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Fig. 9: Qualitative results from ex-vivo dataset 2 showing frames 100, 200, 300, 400, 500, 600, 700 and 800. The top row
shows the original frames, the middle row shows the output from the raw, uncorrected kinematics and the bottom row shows
the MR LK tracker. In frame 200, the instrument head rotates in and out of view and the MR LK method correctly tracks this.

Fig. 10: Visual comparison for the dataset of [9]. This dataset
shows a challenging in-vivo sequence with 2 da Vinci LND
instruments. The top row shows the raw video frames 25, 75,
125 and 175, the corresponding frames from the method of
[9] are in row 2 and the frames from our method are in row
3. Although the data is challenging, both methods show good
alignment. Typically our method has better alignment but the
right instrument fails to track the clasper opening in frame
175, which is correctly tracked by [9].

was followed by a period when the instruments crossed over
one another. This caused large drift in the left instrument which
was deemed unrecoverable and a manual initialization was
required.

IV. CONCLUSION AND DISCUSSION

In this work, we present a novel system of tracking the
articulated DOFs of surgical robotic instruments in 3D using a
fully vision-based region and point based solution. Our system
trivially extends to different instrument models and color
schemes which greatly increases the range of robotic systems it
can be tested on. Our extensive comparative evaluation draws
together data from a wide varies of sources and demonstrates
the superior performance of our method against the only other

Dataset T error (mm) - Ours R error (rads) - Ours T error (mm) - [19] R error (rads) - [19]

Dataset 1 5.07 � 2.08 0.43 � 0.26 1.50 � 1.12 0.12 � 0.07

Dataset 2 3.85 � 3.64 0.58 � 0.31 3.14 � 1.96 0.12 � 0.08

TABLE III: The numerical accuracy of our method compared
with [19]. The rotation and translation error is computed
for each frame from the manually labelled ground truth part
locations. Although our results are not as accurate as the
method of [19], we are still able to obtain good tracking over
the majority of the sequence and critically are not relying on
kinematics to perform our estimation.

Fig. 11: Visual comparison for the dataset 1 and 2 of [19]
where the first 4 images of the top row shows the results of
[19] in frames 200, 400, 750 and 950 of dataset 1 and the
last 4 images of the top row show frames 350, 450, 900 and
1200 of dataset 2. The bottom row shows our results where
we overlay a skeleton of our pose estimation.

published 3D articulated instrument tracking method that does
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not make use of robot joint encoders demonstrating the advan-
tage of using gradient based searches for pose estimation. We
also obtain competitive results when compared with state-of-
the-art methods which unlike our method rely heavily on the
data from the robot joint encoders which is a well documented
drawback [20]. The method however shows errors in the roll
rotation DOF due to visual symmetry as this this DOF is
explorer which prevents the region based tracker from locking
onto reliable shape information. In principal this is best solved
by incorporating more reliable detection information on the
instrument surface, for instance making use of recent robust
feature detection methods [13]. Additionally depth estimation
is a challenge, particularly due to the small baseline of robotic
surgical cameras. The main limitation of our method is its
requirement for a manual initialization, however this can
potentially be provided with user interaction, for instance using
the GUI tool we have developed, and additionally we noticed
in our experiments that the model suffers from drift, which is a
common problem in model based tracking which incorporate
temporal information. Future work will look mainly at the
integration of prior information to restrain the rigid pose space
from a 6 DOF transform to a restricted space and in principal
these priors can be learned from kinematic data offline.
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