this method is that the points are distributed in a piecewise-uniform87

fashion. This was motivated by the observation that many numerical methods, both for discretisation in the spatial88

dimension and for time-stepping, have been developed with an implicit assumption of uniformity in the grid spacing.89

When non-uniformity is present, these methods often suffer losses in accuracy, typically losing one order of accuracy,90

and become more susceptible to stability issues (Russell and Christiansen, 1978). It was found that if non-uniformity91

in the adapted grid were present in regions that were not critical, i.e. those where a coarser grid was appropriate, prob-92

lems with accuracy and stability were minimised. Hence, the PAG method was constructed to generate a nonuniform93

grid which consists of a set of contiguous non-overlapping uniform sub-meshes, without requiring the use of artificial94

internal boundary conditions as is necessary for hierarchical box-structured AMR methods.95

The basic approach of the PAG method can be summarised as follows: locate each soliton in the solution, place a96

fine mesh, with uniform spacing hgoal, so as to cover the support for each soliton and fill in the gaps between each fine97

mesh with more coarsely spaced points. For application to problems with sharp gradients, the method is applied using98

the profile of the absolute value of the numerical approximation to the gradient instead of the solution profile itself.99

Each sub-interval identified, be it the support for a soliton (or a region with a sharp gradient) or the gap between two100

such support regions, is discretised uniformly. The support regions are discretised finely; the other sub-intervals used101

coarser discretisations, with increasing coarseness away from the support regions. However, any numerical method102
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used will work on the whole mesh at once, considering it to be a nonuniform mesh overall.103

Once the new mesh has been developed, a question arises as to the means of transferring the solution from the104

old grid to the new one. Fraga and Morris (1996) suggested the use of quadratic or cubic interpolation over a simpler105

linear interpolation; they showed that the latter would increase the dissipation of the solution. However, only the106

linear interpolation has practically been found to be effective in the case of shocks (Fraga, 1998; Brown et al., 2014)107

due to oscillations introduced during the reconstruction phase when using higher order interpolations. Given that, in108

the current work, a non-oscillatory reconstruction is used during the solution process, the use of the same polynomial109

when transferring the solution from one mesh to another may provide a means for reducing the dissipation introduced110

during this step. A comparison of the predictions obtained using the linear (PAG-linear) and WENO (PAG-WENO)111

based reconstructions will be included in the analysis presented in Section 5.112

Numerical Method113

To apply a numerical method to the system of equations (1-3), the governing equations are first written in the114

general form:115

∂u

∂t
+
∂F (u)

∂x
= D

∂2u

∂x2
+

(u− u∗)

ε (u)
(6)

The numerical solution of the above equation utilises the Method of Lines (MoL), which requires appropriate temporal116

and spatial discretisations; a description of these follow.117

Spatial discretisation118

As described above, it is necessary to account for the non-uniformity explicitly in the selection of suitable spatial119

schemes to accommodate the non-uniform size of the computational cells that form the mesh when the PAG is applied.120

An appropriate scheme, based on a WENO reconstruction using a compact nonuniform stencil, was originally sug-121

gested by Levy et al. (2000) and was recently investigated by Semplice et al. (2015) in the context of central methods122

(Semplice et al., 2015); however in this work, this WENO reconstruction is utilised in an upwind method. To this end123

we first of assume that u (x) is defined in Ω = [a, b], of which {Ωj : j = 1, . . . , N} is a partition and we take Uj to124

be average of u on Ωj , i.e.:125

Uj =
1

hj

∫

Ωj

u (x) dx, j = 1, . . . , N. (7)

then integrating equation (6) over a cell, Ωj , with hj = |Ωj | gives:126

∂Uj
∂t

= − 1

hj

(
F (uj+ 1

2
)− F (uj− 1

2
)
)

+D
1

hj

((
∂u

∂x

)

j+ 1
2

−
(
∂u

∂x

)

j− 1
2

)
+

1

hj

∫

Ωj

(u− u∗)

ε (u)
dx (8)

Again, for Ωj , we take the third order polynomial which satisfies conservation in the cell and its two neighbours127

Ωj+i, where i = −1, 1; this polynomial is described as the optimal polynomial Popt(x):128
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1

hj+i

∫

Ωj+i

Popt(x)dx = Uj+i, i = −1, 0, 1 (9)

This polynomial is completely determined by these conditions, and is given by:129

Popt(x) = Uj + px(x− xj) +
1

2
pxx

(
(x− xj)2 − hj

12

)
, (10)

where130

px =
(hj + 2hj−1)U [j − 1; j] + (hj + 2hj+1)U [j; j + 1]

2 (hj−1 + hj + hj+1)
(11)

and131

pxx =
3 (2hj + hj−1 + hj + 1)U [j − 1; j; j + 1]

2 (hj−1 + hj + hj+1)
(12)

where the divided difference formulae are

U [j − 1; j] =
Uj − Uj−1

xj − xj−1
(13)

U [j − 1; j; j + 1] =
U [j − 1; j]− U [j; j + 1]

xj+1 − xj−1
(14)

In order to define a non-oscillatory polynomial in the case of a non-smooth u we define:132

Pγ (x) = Uj + U [j − 2 + γ; j − 1 + γ] (x− xj) , γ = 1, 2 (15)

along with133

Popt = α0P0 +

2∑

γ=1

αγPγ , (16)

and α0 = 1/2 and αγ = 1/4 for γ = 1, 2. Finally, these coefficients are weighted using smoothness functions (β) so134

that the final polynomial reconstruction is:135

P = α̃0P0 +
2∑

γ=1

α̃γPγ (17)

where136

α̃ =
ωγ

2∑
δ=0

ωδ

, ωγ =
αγ

(ε+ βγ)
2 , γ = 0, 1, 2. (18)
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and the smoothness functions are given by:

β0 =
13

12
h4
jp

2
xx + h2

jp
2
x (19)

β1 = U [j − 1; j]2h2
j (20)

β2 = U [j; j + 1]2h2
j . (21)

Temporal discretisation137

Relaxation equations of the form (6) may contain disparate time scales representing various interacting processes.138

This results in a stiffness of the equations (Butcher, 2008) which typically means that implicit methods, such as139

the Backwards Difference Formulae (BDF) methods (for example as implemented in IDA Hindmarsh et al., 2005),140

are used to solve them. The disadvantage of this is that the spatial resolution of the movement of sharp fronts can141

prove difficult and requires the addition of additional numerical diffusion (von Lieres and Andersson, 2010). Instead,142

a fourth order IMEX Runge-Kutta is applied here. IMEX methods consist of applying, sequentially, an implicit143

and explicit discretisation; this allows the separate solution of stiff and non-stiff parts of the equations without the144

introduction of numerical diffusion in the spatial discretisation or a prohibitively small time step to account for the145

relaxation phenomena within an explicit method.146

When applied to the system 6, they take the form:147

u(i) = un − δt
i−1∑

j=1

ãij

(
∂F (u(j))

∂x
−D∂

2u(j)

∂x2

)
+ δt

ν∑

j=1

aijR(u(j)) (22)

un+1 = un − δt
ν∑

i=1

w̃i

(
∂F (u(i))

∂x
−D∂

2u(i)

∂x2

)
+ δt

ν∑

i=1

wiR(u(i)) (23)

where R represents the final term of equation (6). The matrices Ã = (ãij), ãij = 0 for j ≥ i and A = (aij) are148

ν × ν matrices such that the resulting scheme is implicit in R and is explicit for the spatial derivative operators. In149

this work, the 4th order version of the above is applied using the implementation in the ARKODE library (Hindmarsh150

et al., 2005); the appropriate constants, i.e. A, Ã and ν, may be found in the given the reference.151

Results and discussion152

Four test problems of increasing difficulty are solved, using the models described in Section 2: firstly, a single153

component elution with a linear isotherm; secondly, a single component elution with a nonlinear isotherm; thirdly,154

a two component elution with a nonlinear isotherm and finally a three component displacement chromatographic155

problem on a large domain. The first of these problems is simulated using the simpler EDM only while, for the second,156

the EDM and LKM are used in turn; the last two test problems utilise the LKM. In each case, the model is resolved157

using the numerical method detailed in the previous section. The results obtained both with and without the application158
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of the PAG method are compared. Additionally, as discussed previously, implicit temporal solvers are typically applied159

to solve such these problems in the literature. For comparison, solutions are computed both on uniform grids and with160

PAG using the IDA differential-algebraic equation solver within the Sundials library (Hindmarsh et al., 2005); the161

uniform grid using the implicit solver is used as a benchmark for the improvements in efficiency made. All simulations162

are performed using a Intel Xeon CPU E5-2640 v3 (2.60 GHz) 8 Gb memory is used.163

Where the PAG method is applied, the finest resolution of the grid is set equivalent to the uniform grid used;164

furthermore, an initial uniform grid is used for the first 100 time steps after which an adapted grid is constructed after165

every 100 timesteps; this initial uniform grid is used as, for the majority of the cases investigated, the transients are166

initiated through their boundary conditions and this initial period allows the dynamic profiles to enter the domain. For167

all simulations, the time-step of ∆t = 5× 10−4 min was used.168

Test 1169

This test is taken from Javeed et al. (2011b) and is used to analyse the performance of the spatial discretisation170

presented in the previous section in the context of an convection dominated problem. The test assumes a single-171

component with a linear isotherm, i.e. q = ac. The problem is simulated for 0.6 min and 200 computational cells are172

used for the uniform grid.173

The problem is solved for a column of length 1 cm, that is on the interval x ∈ [0, 1] cm, with a = 1, v = 1 cm174

min−1 and ε = 0.5, with the following initial conditions assumed:175

c (0, x) =





sin (5π (z − 0.2)) if 0.2 ≤ x ≤ 0.4,

0 else
(24)

and the left hand boundary condition is set to c (t, 0) = 0. The analytical solution for this problem was presented by176

Javeed et al. (2011b) as177

c (t, x) = −1

2
real (iep [erf (α) erf (β)]) (25)

where178

p = 0.5Dat
( π

0.2

)2

+ i
π

0.2
(0.2− x− 0.5t) , (26)

α =
−0.2 + x− 0.5t

2
√

0.5Dat
− iπ

√
0.5Dat

0.2
, (27)

β =
−0.4 + x− 0.5t

2
√

0.5Dat
− iπ

√
0.5Dat

0.2
. (28)

Figure 1 shows a comparison of the analytical solution with the predictions obtained using the uniform grid and179

the PAG-linear after 0.6 min; also shown, for reference, is the result obtained using a first order scheme. As can be180
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observed, both of the simulated results are in excellent agreement, with the PAG-linear and uniform grid predictions181

superimposed; however in both cases there is an error in the prediction of the peak of the analytical solution. This182

error is seen to be similar to that shown for the schemes presented in the original reference, and is significantly greater183

in the results using the first order scheme so is not a result of the adaptive method.184

Figure 2 (a) and (b) and present comparisons of predictions obtained with the Implicit and IMEX temporal solvers185

and with the PAG linear and PAG WENO reconstruction techniques and respectively. As can be seen in Figure 2 (a)186

difference in the predictions obtained with the two temporal solver is negligible. There is, however, a slight difference187

in the results from the two reconstructions around the peak of the profile, in order to see this clearly Figure 2 (b) shows188

only a small interval around this region.189

Table 3 presents the CPU runtimes for each of the simulations as well as the runtime reductions relative to the190

benchmark of a uniform grid with the use of the Implicit solver. As can be seen, the PAG-linear results in a 86.4 %191

CPU runtime reduction over the benchmark; while, as can be seen in Table 3, PAG-WENO enables a further 10%192

reduction in the runtime Figure 2 (b) shows there is an additional slight error, resulting in a slight shifting of the peak193

of the profile. Figure 2 (a) shows that use of the Implicit solver does not result in a change in the predictions, however194

a significant increase in runtime is observed in Table 3.195

Test 2196

This case is again taken from Javeed et al. (2011b), and represents the injection of a single component at a rate of197

c = 1 g L−1 into a column of length 1 cm, which is initially equilibriated with the solvent c = 0, for 0.2 min. The198

following non-linear isotherm is considered:199

q(c) =
c

1 + c
. (29)

The values for v and ε are the same as those for Test 1 and the same number of computational cells is used, while200

in this case the solution is computed for 3 min. In order to assess the ability of the compact WENO scheme coupled201

with PAG method to simulate problems where both the EDM and LKM are used, this problem will be solved using202

both of these models in turn. Where the LKM is applied k is assumed to take the value 103. The CPU runtimes for203

simulations using both models are summarised in Table 4.204

EDM205

Figure 3 shows a comparison of the predicted concentration close to the end of the bed (x = 0.95) obtained using206

uniform, PAG-linear, and PAG-WENO grids. Also shown, in the absence of an analytical solution to the problem, is a207

reference solution which obtained using a uniform grid of 2000 computational cells. From the figure it can clearly be208

observed that use of a relatively small mesh size results in an under-prediction of the concentration peak, nevertheless209

the use of the PAG method does not accentuate this problem and, as shown in Table 4, results in a 20 - 30 % reduction210

in runtime though, as seen in Test 1, the use of the PAG-WENO results in a delay in the time at which the profile211

reaches the point at which the histories are presented. Furthermore, as with Test 1, the two temporal solvers produced212
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identical results.213

LKM214

As in the case of the EDM above, Figure 4 (a) shows the comparisons of the predicted concentration histories at215

x = 0.95 using the uniform grid as well as PAG-linear and PAG-WENO reconstructions while Figure 4 (b) presents216

the same comparison for the IMEX and implicit solvers.217

Notably, the maximum of the peak is lower with the use of the LKM than is seen with the EDM, which is due to the218

delay in adsorption incorporated into the model; also the predictions with smaller grids are in much better agreement219

with the reference solution.220

As with the above cases, 4 (a) shows that the WENO reconstruction results in a slight delay in the propagation221

of the front; furthermore, the implicit solver also slightly increases the diffusion of the peak of the profile. As can222

be seen in Table 4 the runtimes associated with all of the LKM simulations are significantly lower than those for the223

EDM, which is as a result of the removal of the nested solution of the algebraic equation (5), with the PAG-linear224

method resulting in a further 30 % decrease.225

Test 3226

As both Tests 1 and 2 were concerned with single components for Test 3 we select the problem presented by227

Shipilova et al. (2008) where the LKM is applied to a two component system. In this case a competitive Langmuir228

isotherm is used, that is for component n:229

qn(c) =
ancn

1 +
∑
j bjcj

(30)

A rectangular pulse of a liquid mixture containing the two components is injected into the column for the first 1.2230

min of the problem; after this period the concentration of the two components in the incoming stream drops to zero.231

Table 1 presents the various parameters used, as with the previous tests, 200 computational cells were used for the232

uniform grid and 4 min of the problem were simulated. Table 5 shows the CPU runtimes recorded in each case.233

Figures 5 (a) and (b) show respectively a comparison of the predictions produced using a uniform grid and the234

PAG-linear and PAG-WENO, and the comparison of the results obtained by applying the IMEX and Implicit solvers235

respectively. As can be seen in 5 (a), as in the above cases, the predictions obtained using the PAG method are in236

reasonable agreement with those from the uniform grid. There are two exceptions worth noting: firstly, where PAG-237

linear is used, the end of the rectangular pulse at approximately 2 min is diffused, with the drop in concentration238

beginning 0.4 min before that in observed in the uniform solution, the same effect using the WENO reconstruction is239

almost negligible; secondly, that the PAG-WENO shows a slight delay in the arrival of the sharp front at ca. 0.7 min.240

Likewise, Figure 5 (b) shows that implicit PAG-linear solution provides a far better resolution of the solution around241

2 min, but diffuses the front at 0.7 min to a greater extent.242

Figure 6 shows the same results of the PAG-linear and PAG-WENO obtained using the IMEX solver, this time243

obtained using an initial grid of 1000 cells. As can be seen, even with the greater number of cells the PAG-linear244
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diffuses the wave at 2 min, while in contrast the PAG-WENO accurately resolves all parts of the solution. In this case245

the simulation was only performed using the IMEX solver.246

From Table 5, firstly, it can been seen that the implicit solver required runtimes at least 10 times longer than the247

equivalent for the IMEX solver. For the finer grid simulations, where comparison is given against a uniform grid with248

the IMEX solver only, less of a runtime reduction was observed as compared to the coarser grid.249

Test 4250

The previous tests have investigated problems on a small interval, for Test 4 we analyse the three component251

displacement problem presented by Javeed et al. (2011a) which uses a much larger column length. This problem252

consists of the injection of a rectangular pulse of the first two components (c1 and c2) for 0.2 s, without the presence253

of the third component, followed by the injection of only the third displacer component. The key parameters and feed254

compositions are presented in Table 2. In this test, due to the larger domain, 1000 computational cells were used for255

the uniform grid while the simulation time was 18 min.256

Figure 7 presents profiles of the the solution obtained using a uniform grid with the IMEX solver at t = 1, 4, 8,257

12 and 16 min. As can be seen the pulses, of components 1 and 2 propagate through the domain and are resolved258

into rectangular pulses of pure components by the second half of the domain. Figures 8 (a) and (b) show comparisons259

of the uniform grid predictions with the PAG-linear grid at the same times for the components 1 and 2 respectively,260

as with the previous tests the error associated with the adaptive grid is negligible but results in a 66 % reduction261

in runtime (Table 6). Also shown are the PAG-linear predictions obtained using the Implicit solver, the results are262

similar although, as can be seen in Figure 8c as before the implicit solver results in an increased diffusion around the263

discontinuities; as before the runtime required for the implicit is over twice that for the IMEX.264

Conclusions265

The simulation of chromatographic separation problems requires the solution of a system of nonlinear partial266

differential-algebraic equations. Regardless of the model applied, a particular complexity of the equations is that,267

under certain conditions, discontinuous profiles or shocks can form; the resolution of such profiles is challenging and268

requires the selection of an appropriate accurate numerical scheme, while being careful to maintain computational269

efficiency.270

This paper presented the application of a high order numerical method which is coupled with the Piecewise Adapt-271

ive Grid method (PAG) in order to reduce the additional computational overhead associated with its use. Importantly,272

due to the nonuniform structure of grid used as part of the PAG method, the particular numerical scheme selected, a273

compact WENO method, was one of the few applicable to such grids. To further increase the efficiency while im-274

proving the accuracy of predictions, the impact of the use of explicit and Implicit-Explicit (IMEX) Runge-Kutta as275

compared to the commonly applied fully implicit BDF method was investigated.276

Application of the scheme to the simpler Equilibrium Dispersive Model (EDM) for single component, smooth and277

discontinuous problems showed that an efficiency penalty, in terms of the CPU runtime, is observed relative to the278
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simpler first order methods; however the accuracy of solutions, for relative coarse meshes is far greater, as is expected.279

The PAG method goes some way to mitigate the increase in decrease in efficiency even for the simplest problems, by280

reducing the runtime by up to ca. 35 %, without an observable deterioration in the solution. It was found that the281

explicit temporal solver was up to 6 times more efficient that the implicit solver.282

Extension to problems where the Lumped Kinetic Model was applied, and hence the use of an IMEX rather than a283

explicit Runge-Kutta method, showed an increase in efficiency over the EDM. As the problems with a greater number284

of components were investigated a larger reduction in the CPU runtime was observed with the application of the PAG285

method; this is due to the greater computational weight per cell in the grid used, in a similar manner to the results286

observed in Brown et al. (2015b).287

Finally, the reconstruction of the solution required following the construction of the new grid, part of the PAG288

algorithm (Brown et al., 2015b), using the underlying WENO reconstruction rather than the linear interpolation used289

in our previous work resulted in an increase in computational efficiency. Overall, the use of PAG for industrially290

relevant problems requiring an implicit solver resulted in upto 90% fall in runtime.291
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Table 1: Parameters used in Test 3.
Parameters Value
Column length (cm) 1
Porosity 0.4
Velocity (cm min−1) 1
Dispersion Coefficient (cm2 min−1) 10−4

Lumped mass transfer coefficient (min−1) 103

Henry coefficients a1 = 0.5, a2 = 1
Constants used in Eq (3) b1 = 0.05, b2 = 0.1
Feed concentrations (gl−1) c1 = 10, c2 = 10

Table 2: Parameters used in Test 4.
Parameters Value
Column length (cm) 100
Porosity 0.5
Dispersion Coefficient (cm2 min−1) 10−4

Adsorption rate (min−1) 103

Henry coefficients a1 = 4, a2 = 5, a3 = 6
Constants used in Eq (3) b1 = 4, b2 = 5, b3 = 1
Feed concentrations (gl−1) (t < 0.1) c1 = 1, c2 = 1, c3 = 0
Feed concentrations (gl−1) (t ≥ 0.1) c1 = 0, c2 = 0, c3 = 1
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Table 3: Summary of CPU runtimes in seconds and % reduction in runtimes relative to the Implicit uniform grid solution for Test 1.
Temporal Solver Implicit IMEX

CPU runtime % reduction CPU runtime % reduction
Uniform Grid 291.6 - 53.0 81.8
PAG-linear 256.3 12.1 39.6 86.4
PAG-WENO 276.8 5.1 34.0 88.3

Table 4: Summary of CPU runtimes in seconds and % reduction in runtimes relative to the Implicit uniform grid solution for Test 2.
Temporal Solver Implicit IMEX

CPU runtime % reduction CPU runtime % reduction
EDM

Uniform Grid 941.9 - 167.7 82.2
PAG-linear 892.4 5.3 133.8 85.8
PAG-WENO 884.7 6.1 120.5 87.2

LKM
Uniform Grid 289.2 - 12.1 95.8
PAG-linear 243.6 15.8 8.4 97.1
PAG-WENO - - 11.9 95.9

Table 5: Summary of CPU runtimes in seconds and % reduction in runtimes relative to the Implicit and IMEX uniform grid solutions for 200 and
1000 cells respectively for Test 3.

Temporal Solver Implicit IMEX
CPU runtime % reduction CPU runtime % reduction

200 cells
Uniform Grid 941.9 - 97.5 89.6
PAG-linear 884.7 6.1 58.3 93.8
PAG-WENO - - 50.4 94.6

1000 cells
Uniform Grid - - 320.2 -
PAG-linear - - 242.9 24.1
PAG-WENO - - 242.1 24.4

Table 6: Summary of CPU runtimes in seconds and % reduction in runtimes relative to the Implicit uniform grid solution for Test 4
Temporal Solver Implicit IMEX

CPU runtime % reduction CPU runtime % reduction
Uniform Grid 424.5 - 165.4 61.0
PAG-linear 205.6 51.6 70.5 83.4
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Figure 1: Comparison of the analytical solution with the numerical solutions for c for Test 1 computed using a uniform grid of 200 cells and an
equivalent piecewise adaptive grid with a linear reconstruction (PAG-linear) at t = 0.6 min.
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Figure 2: Comparison of the numerical solutions for c computed for Test 1 using (b) PAG with linear and WENO interpolations applied for the
reconstruction (a) Implicit-explicit (IMEX) and implicit temporal solvers respectively.
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Figure 3: Predicted variation of c with time at x = 0.95 cm computed using the Equilibrium Dispersive Model (EDM) for Test 2 with a uniform
grid, as well as PAG-linear and PAG-WENO reconstructions also shown is a reference solution obtained using 2000 uniform cells.
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Figure 4: Predicted variation of c with time at x = 0.95 cm computed using the LKM with k = 103 for Test 2 using (a) a uniform grid, as well as
PAG-linear and PAG-WENO reconstructions (b) IMEX and implicit solvers respectively; also shown is a reference solution obtained using 2000
uniform cells.
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Figure 5: Predicted variation of c1 and c2 with time at x = 0.5 cm for Test 3 with (a) a uniform grid, as well as PAG-linear and PAG-WENO
reconstructions (b) IMEX and implicit solvers respectively; also shown is a reference solution obtained using 2000 uniform cells.
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Figure 6: Predicted variation of c1 and c2 with time for Test 3 at x = 0.5 cm using a uniform grid, as well as PAG-linear and PAG-WENO
reconstructions with an equivalent uniform grid of 1000 computational cells.
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Figure 7: Variation of c1, c2 and c3 along the length of the bed at 1, 4, 8, 12 and 16 min for Test 4 predicted using a uniform grid of 1000
computational cells.
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Figure 8: Variation of c1 (a) and c2 (b) along the length of the bed at 1, 4, 8, 12 and 16 min predicted using the IMEX and implicit temporal solvers
using the PAG-linear method, (c) shows the profile of c2 between 0 and 15 cm at 1 min.
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