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Abstract. In this paper, we study the residual-based a posteriori error estimation for
the nonconforming linear finite element approximation to the interface problem. We
introduce a new and direct approach, without using the Helmholtz decomposition, to
analyze the reliability of the estimator. It is proved that a slightly modified estimator
is reliable with the constant independent of the jump of the interfaces, without the
assumption that the diffusion coefficient is quasi-monotone. Numerical results for a
test problem with intersecting interfaces are also presented.

1 Introduction.

During the past decade, the construction, analysis, and implementation of robust a pos-
teriori error estimators for various finite element approximations to partial differential
equations with parameters have been one of the focuses of research in the field of the a
posteriori error estimation. For the elliptic interface problem, various robust estimators
have been constructed, analyzed, and implemented (see, e.g., [4, 23, 22, 8, 9, 11, 26, 12, 13]
for conforming elements, [1, 20, 10] for nonconforming elements, [10] for mixed elements,
and [7] for discontinuous elements). The robustness for residual based estimator in the
reliability bound is established theoretically under the assumption of the quasi-monotone
distribution of the diffusion coefficients, see [4] for more details. However, numerical re-
sults by many researchers including ours strongly suggest that those estimators are robust
even when the diffusion coefficients are not quasi-monotone. In this paper, we provide
a theoretical evidence for the nonconforming linear element without the quasi-monotone
assumption.

One of the key steps in obtaining the robust reliability bound of classical residual
based estimator is to construct a modified Clément-type interpolation operator such that
it satisfies specific approximation and stability properties in the energy norm (see [4]
for details). For the conforming element, the degrees of freedom are the nodal values
at vertices of triangles. The nodal value of the modified Clément-type interpolation is
defined by the average value of the function over connected elements whose corresponding
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diffusion coefficients are the greatest. Under the quasi-monotone assumption, Bernardi
and Verfürth [4] are able to establish the required properties of the interpolation operator
to guarantee the robust reliability bound. A key advantage for the nonconforming linear
element is that its degrees of freedom are nodal values at the middle points of edges of
triangles and that each middle point is shared by at most two triangles. Hence, we are
able to construct a modified Clément-type interpolation satisfying the desired properties
(see Section 4).

The a posteriori error estimation for the nonconforming elements has been studied by
many researchers. Due to the lack of the error equation, Dari, Duran, Padra, and Vampa
[15] established the reliability bound of the residual-based error estimator for the Poisson
equation through the Helmholtz decomposition of the true error. Their analysis is widely
used by other researchers (see, e.g., [14, 5, 1, 6]), and the Helmholtz decomposition becomes
a necessary tool for obtaining the reliability bound for the nonconforming elements. This
approach has also been applied to the mixed finite element method [21] and discontinuous
Garlerkin finite element method [3, 2, 7]. It is obvious that application of their analysis
to the interface problem will lead to the same distribution assumption as the conforming
elements in [4].

Ainsworth [1] constructed an equilibrated estimator without using the Clément type
interpolation but the error bounds depend on the jump of diffusion constants. Despite
the main trend of using Helmholtz decomposition in the nonconforming finite element
analysis, there are several other interesting papers that approached differently. Hoppe and
Wohlmuth [18] constructed two a posteriori error estimators by using the hierarchical basis
under the saturation assumption. Schieweck [24] constructed a two-sided bound of the
energy error using the analysis of conforming case with some simple additional arguments.
Nevertheless, conforming Clément type interpolation was applied in this paper hence again
impose the assumption of quasi-monotonicity.

In this paper, we present a new and direct analysis, which does not involve the
Helmholtz decomposition, for estimating the reliability bound with the aim of remov-
ing the quasi-monotone assumption. To do so, our analysis makes use of (a) our newly
developed the error equation for the nonconforming finite element approximation in [7] and
(b) the fundamental orthogonality of the nonconforming elements. Combining with our
observation on the modified Clément-type interpolation for the nonconforming elements,
we are able to bound both the element residuals and the numerical flux jumps uniformly
without the quasi-monotonicity. This is also done for a slightly modified numerical solution
jumps of the a posteriori error estimator.

The outline of the paper is as follows. The interface problem and its nonconforming
finite element approximation are introduced in Section 2 as well as the L2 representation
of the true error in the (broken) energy norm. The indicator and the estimators are
presented in Section 3. The modified Clément-type interpolation operator is defined and
its approximation properties are proved in Section 4. Robust local efficiency and global
reliability bounds are established in Sections 5 and 6, respectively. Finally, we provide
some numerical results in Section 7.
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2 Nonconforming linear element approximation to interface
problem.

2.1 Interface problem.

For simplicity of the presentation, we consider only two dimensions. Extension of the
results in this paper to three dimensions is straightforward. Let Ω be a bounded, open,
connected subset of <2 with a Lipschitz continuous boundary ∂Ω. Denote by n = (n1, n2)t

the outward unit vector normal to the boundary. We partition the boundary of the domain
Ω into two open subsets ΓD and ΓN such that ∂Ω = Γ̄D ∪ Γ̄N and that ΓD ∩ ΓN = ∅. For
simplicity, we assume that ΓD is not empty (i.e., mes (ΓD) 6= 0). Consider the following
elliptic interface problem

−∇ · (α(x)∇u) = f in Ω (2.1)

with boundary conditions

u = gD on ΓD and n · (α∇u) = gN on ΓN , (2.2)

where ∇· and ∇ are the divergence and gradient operators, respectively; f , gD, and gN
are given scalar-valued functions; and the diffusion coefficient α > 0 is piecewise constant

with respect to a partition of the domain Ω̄ =
n⋃
i=1

Ω̄i. Here the subdomain Ωi is open and

polygonal. The jump of the α across interfaces (subdomain boundaries) are possibly very
large. For simplicity, assume that f , gD, and gN are piecewise linear functions.

We use the standard notations and definitions for the Sobolev spaces Hs(Ω) and
Hs(∂Ω) for s ≥ 0. The standard associated inner products are denoted by (·, ·)s,Ω and
(·, ·)s,∂Ω, and their respective norms are denoted by ‖ · ‖s,Ω and ‖ · ‖s,∂Ω. (We omit the
subscript Ω from the inner product and norm designation when there is no risk of confu-
sion.) For s = 0, Hs(Ω) coincides with L2(Ω). In this case, the inner product and norm
will be denoted by ‖ · ‖ and (·, ·), respectively. Let

H1
g,D(Ω) := {v ∈ H1( Ω ) : v = gD on ΓD}.

The corresponding variational formulation of problem (2.1)-(2.2) is to find u ∈ H1
g,D(Ω)

such that

a(u, v) = f(v), ∀ v ∈ H1
0,D(Ω), (2.3)

where the bilinear and linear forms are defined by

a(u, v) = (α(x)∇u,∇v)Ω and f(v) = (f, v)Ω + (gN , v)ΓN .

2.2 Nonconforming finite element approximation.

Let Th be a triangulation of the domain Ω. Assume that Th is regular; i.e., for all K ∈ Th,
there exist a positive constant κ such that

hK ≤ κ ρK ,
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where hK denotes the diameter of the element K and ρK the diameter of the largest circle
that may be inscribed in K. Note that the assumption of the mesh regularity does not
exclude highly, locally refined meshes. Let

Nh = N h
I ∪N h

D ∪N h
N and Eh = EhI ∪ EhD ∪ EhN ,

where N h
I (EhI ) is the set of all interior vertices (edges) in Th, and N h

D (EhD) and N h
N (EhN )

are the respective sets of all vertices (edges) on ΓD and ΓN . For each e ∈ Eh, denote by
me the mid-point of the edge e. Furthermore, assume that interfaces

F = {∂Ωi ∪ ∂Ωj : i, j = 1, · · ·n}

do not cut through any element K ∈ Th. Denote by NF the set of all interface intersecting
points. Then the assumption implies

NF ⊂ Nh.

Let Pk(K) be the space of polynomials of degree less than or equal to k on the ele-
ment K. Denote the conforming piecewise linear finite element space associated with the
triangulation Th by

Uc = {v ∈ H1(Ω) : v|K ∈ P1(K), ∀K ∈ Th}

and its subset by
Ucg,D = {v ∈ Uc : v = gD on ΓD}.

Denote the nonconforming piecewise linear finite element space, the Crouzeix-Raviart
element [17], associated with the triangulation Th by

Unc = {v ∈ L2(Ω) : v|K ∈ P1(K), ∀K ∈ Th, and v is continuous at me for all e ∈ EhI }

and its subset by

Uncg,D = {v ∈ Unc : v(me) = gD(me), ∀ e ∈ EhD}.

Let
H1(Th) = {v ∈ L2(Ω) : v|K ∈ H1(K), ∀K ∈ Th}.

For any v, w ∈ H1(Th), denote the (broken) bilinear form by

ah(v, w) =
∑
K∈Th

(α∇v, ∇w)K

and the (broken) energy norm by

|||v|||Ω =
√
ah(v, v) =

∑
K∈Th

‖α1/2∇v‖20,K

1/2

.

The nonconforming finite element approximation is to find uh ∈ Uncg,D such that

ah(uh, v) = f(v), ∀ v ∈ Unc0,D. (2.4)
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2.3 L2 represetation of the error.

For each edge e ∈ Eh, denote by he the length of e; denote by ne a unit vector normal to
e. When e ∈ EhD ∪ EhN , denote by Ke

+ the boundary element with the edge e, and assume
that ne is the unit outward normal vector of Ke

+. For any e ∈ EhI , let Ke
+ and Ke

− be the
two elements sharing the common edge e assuming that

α+
e ≡ αKe

+
≥ αKe

−
≡ α−e ,

and that ne coincides with the unit outward normal vector of Ke
+. Denote by v|e+ and v|e−,

respectively, the traces of the double valued function v over e restricted on Ke
+ and Ke

−.
For any v ∈ H1(Th), denote the normal flux jump over edge e ∈ Eh by

Jα
∂v

∂n
Ke :=


(α∇v · ne)|e+ − (α∇v · ne)|e−, e ∈ EhI ,

0, e ∈ EhD,

(α∇v · ne)|e+ − gN , e ∈ EhN ,

and the value jump over edge e ∈ Eh by

JvKe =


v|e+ − v|e−, e ∈ EhI ,

v|e+ − gD, e ∈ EhD,

0, e ∈ EhN .

The arithmetic average over edge e ∈ Eh is denoted by

{v}e =


v|e+ + v|e−

2
, e ∈ EhI ,

v|e+, e ∈ EhD ∪ EhN .

A simple calculation leads to the following identity:

JuvKe = {u}eJvKe + JuKe{v}e, ∀ e ∈ EhI . (2.5)

For any v ∈ Unc0,D, it is well known that the following orthogonality property holds

ˆ
e
JvK ds = 0, ∀ e ∈ EhI ∪ EhN and

ˆ
e
v ds = 0, ∀ e ∈ EhD. (2.6)

Let u and uh be the solutions of (2.3) and (2.4), respectively. It is shown in [7] that

ah(u, vh) = f(v) +
∑
e∈EhI

ˆ
e
α
∂u

∂n
JvhK ds+

∑
e∈EhD

ˆ
e
α
∂u

∂n
vh ds, ∀ vh ∈ Unc0,D. (2.7)

Denote the true error by
E = u− uh.
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Difference of (2.7) and (2.4) yields the following error equation:

ah(E, vh) =
∑
e∈EhI

ˆ
e
α
∂u

∂n
JvhK ds+

∑
e∈EhD

ˆ
e
α
∂u

∂n
vh ds, ∀ vh ∈ Unc0,D. (2.8)

Introducing the element residual, the numerical flux jump, and the numerical solution
jump

rK =
(
f +∇ · (α∇uh)

)∣∣
K
, ∀K ∈ Th,

jσ,e =
q
α
∂uh
∂n

y
e

and ju,e = JuhKe, ∀ e ∈ Eh,

respectively, then the true error in the (broken) energy norm may be expressed in terms
of those quantities.

Lemma 2.1. Let Eh ∈ Unc0,D be an interpolation of E, then we have the following L2

representation of the error E in the (broken) energy norm:

ah(E,E) =
∑
K∈Th

(rK , E−Eh)K−
∑

e∈EhI ∪E
h
N

ˆ
e
jσ,e {E−Eh} ds−

∑
e∈EhI ∪E

h
D

ˆ
e
{α∂E

∂n
} ju,e ds. (2.9)

Proof. First note that α
∂uh
∂n

∣∣
e

is a constant for every e ∈ Eh and that Eh ∈ Unc0,D. The

orthogonality in (2.6) leads toˆ
e
{α∂uh

∂n
}JEhK ds = 0, ∀ e ∈ EhI and

ˆ
e
α
∂uh
∂n

Eh ds = 0, ∀ e ∈ EhD. (2.10)

It follows from integration by parts, (2.5), the continuities of the normal component of
the flux σ = −α∇u and the solution u, and (2.10) that

ah(E, E − Eh) =
∑
K∈Th

(α∇E,∇(E − Eh))

=
∑
K∈Th

(rK , E − Eh)K +
∑
e∈EhI

ˆ
e
Jα
∂E

∂n
(E − Eh)K ds+

∑
e∈EhD∪E

h
N

ˆ
e
α
∂E

∂n
(E − Eh) ds

=
∑
K∈Th

(rK , E − Eh)K +
∑
e∈EhI

ˆ
e
Jα
∂E

∂n
K {E − Eh} ds+

∑
e∈EhI

ˆ
e
{α∂E

∂n
}
(
JEK− JEhK

)
ds

+
∑

e∈EhD∪E
h
N

ˆ
e
α
∂E

∂n
(E − Eh) ds

=
∑
K∈Th

(rK , E − Eh)K −
∑

e∈EhI ∪E
h
N

ˆ
e
jσ,e {E − Eh} ds−

∑
e∈EhI ∪E

h
D

ˆ
e
{α∂E

∂n
} ju,e ds

−
∑
e∈EhI

ˆ
e
α
∂u

∂n
JEhK ds−

∑
e∈EhD

ˆ
e
α
∂u

∂n
Eh ds,
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which, together with the error equation in (2.8) with vh = Eh, yields

ah(E,E) = ah(E, E − Eh) + ah(E,Eh)

=
∑
K∈Th

(rK , E − Eh)K −
∑

e∈EhI ∪E
h
N

ˆ
e
jσ,e {E − Eh} ds−

∑
e∈EhI ∪E

h
D

ˆ
e
{α∂E

∂n
} ju,e ds.

This completes the proof of the lemma.

3 Indicator and estimators.

In this section, based on Lemma 2.1, we first introduce the standard indicator and es-
timator. Since the reliability bound of this estimator was established under the quasi-
monotonicity assumption on the distribution of the coefficient, to avoid such an assump-
tion we introduce a new estimator which is slightly bigger than the standard estimator.

For any K ∈ Th, denote by N h
K and EhK , respectively, the sets of three vertices and

three edges of K. Let

η2
Rf ,K

=
h2
K

αK
‖rK‖20,K ,

η2
Jσ ,K =

∑
e∈EhK∩E

h
I

he
2αe+

‖jσ,e‖20,e +
∑

e∈EhK∩E
h
N

he
αe
‖jσ,e‖20,e, and

η2
Ju,K =

∑
e∈EhK∩E

h
I

αe−
2he
‖ju,e‖20,e +

∑
e∈EhK∩E

h
D

αe
he
‖ju,e‖20,e.

Then the indicator associated with K ∈ Th is defined by

ηK =
(
η2
Rf ,K

+ η2
Jσ ,K + η2

Ju,K

)1/2
, (3.1)

and the estimator by

η =

∑
K∈Th

η2
K

1/2

. (3.2)

By the standard argument [4], it is shown in section 5 that the indicator ηK is efficient
uniformly with respect to the jump of the diffusion coefficient. By using the Helmholtz
decomposition and the modified Clément-type interpolation, one can also prove that the
estimator η is reliable. Moreover, the reliability constant is independent of the jump of
α(x) provided that the distribution of α(x) is quasi-monotone [23]. In order to remove
this assumption, we present a new analysis for estimating the reliability bound without
using the Helmholtz decomposition. The analysis will make use of the structure of the
nonconforming element in two-dimensions, and it enables us to bound both the element
residual and the numerical flux jump uniformly without the quasi-monotonicity. Unfortu-
nately, we are unable to do the same for the numerical solution jump, and hence it needs
to be modified.
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To this end, for each vertex z ∈ Nh, denote by ωhz and Ehz , respectively, the sets of all
elements K ∈ Th and all edges e ∈ Eh having z as a common vertex. Let

ω̂hz = {K ∈ ωhz : αK = max
K′∈ωhz

αK′} ⊂ ωhz

be the set of all elements in ωhz such that the corresponding diffusion coefficients are the
greatest. For any interface intersecting point z ∈ NF ⊂ Nh, the vertex patch ωhz is called
quasi-monotone (see [23]) if for each K ∈ ωhz , there exists a subset ŵhz,K of ωhz such that

the union of elements in ŵhz,K is a Lipschitz domain and that

• If z ∈ Nh \ N h
D, then {K} ∪ ω̂hz ⊂ ŵhz,K and αK ≤ αK′ ,∀K ′ ∈ ŵhz,K ;

• if z ∈ N h
D, then K ∈ ŵhz,K , ∂(∪K′∈ŵhz,KK

′) ∩ ΓD 6= ∅ and αK ≤ αK′ , ∀K ′ ∈ ŵhz,K .

Denote by
NM = {z ∈ NF : ωhz is not quasi-monotone } ⊂ NF ⊂ Nh

the set of all interface intersecting points whose vertex patches are not quasi-monotone.
For each element K ∈ Th, subdivide it into four sub-triangles by connecting three

mid-points of edges of K, and denote by Th/2 the refined triangulation. Let

Nh/2 = N h/2
I ∪N h/2

D ∪N h/2
N and Eh/2 = Eh/2I ∪ Eh/2D ∪ Eh/2N

where N h/2
I (Eh/2I ), N h/2

D (Eh/2D ), and N h/2
N (N h/2

N ) are the sets of all interior vertices (edges)
of Th/2, all boundary vertices (edges) on ΓD and ΓN , respectively. Let

Uh/2,cg,D =
{
v ∈ H1(Ω) : v|K ∈ P 1(K), ∀ K ∈ Th/2 and v|ΓD = gD

}
,

which is the continuous piecewise linear finite element space associated with the triangu-
lation Th/2.

Next, we introduce an interpolation operator, Ih/2 : Uncg,D → U
h/2,c
g,D , from the noncon-

forming finite element space on Th to the conforming finite element space on Th/2. For a

given v ∈ Uncg,D, the nodal values of Ih/2v ∈ U
h/2,c
g,D are defined as follows:

(i) set
(Ih/2)(z) = gD(z), ∀ z ∈ N h

D.

(ii) set
(Ih/2v)(me) = v(me), ∀ e ∈ Eh;

(iii) for z ∈ (N h
I ∪N h

N ) \ NM , set

(Ih/2v)(z) = v|Kz(z),

where Kz is chosen to be one element in ω̂hz ;
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(iv) for z ∈ NM \ N h
D, set

(Ih/2v)(z) =
1

nz

∑
K∈ωhz

v|K(z),

or

(Ih/2v)(z) =

∑
K∈ωhz

αK v|K(z)∑
K∈ωhz

αK
,

where nz is the number of triangles in ωhz .

For each vertex z ∈ Nh, denote by ω
h/2
z and Eh/2z the sets of all elements K ∈ Th/2

and all edges e ∈ Eh/2 having z as a common vertex. For each K ∈ Eh, denote by Eh/2K the

set of all sub-edges on EhK . For the element K ∈ Th with at least one vertex in NM , the
numerical solution jump ηJu,K is modified as follows:

η̃2
Ju,K =

∑
z∈NhK\NM

 ∑
e∈Eh/2z ∩Eh/2K ∩Eh/2I

αe−
2he
‖ju,e‖20,e +

∑
e∈Eh/2z ∩Eh/2K ∩Eh/2D

αe
he
‖ju,e‖20,e


+

∑
z∈NhK∩NM

αK
hTK,z

∥∥Ih/2uh − uh∥∥2

0,∂TK,z
, (3.3)

where TK,z = ω
h/2
z ∩K. The modified estimator is then given by

η̃ =

∑
K∈Th

η̃2
K

1/2

.

In adaptive local mesh refinement algorithms, the indicator ηK is used for local mesh
refinement, and the estimator η̃ is used for global error control.

Remark 3.1. In the case that NM = ∅; i.e., the distribution of the diffusion coefficient
is quasi-monotone, then ηJu,K = η̃Ju,K for all K ∈ Th.

4 The modified Clément-type interpolation.

In this section, following the idea in [4, 16], we introduce the modified Clément-type inter-
polation operator for the nonconforming linear element and establish its approximation
property.

Denote by  
ω
v dx =

1

meas(ω)

ˆ
ω
v dx
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the mean value of a given function v on a given measurable set ω in R2 with positive
2-dimensional Lebesgue measure meas(ω). With this convention, set

πe(v) =

 
Ke

+

v dx, ∀ e ∈ Eh.

The modified Clément interpolation operator Ih : L2(Ω)→ Unc is defined by

Ih(v) =
∑
e∈Eh

(πev)φe, (4.1)

where φe is the nodal basis function of Unc which takes value 1 at me and takes 0 at
mid-points of other edges.

For any K ∈ Th, let 4K be the union of elements in Th sharing an edge with K. For
any e ∈ Eh, let 4e be the union of elements in Th having the common edge e.

Lemma 4.1. For any function v ∈ H1(Th), then the modified Clément interpolation
satisfies the following approximation properties:

‖v − Ihv‖0,K .
hK

α
1/2
K

 ∑
K′∈4K

|||v|||K′ +
∑
e∈EhK

(
αe−
he

)1/2 ∥∥JvK∥∥
0,e

 ∀K ∈ Th (4.2)

and ∥∥v|e+ − πev∥∥0,e
.

(
he
αe+

)1/2

|||v|||0,Ke
+
, ∀ e ∈ Eh. (4.3)

Here and thereafter, we use the a . b notation to indicate that a ≤ c b for a further
not speficified constant c, which depends only on the shape regularity of Th but not on
the data of the underlying problems, in particular, the jump of the diffusion coefficient.
Unlike the modified Clément interpolation for the conforming elements, there is an extra
jump term in the approximation property in (4.2) which is due to the discontinuity of the
function v across the edges of K.

Proof. For any K ∈ Th, since the nodal basis functions form a partition of the unity, the
triangle inequality gives

‖v − Ihv‖0,K =
∥∥ ∑
e∈EhK

φe(v − πev)
∥∥

0,K
≤
∑
e∈EhK

∥∥φe(v − πev)
∥∥

0,K
≤
∑
e∈EhK

‖v − πev‖0,K .

Hence, to show the validity of (4.2), it suffices to prove that

‖v − πev‖0,K .
hK

α
1/2
K

 ∑
K′∈4e

|||v|||K′ +
(
αe−
he

)1/2 ∥∥JvK∥∥
0,e

 , ∀ e ∈ EhK . (4.4)

Since the set 4e contains at most two elements, it is obvious that K = Ke
+ or Ke

−. If
K = Ke

+, then (4.4) is a direct consequence of the Poincaré inequality:

‖v − πev‖0,K =
∥∥v −  

K
v dx

∥∥
0,K

. hKα
−1/2
K |||v|||K .
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In the case that K = Ke
−, the triangle and the Poincaré inequalities imply

‖v − πev‖0,K ≤
∥∥v −  

K
v dx

∥∥
0,K

+
∥∥ 

K
v dx−

 
Ke

+

v dx
∥∥

0,K

. hKα
−1/2
K |||v|||K + h

1/2
K

∥∥( 
K
v dx− v|e−

)
+

(
v|e+ −

 
Ke

+

v dx

)
− JvK

∥∥
0,e

≤ hKα
−1/2
K |||v|||K + h

1/2
K

(∥∥ 
K
v dx− v|e−

∥∥
0,e

+
∥∥ 

Ke
+

v dx− v|e+
∥∥

0,e
+
∥∥JvK∥∥

0,e

)
.

Next, we bound the three terms above. It follows from the trace theorem and the Poincaré
inequality that

h
1/2
K

∥∥ 
K
v dx− v|e−

∥∥
0,e

.
∥∥ 

K
v dx− v

∥∥
0,K

+ hK
∣∣  

K
v dx− v

∣∣
1,K

. hKα
−1/2
K |||v|||K .

Similarly, we have

h
1/2
K

∥∥ 
Ke

+

v dx− v|e+
∥∥

0,e
. hKα

−1/2
Ke

+
|||v|||Ke

+
. (4.5)

Note that αe− = αK ≤ αKe
+

, combining above three inequalities gives

‖v − πev‖0,K .
hK

α
1/2
K

 ∑
K′∈4e

|||v|||K′ +
(
αe−
he

)1/2 ∥∥JvK∥∥
0,e

 ,

which proves the validity of (4.4) when K = Ke
−. (4.3) is a direct consequence of (4.5).

This completes the proof of the lemma.

5 Local efficiency bound.

It is standard to obtain the local efficiency bound for the residual-based a posteriori error
estimator by using local edge and element bubble functions, ψe and ψK (see [25] for
their definitions and properties). By properly weighting terms in the indicator by the
diffusion coefficient, one can show that the local efficiency bound is robust (see [4]). For
the convenience of readers, we only sketch the proof in this section.

Theorem 5.1. (Local Efficiency) Assuming that u ∈ H1+ε(Ω) and uh are the solutions
of (2.3) and (2.4), respectively, then the indicator ηK satisfies the following local efficiency
bound:

ηK .
∑

K′∈4K

|||E|||K′ , ∀ K ∈ Th. (5.1)

11



Proof. For any K ∈ Th, it follows from the properties of ψK , integration by parts, and the
Cauchy-Schwarz inequality that

‖rK‖20,K .
ˆ
K

(f +∇ · (α∇uh)) rKψK dx =

ˆ
K
α∇(u− uh) · ∇(rKψK) dx

. α
1/2
K |||u− uh|||K |rKψK |1,K . α

1/2
K h−1

K |||u− uh|||K ‖rK‖0,K ,

which implies

‖rK‖0,K .
α

1/2
K

hK
|||u− uh|||K , ∀K ∈ Th. (5.2)

For any e ∈ EhI , by using the properties of ψe, integration by parts, the Cauchy-
Schwartz inequality, and (5.2), we have

‖jσ,e‖20,e .
ˆ
e
Jα
∂uh
∂n

K jσ,eψe ds = −
∑
K∈4e

ˆ
∂K

α
∂(u− uh)

∂n
jσ,eψe ds

=
∑
K∈4e

(
−
ˆ
K
α∇(u− uh) · ∇(jσ,eψe) dx+

ˆ
K
rK jσ,eψe dx

)
.

(
αe+
he

)1/2

|||E|||4e‖jσ,e‖0,e,

where |||E|||4e =
(∑

K∈4e |||E|||
2
K

)1/2
. Together with a similar bound for e ∈ EhD ∪ EhN , it

implies

‖jσ,e‖0,e .
(
αe+
he

)1/2

|||E|||4e , ∀ e ∈ Eh. (5.3)

For any e ∈ Eh, let ne = (n1, n2), then τ e = (−n2, n1) is the unit vector tangent to

the edge e. Denote by jτ,e = J
∂uh
∂τ

Ke the jump of the tangential derivative of the numerical

solution uh along the edge e. By the continuity of uh at the midpoint me, we have

‖ju,e‖0,e =
1√
12
he ‖jτ,e‖0,e, ∀ e ∈ EhI . (5.4)

For any e ∈ EhI , it follows from the properties of ψe, integration by parts, and the Cauchy-
Schwartz inequality that

‖jτ,e‖20,e .
ˆ
e

q∂uh
∂τ

y
jτ,eψe ds = −

∑
K∈4e

ˆ
∂K

∂(u− uh)

∂τ
jτ,eψe ds

= −
∑
K∈4e

ˆ
K
∇(u− uh) · ∇⊥ (jτ,eψe) dx .

∑
K∈4e

α
−1/2
K |||u− uh|||K |jτ,eψe|1,K

.
∑
K∈4e

α
−1/2
K |||u− uh|||K h−1/2

e ‖jτ,e‖0,e .
(
αe−he

)−1/2 |||E|||4e‖jτ,e‖0,e,

which, tegoether with (5.4) and a similar bound for e ∈ EhD ∪ EhN , yields

‖ju,e‖0,e .
(
he
αe−

)1/2

|||E|||4e , ∀ e ∈ Eh. (5.5)

12



Now, the efficiency bound in (5.1) is a direct consequence of the bounds in (5.2), (5.3),
and (5.5). This completes the proof of the theorem.

6 Global reliability bound.

Let

η̂Ju,K =
α

1/2
K

h
1/2
K

‖Ih/2uh − uh‖∂K and η̂Ju =

∑
K∈Th

αK
hK
‖Ih/2uh − uh‖2∂K

1/2

.

Lemma 6.1. Let uh be the solution of (2.4) and Ih/2 be the interpolation operator defined
in Section 3, then the jump of the numerical solution has the following upper bound:∑

e∈EhI ∪E
h
D

ˆ
e
{α∂E

∂n
} ju,e ds . η̂Ju |||E|||Ω. (6.1)

Proof. Since the integral over edge segment e ∈ ∂K on the left-hand side of inequality
(6.1) may be only regarded as the duality pair between Hδ−1/2(∂K) and H1/2−δ(∂K) for
an arbitrarily small δ > 0, we are not able to bound this integral directly. To overcome
this difficulty, we express them in terms of integrals along the boundary of elements. To
this end, first note that

JIh/2uhKe = 0 and Jα∇u · neKe = 0, ∀ e ∈ EhI .

By (2.5) and the fact that Ih/2uh = gD on ΓD, we have

−
∑

e∈EhI ∪E
h
D

ˆ
e
{α∂E

∂n
}ju,e ds

=
∑
e∈EhI

ˆ
e
{α∂E

∂n
} JIh/2uh − uhK ds+

∑
e∈EhD

ˆ
e
α
∂E

∂n
(gD − uh) ds

=
∑
K∈Th

ˆ
∂K

α
∂E

∂n
(Ih/2uh − uh) ds−

∑
e∈EhI

ˆ
e
Jα
∂E

∂n
K {Ih/2uh − uh} ds

−
∑

e∈EhD∪E
h
N

ˆ
e
α
∂E

∂n
(Ih/2uh − uh) ds+

∑
e∈EhD

ˆ
e
α
∂E

∂n
(gD − uh) ds

=
∑
K∈Th

ˆ
∂K

α
∂E

∂n
(Ih/2uh − uh) ds+

∑
e∈EhI ∪E

h
N

ˆ
e
jσ,e{Ih/2uh − uh} ds ≡ I1 + I2.

The I1 may be bounded above by using the definition of the dual norm, the trace theorem

13



(see, e.g., [7]), the inverse inequality, and (5.2) as follows:

I1 ≤
∑
K∈Th

∥∥α∂E
∂n

∥∥
−1/2,∂K

∥∥Ih/2uh − uh∥∥1/2,∂K

.
∑
K∈Th

α
−1/2
K

(
‖α∇E‖0,K + hK ‖rK‖0,K

)
η̂Ju,K . η̂Ju |||E|||Ω. (6.2)

To bound the I2, first note that
ˆ
e
jσ,e JIh/2uh − uhK ds = 0, ∀ e ∈ EhI ,

which is a consequence of the orthogonality property in (2.6) and the facts that jσ,e is a
constant and that JIh/2uhKe = 0 for all e ∈ EhI . Hence,

ˆ
e
jσ,e{Ih/2uh − uh} ds =

ˆ
e
jσ,e{Ih/2uh − uh} ds+

1

2

ˆ
e
jσ,eJIh/2uh − uhK ds

=

ˆ
e
jσ,e(Ih/2uh − uh|e+) ds, ∀e ∈ EhI .

Now, it follows from the Cauchy-Schwartz inequality and (5.3) that

I2 =
∑

e∈EhI ∪E
h
N

ˆ
e
jσ,e(Ih/2uh − uh|e+) ds

≤

 ∑
e∈EhI ∪E

h
N

αe+
he
‖Ih/2uh − uh|e+‖20,e

1/2 ∑
e∈EhI ∪E

h
N

he
αe+
‖jσ,e‖20,e

1/2

.

 ∑
e∈EhI ∪E

h
N

αe+
he
‖Ih/2uh − uh|e+‖20,e

1/2

|||E|||Ω . η̂Ju |||E|||Ω. (6.3)

(6.1) is then a consequence of (6.2) and (6.3). This completes the proof of the lemma.

Since uh − Ih/2uh vanishes on all boundary edges of w
h/2
z for all z ∈ Nh, we have∑

K∈Th

αK
hK
‖Ih/2uh − uh‖20,∂K =

∑
z∈Nh

∑
T∈wh/2z

αT
hT
‖Ih/2uh − uh‖20,∂T .

Lemma 6.2. Let uh be the solution of (2.4) and Ih/2 be the interpolation operator defined

in Section 3. For any vertex z ∈ Nh, if the vertex patch ω
h/2
z is quasi-monotone, then∑

T∈ωh/2z

αT
hT
‖uh − Ih/2uh‖20,∂T .

∑
e∈Eh/2z ∩Eh/2I

αe−
he

∥∥JuhK∥∥2

0,e
. (6.4)
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Proof. To show the validity of (6.4), it suffices to prove that

αT
hT
‖uh − Ih/2uh‖20,∂T .

∑
e∈Eh/2z ∩Eh/2I

αe−
he

∥∥JuhK∥∥2

0,e
, ∀T ∈ ωh/2z . (6.5)

To this end, let Kz ∈ ω̂hz be the element such that Ih/2uh(z) = uh|Kz(z), and let

Tz = Kz ∩ ωh/2z .

For any T ∈ ωh/2z , if T = Tz, then uh − Ih/2uh = 0 in Tz. Hence, (6.5) holds.
In the case that T is adjacent to Tz, let e = ∂T ∩ ∂Tz, then T = T e− and Tz = T e+. For

simplicity, assume that all edges in Eh/2z have the same length. A direct calculation gives

αT
hT
‖uh − Ih/2uh‖20,∂T =

2αThe
3hT

JuhK2
e(z) =

2αT
hT
‖JuhK‖20,e,

which, together with the fact that αT ≤ αTz , yields (6.5).
In the case that T and Tz are not adjacent, by the quasi-monotonicity, there exists

a connected path from T to Tz such that the diffusion coefficient α is monotonically
increasing. Then (6.5) follows from the same argument above applying to each pair of
two adjacent elements in the path and the triangle inequality. This completes the proof
of (6.5) and, hence, the lemma.

Theorem 6.1. (Global Reliability) Let u and uh be the solutions of (2.3) and (2.4),
respectively. Then the estimator η̃ satisfies the following global reliability bound:

|||E|||Ω . η̃. (6.6)

Proof. Let Ih be the modified Clément interpolation operator defined in Section 4. Then
(2.9) with Eh = IhE becomes

ah(E,E) =
∑
K∈Th

(rK , E − IhE)K −
∑

e∈EhI ∪E
h
N

ˆ
e
jσ,e {E − IhE}ds−

∑
e∈EhI ∪E

h
D

ˆ
e
{α∂E

∂n
} ju,eds

≡ I1 + I2 + I3 (6.7)

The first term in (6.7) may be bounded by the Cauchy-Schwartz inequality, Lemma 4.1,
and (5.5) as follows:

I1 ≤
∑
K∈Th

‖rK‖0,K ‖E − IhE‖0,K .
∑
K∈Th

ηRf ,K

|||E|||0,4K +
∑
e∈EhK

(
αe−
he

)1/2

‖JuhK‖0,e



.

∑
K∈Th

η2
Rf ,K

1/2

|||E|||Ω. (6.8)
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To bound the second term in (6.7), first notice that

JE − IhEKe = −Juh + IhEKe, ∀e ∈ EhI .

Since uh + IhE ∈ Unc and the the fact that jσ,e is a constant for all e ∈ Eh , (2.6) yields
ˆ
e
jσ,e JE − EhK ds = 0, ∀e ∈ EhI .

Hence,
ˆ
e
{E−IhE}e ds+

1

2

ˆ
e
JE−IhEKe ds =

ˆ
e
(E−IhE)|e+ ds =

ˆ
e
(E|e+−πeE) ds, ∀ e ∈ EhI . (6.9)

The last equality comes from the property of the nonconforming nodal basis functions:ffl
ei
φej = δij . It then follows from (6.9), the Cauchy-Schwartz inequality, and Lemma 4.1

that

I2 =
∑

e∈EhI ∪E
h
N

ˆ
e
jσ,e (E|e+ − πeE)ds ≤

∑
e∈EhI ∪E

h
N

‖jσ,e‖0,e
∥∥E|e+ − πeE∥∥0,e

.
∑

e∈EhI ∪E
h
N

(
he
αe+

)1/2

‖jσ,e‖0,e |||E|||0,Ke
+
.

∑
K∈Th

η2
JN ,K

1/2

|||E|||Ω. (6.10)

Now, (6.6) is a direct consequence of (6.7), (6.8), (6.10), Lemma 6.1, and Lemma 6.2. This
completes the proof of the theorem.

7 Numerical experiments.

In this section, we report some numerical results for an interface problem with intersecting
interfaces used by many authors (see, e.g., [19, 8, 10, 7, 12, 13]), which is considered as a
benchmark test problem. Let Ω = (−1, 1)2 and

u(r, θ) = rβµ(θ)

in the polar coordinates at the origin with

µ(θ) =


cos((π/2− σ)β) · cos((θ − π/2 + ρ)β) if 0 ≤ θ ≤ π/2,
cos(ρβ) · cos((θ − π + σ)β) if π/2 ≤ θ ≤ π,
cos(σβ) · cos((θ − π − ρ)β) if π ≤ θ ≤ 3π/2,

cos((π/2− ρ)β) · cos((θ − 3π/2− σ)β) if 3π/2 ≤ θ ≤ 2π,

where σ and ρ are numbers. The function u(r, θ) satisfies the interface problem in (2.1)
with ΓN = ∅, f = 0, and

α(x) =

{
R in (0, 1)2 ∪ (−1, 0)2,

1 in Ω \ ([0, 1]2 ∪ [−1, 0]2).
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The numbers β, R, σ, and ρ satisfy some nonlinear relations. For example, when β = 0.1,
then

R ≈ 161.4476387975881, ρ = π/4, and σ ≈ −14.92256510455152.

Note that when β = 0.1, this is a difficult problem for computation.

Remark 7.1. This problem does not satisfy Hypothesis 2.7 in [4] as the quasi-monotonicity
is not satisfied about the origin.

Started with a coarse triangulation, a sequence of mesh is generated by using a standard
adaptive meshing algorithm that adopts the L2 strategy: (i) mark the elements such that
ηK is among the first 20 percent of L2 norm of the total error, and (ii) refine the marked
triangles by bisection. The stopping criteria is

rel-err :=
|||u− uu|||Ω
|||u|||Ω

≤ tol

is used, and numerical results with tol = 0.1 is reported. Mesh generated by tol = 0.1 is
in Figure 1. Refinements are centered at origin as expected.

Figure 1: mesh generated with relative er-
ror ¡ 0.1
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Figure 2: η̃ vs η.

As shown in Figure 2, the slope for the log (number of unknowns)-log (energy error)
is about −1/2 which indicates the optimal decay of the error with respect to the number
of unknowns. The efficiency index,

eff-index :=
estimator

|||u− uh|||Ω
,

for η is about 2.2, and for η̃ is about 3.3.
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