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Angiogenesis and vascular remodeling are essential for the es-
tablishment of vascular networks during organogenesis. Here we
show that the Hippo signaling pathway effectors YAP and TAZ
are required, in a gene dosage-dependent manner, for the prolif-
eration and migration of vascular endothelial cells (VECs) during
retinal angiogenesis. Intriguingly, nuclear translocation of YAP and
TAZ induced by Lats1/2-deletion blocked endothelial migration
and phenocopied Yap/Taz-deficient mutants. Furthermore, over-
expression of a cytoplasmic form of YAP (YAPS127D) partially res-
cued the migration defects caused by loss of YAP and TAZ function.
Finally, we found that cytoplasmic YAP positively regulated the
activity of the small GTPase CDC42, deletion of which caused
severe defects in endothelial migration. These findings uncover a
previously unrecognized role of cytoplasmic YAP/TAZ in promoting
cell migration by activating CDC42 and provide new insight into
how Hippo signaling in endothelial cells regulates angiogenesis.

Hippo signaling | angiogenesis | cell migration | CDC42

Introduction

Angiogenesis is a process of growth and remodeling in vascular
networks that is essential for normal development. In adulthood,
angiogenesis is activated as a reparative process, for example,
during wound healing (1, 2). Aberrantly regulated angiogenesis
can also be a component of disease (3) and can play a key role
in tumor growth and metastasis (4), inflammatory diseases (5),
diabetic retinopathy, and retinopathy of prematurity (6).

Retinal angiogenesis in mice begins at postnatal day 0 (P0).
The retinal vasculature initiates its expansion from the optic
nerve head and migrates outwards along a preexisting network
of astrocytes (7, 8). This results in the formation of the superficial
vascular plexus within the retinal ganglion cell layer during the
first 8 days (9, 10). Endothelial cells then migrate along nerve
fibers to establish deep and intermediate vascular layers (9, 11).
Cell proliferation and migration are essential for angiogenesis
and these cell responses are regulated by many different signaling
pathways, including the VEGF, Notch, Wnt, FGF, BMP, and
integrin signaling responses (9, 12-16). VEGFA and CDC42 are
known to regulate extension of the angiogenic front and filopodia
formation in angiogenic tip cells (2, 17, 18).

The Hippo signaling pathway is an evolutionarily conserved,
pivotal regulator of cell proliferation and organogenesis. YAP
and TAZ are key components of the Hippo signaling pathway
and function as transcription cofactors that regulate downstream
gene expression via association with DNA binding proteins such
as TEAD1-4 (19, 20). YAP and TAZ can drive the expression of
genes that regulate cell proliferation and survival (diap1, bantam,
cyclin E, and E2F1), the Hippo pathway (Kibra, Crb, and Fj), and
cell-cell interaction (E-Cadherin, Serrate, Wingless, and Vein)(20).
The activity of YAP and TAZ is regulated by the LATS1 and
LATS2 kinases. These kinases phosphorylate YAP and TAZ, thus

preventing their nuclear translocation and regulating transcrip-
tional activity. Although the function of YAP and TAZ in the
nucleus has been subject to extensive studies (20, 21), the role
of these proteins in the cytoplasm is not fully understood.

In the present study, we used the mouse postnatal retina
as a model for investigating the function of YAP and TAZ
during angiogenesis. We show that YAP and TAZ are required
for vascular network formation by regulating endothelial cell
proliferation and migration and that the influence of YAP and
TAZ on angiogenesis is gene dosage-dependent. Importantly,
we show that cytoplasmic YAP, but not the nuclear form, is
crucial for modulating endothelial cell migration by regulating
the Rho family GTPase CDC42 activity. These findings identify
a previously unrecognized role of cytoplasmic YAP in regulating
angiogenesis via CDC42.

Results
YAP and TAZ are required for vascular development in the retina

We examined the expression of YAP in retinal endothelial
cells. YAP was detected mainly in the cytoplasm in most retinal
VECs (Fig. S1A-D) and in both the nucleus and cytoplasm in
some VECs (Fig. S1C and D). Whole mount retina staining also
showed that YAP was mainly localized in the cytoplasm in both

Significance

New blood vessel formation is a physiological process seen in
development, as well as in wound healing and tumorigenesis.
Although the process of blood vasculature formation has been
well documented, little is known about the molecular mech-
anisms that regulate endothelial migration during vascular
network formation. In this study, we identified a critical role
for Hippo effectors YAP and TAZ in the regulation of vascular
network remodeling through controlling endothelial cell pro-
liferation, filopodia formation, and cell migration. We found
a striking cytoplasmic function of YAP in the regulation of
endothelial cell migration through controlling the Rho family
GTPase CDC42 activity. These findings identify a previously un-
recognized YAP/TAZ function involved in the vascular network
remodeling during angiogenesis.
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Fig. 1. YAP/TAZ regulate vascular endothelial mi-
gration in the developing retina. (A-F) IB4 labeling
of P5 retina vasculature from littermate Yapflox/flox;
Tazflox/flox mice with Pdgfb-iCreERT2 (Yap/Taz cKO) (D)
or without Cre (Control) (A). Higher-magnification
images of the vascular plexus and front are shown in
(B, C, E, and F). (G-J) Quantification of the vascular ex-
tension (n=6), vascular area (n=3), number of branch-
points (n=6), and tip cells (n=4); mean ± SD, *P<0.01.
(K-M) Whole-mount EdU staining of P5 Control and
Yap/Taz cKO retina. Statistical analysis of the number
of EdU-positive cells is shown in (M) (n=4); mean ±
SD, *P<0.01. (N and O) Imaris image analysis of P5
retina tip cells. Arrowheads and asterisk in (N) indicate
filopodia and a macrophage respectively. (P and Q)
Immunohistochemistry of retinal sections of P11 eyes.
Control retina shows some migrating endothelial cells
(arrowheads) and the deep vascular plexus (arrows).
Scale bars represent 500 μm (A), 200 μm (B), 100μm
(C), and 50 μm (K and P).

Fig. 2. Deletion of Lats1/2 disrupts retinal vascular extension and filopo-
dia formation. (A-F) IB4 labeling of P5 retina vasculature from Control
and Lats1flox/flox; Lats2flox/flox;Pdgfb-iCreERT2 (Lats1/2 cKO) neonates. Higher-
magnification images of the vascular plexus and front are shown in (B, C, E,
and F). (G-J) Quantification of vascular extension (n=6) , vascular area (n=4),
number of branchpoints (n=4), and tip cells (n=4); mean ± SD, *P<0.01. (K-M)
Whole-mount EdU staining of P5 Control and Lats1/2 cKO retina. Statistical
analysis of the number of EdU-positive cells is shown in (M) (n=4); mean ±
SD, *P<0.01. Scale bars represent 500 μm (A), 200 μm (B), 100 μm (C), and 50
μm (K).

the migrating tip cells and the central region of retinal vessels
(Fig. S1E). To determine the function of YAP in retinal VECs,
we bred the conditional Yapflox/flox allele with the Pdgfb-iCreERT2
mouse line to delete Yap in endothelial cells in a temporally
regulated manner. The expression of Pdgfb-iCreERT2 in the de-
veloping retinal VECs was confirmed by breeding with Rosa26-
Loxp-STOP-Loxp-tdTomato reporter mice (Fig. S2) (22). Upon
tamoxifen treatment from P1 to P3, Yapflox/flox; Pdgfb-iCreERT2
(referred to as Yap cKO) mice did not show overt abnormalities
when examined at P5 (Fig. S3). To investigate whether the lack
of phenotype in Yap cKO is due to a redundant function with

Fig. 3. Phenocopy of Cdc42 cKO filopodial loss in Yap/Taz and Lats1/2
cKO. (A-F) Whole mount IB4 staining of P5 retina from Control (A)
and Cdc42flox/flox; Pdgfb-iCreERT2 (Cdc42 cKO) neonates (D). Higher-
magnification images of the vascular plexus and front are shown in (B,
C, E, and F). (G-J) Quantification of vascular extension (n=4), vascular area
(n=3), number of branchpoints (n=6), and tip cells (n=3); mean ± SD, *P<0.05,
**P<0.01, N.S.; not significant. (K-N) Comparison of filopodia formation
of each genotype. Tip cells are labeled by IB4. Red arrowheads indicate
filopodia. (O) Quantification of the number of filopodia per tip cell (n=4);
mean ± SD, *P<0.01. Scale bars represent 500μm (A), 100 μm (B), 50 μm (C),
and 10 μm (K).

TAZ (homolog of YAP in mammals), we generated endothelial-
specific Taz knockout mice, Tazflox/flox; Pdgfb-iCreERT2 (referred
to as Taz cKO). Similar to the Yap cKO mice, the Taz cKO mice
appeared normal without an obvious vascular phenotype (Fig.
S3). However, the deletion of both Yap alleles and one allele of
Taz, Yapflox/flox; Tazwt/flox; Pdgfb-iCreERT2, (referred to as Yap cKO;
Taz cHet) led to reduced vascular density (Fig. S3) and decreased
extension of the retinal vascular field (vascular extension) (Fig.
S3). Furthermore, deletion of both alleles of Yap and Taz in
endothelial cells, Yapflox/flox; Tazflox/flox; Pdgfb-iCreERT2 (referred
to as Yap/Taz cKO), caused a severe vascular phenotype with
prominently impaired retinal vessel sprouting, vascular area, and
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Submission PDFFig. 4. Downregulation of CDC42 activity in YAP/TAZ deficient endothelial cells. (A) Scratch assay of Scrambled-shRNA (shScr) and YAP/TAZ-shRNA (shYAP/TAZ)
infected HUVECs. Images are taken at 0 and 16 hours after cell scratch. (B) Quantification of invaded area within the scratched region of YAP/TAZ knockdown
HUVEC (n=3); mean ± SD, *P<0.01. (C) Active-CDC42 pull-down assay and western blot analysis of YAP/TAZ knockdown HUVECs. (D-E) GFP-N-WASP expression
(D) and endogenous CDC42 expression (E) in YAP/TAZ knockdown HUVECs. The boxed areas are enlarged on the lower panels. Arrowheads indicate GFP-N-
WASP and endogenous CDC42 expression at the edge of the cell. (F) Scratch assay of YAP/TAZ knockdown HUVECs expressing CDC42F28L. Images are taken at
0 and 12 hours after the scratch. Quantification of invaded area within the scratched region (n=3); mean ± SD, *P<0.01. (G) Phosphorylated N-WASP expression
in the retinal VECs of P11 eyes. Arrows indicate the VECs. (H) Active-CDC42 pull-down assay of P5 brain VECs. Scale bars represent 50μm (A and F) and 10 μm
(D).

reduced number of vascular branches (Fig. 1A-I and Fig. S3). This
severe vascular phenotype persisted until later developmental
stages (Fig. S4), indicating that Yap and Taz are required for vessel
morphogenesis in a gene dose-dependent manner. Quantitative
PCR (Q-PCR) on RNA isolated from the brain VECs of Yap/Taz
cKO mice confirmed a significantly lower level of each transcript
as well as the expression of YAP target genes, Ctgf and Cyr61
(Fig. S5). Severe reduction of vascular density in Yap/Taz cKO
mutants led us to investigate the possibility that endothelial cell
proliferation was affected. 5-ethynyl-2’-deoxyuridine (EdU) was
delivered to P4 pups via intraperitoneal injection 16 hours before
the analysis. We found that the number of proliferating endothe-
lial cells was greatly reduced in the Yap/Taz cKO retinas compared
with the littermate controls (Fig. 1K-M), suggesting that YAP
and TAZ are required for endothelial cell proliferation during
angiogenesis.

Angiogenic sprouting is promoted by active filopodial pro-
trusions and tip cell migration (23). To determine whether the
vascular defect in Yap/Taz cKO mice involves tip cell migration,
we examined the abundance and morphology of tip cells. The
number of tip cells was significantly reduced in Yap/Taz cKO mice
(Fig. 1C, F, J and S3E). Furthermore, tip cells in the double
mutant mice exhibited only a few filopodia extending from vessel
termini (Fig. 1N and O). The reduced vascular extension and
the morphology of the tip cells in Yap/Taz cKO mice led us
to investigate whether YAP and TAZ are necessary for VEC
migration. During retinal angiogenesis, vasculature expands from
the optic stalk at P1 and reaches the periphery by about P8 (24).
VECs then migrate downwards into the regions where neurons
reside to form the deep and intermediate vascular plexus by 3
weeks of age. P11 retina sections showed that there were some
migrating endothelial cells and an intermediate vascular plexus
in the control, but not in the Yap/Taz cKO retinas (Fig. 1P and Q).
Whole mount CD31 staining at P13 also indicated that endothe-

lial specific deletion of Yap and Taz prevented the migration that
forms the deep and intermediate vascular layers (Supplemental
Movies). These data suggest that YAP and TAZ are required
for endothelial cell proliferation and migration during vascular
development.

Deletion of the upstream Lats1/2 results in cell migration
defect

To investigate whether other components of the Hippo sig-
naling pathway are involved in regulating cell proliferation and
migration, we deleted the upstream kinases Lats1/2 by breeding
Lats1flox/flox; Lats2flox/flox mice with Pdgfb-iCreERT2 to generate
Lats1flox/flox; Lats2flox/flox; Pdgfb-iCreERT2 (referred to as Lats1/2
cKO). This eliminates LATS-dependent phosphorylation of YAP
and TAZ in endothelial cells and prevents their phosphorylation-
dependent sequestration in the cytoplasm (25, 26). The Lats1/2
cKO retinas exhibited a migration defect with reduced extension
distance compared with the control mice (Fig. 2A, D, and G).
The angiogenic network in Lats1/2 cKO mice also displayed
hyperplasia with increased vascular complexity evident by a 60%
increase in branchpoints and reduced vascular area (Fig. 2B, E, H,
and I). The proliferation rate of VECs was significantly increased
whereas vascular area was reduced in Lats1/2 cKO retina (Fig.
2K-M) and expression of YAP target genes was significantly
increased in Lats1/2 cKO endothelial cells (Fig. S5). These results
contrasted with the proliferation phenotype and gene expression
in the Yap/Taz cKO retina (Fig. 1K-M and S5). Although other
effectors might be affected in the Lats1/2 cKO mice, these data
suggest that nuclear YAP/TAZ might be mainly required for
VECs proliferation, but not for cell migration.

Loss of CDC42 caused abnormal vessel morphology and
migration defect

The Rho GTPase CDC42 has been shown to be required
for blood vessel formation during vasculogenesis by promoting
filopodia formation in endothelial tip cells (17, 18, 27, 28). To
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Fig. 5. Cytoplasmic YAP regulates CDC42 activity in HUVEC. (A) Scratch
assay of YAP/TAZ knockdown HUVECs expressing Venus or YAPS127D. (B)
Quantification of invaded area within the scratched region (n=3); mean
± SD, *P<0.01, N.S.; not significant, Ven,; Venous, S127D; YAPS127D. (C)
Scratch assay of YAP/TAZ knockdown HUVECs expressing YAPS112A. (D)
Quantification of invaded area within the scratched region (n=3); mean ±
SD, N.S.; not significant, S112A; YAPS112A. (E) Active-CDC42 pull-down assay
of YAPS127D-lentivirus-infected (S127D) and YAPS112A-adenovirus-infected
(S112A) HUVECs. CDC42, YAP, and GAPDH expression levels are detected by
western blot analysis. Scale bars represent 50 μm (A and C).

confirm the activity of CDC42 in the formation of filopodia, we
combined the Cdc42flox/flox allele (29) with Pdgfb-iCreERT2 mice
to generate an endothelial specific deletion of Cdc42, Cdc42flox/flox;
Pdgfb-iCreERT2 (referred to as Cdc42 cKO). Cdc42 cKO retinas
exhibited reduced radical extension of vasculature at P5 (Fig 3A,
D, and G). The vascular density was also reduced in Cdc42 cKO
mice (Fig. 3B, E, and I). The number of tip cells at the sprouting
front did not show a significant difference between Cdc42 cKO
and the littermate controls (Fig. 3C, F and J).

Cdc42 cKO retina tip cells had few filopodia (Fig. 3M), and
lacking of filopodia in tip cells was also observed in Yap/Taz
cKO and Lats1/2 cKO retinas (Fig. 3L, N). Quantitative anal-
ysis showed a significant decrease in filopodia density in these
mice (Fig. 3O). The converging phenotype of endothelial specific
deletion of Yap/Taz, Cdc42, or Lats1/2 in the filopodia-mediated
vascular sprouting and branching in the retina suggests that these
molecules might operate in a common pathway in angiogenic tip
cell development.

YAP and TAZ regulate CDC42 activity in migrating endothe-
lial cells

The similar tip cell phenotype in Yap/Taz cKO and Cdc42 cKO
mice lead us to examine how YAP/TAZ regulates endothelial cell
migration and whether YAP and TAZ regulate CDC42 activity

and its cellular localization in endothelial cells. We depleted
YAP and TAZ in vitro in human umbilical vein endothelial cells
(HUVECs) using lentiviruses expressing short hairpin RNAs
targeting human YAP and TAZ, and assessed HUVECs migration
by a wound healing scratch assay. To distinguish the effect of
proliferation from cell migration, HUVECs were treated with
hydroxyurea for 4 hours before the migration assay. Quantifi-
cation analysis of the invaded area 16 hours after the scratch
demonstrated that knocking down YAP and TAZ in HUVECs
inhibited cell migration (Fig. 4A and B). The cell migration defect
was exacerbated when both YAP and TAZ were knocked down,
consistent with the mouse in vivo data showing that YAP and TAZ
are required for cell migration and that this requirement is gene
dosage-dependent.

We found that, while the total CDC42 level did not change,
the level of active CDC42 was greatly reduced upon knock-
down of YAP and TAZ (Fig. 4C). For better visualization of
active CDC42 in a single cell, we transfected HUVECs with a
GFP-tagged CDC42/RAC interactive binding domain of neural
Wiskott Aldrich syndrome protein (GFP-N-WASP)(30), which
binds to endogenous active CDC42. The active CDC42 was lo-
cated at the lamellipodial edge of the control HUVECs (Fig.
4D). In YAP/TAZ knockdown HUVECs, only active CDC42
was diminished in the protruding edge (Fig. 4D), while CDC42
localization was not disrupted (Fig. 4E), suggesting that YAP
and TAZ regulate CDC42 activation rather than its cellular
localization in HUVECs. The migration defect in YAP/TAZ
knockdown HUVECs can be rescued by a constitutively ac-
tive form of CDC42 (CDC42F28L) (Fig. 4F), which is capable
of spontaneously exchanging GDP for GTP(31, 32), suggesting
that YAP/TAZ regulation of the HUVEC migration at least in
part channels through CDC42 activity. To confirm the effect of
YAP/TAZ in vivo, we examined the expression of phosphorylated-
N-WASP, an effector of CDC42 (33), in the developing mouse
retinal vasculature. Phosphorylated-N-WASP was detected in the
migrating endothelial cells in control retinas at P11; however,
the level of phosphorylated-N-WASP was greatly reduced in the
Yap/Taz cKO retinal VECs (Fig. 4G). These data suggest that
YAP/TAZ regulate cell migration through activating CDC42 me-
diated N-WASP pathway in vivo. Moreover, CDC42 activity was
down regulated in the brain endothelial cells from Yap/Taz cKO
mice. (Fig. 4H). Collectively, these observations indicate that the
endothelial migration defect in the Yap/Taz cKO retinas is at least
partially due to the downregulation of CDC42 activity.

Cytoplasmic YAP promotes endothelial cell migration
YAP is a mechanical sensor whose cellular localization

changes in response to various environmental stimuli includ-
ing cell-cell interaction and alterations of cytoskeletal dynamics
(34, 35). We assessed whether YAP cellular localization affected
CDC42 activity. When HUVECs were at low density, YAP was
localized in the nucleus and translocated to the cytoplasm when
cells reached confluency (Fig. S6A). Consequently, the level
of phosphorylated YAP was greatly upregulated in the over-
confluent cells (Fig. S6B). The active CDC42 level also increased
dramatically in the over-confluent cells compared with the cells
at low density (Fig. S6B). In the wound scratch assay on over-
confluent HUVECs, YAP remained in the cytoplasm while the
cells migrated (Fig. S6C), suggesting a pro-migratory role of the
cytoplasmic YAP. The decrease of CDC42 activity in LATS1/2
knockdown HUVEC and Lats1/2 cKO brain endothelial cells
(Fig. S6D and E) further supports the hypothesis that the cyto-
plasmic YAP regulates the migration of endothelial cells.

To further investigate whether cytoplasmic YAP promotes
cell migration and activates CDC42, we transduced HUVECs
with a lentivirus expressing YAPS127D. Substitution of Ser127
with Asp (S127D) generates a YAP protein that is sequestered
in the cytoplasm mimicking phospho-YAP (Fig. S7). HUVECs
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treated with lenti-YAPS127D migrated with a trend faster than
cells treated with the control lentivirus (Venus), although the
difference in migration did not reach significance (Fig. 5A
and B). YAPS127D did partially rescue the migration defects
caused by shRNA-mediated YAP/TAZ knockdown, suggesting
that phospho-YAP promotes endothelial cell migration (Fig. 5A
and B). We further examined the effect of nuclear YAP, using a
constitutively active form of nuclear YAP (YAPS112A, in which
Serine 112 is mutated to Alanine) in retinal angiogenesis, by
breeding Pdgfb-iCreERT2 with transgenic mice under the con-
trol of CAG-LoxP-CAT-Stop-Loxp cassette. No substantial ef-
fect on retinal angiogenesis was detected in Tg-YAPS112A(Fig.
S8), suggesting that nuclear YAPS112A overexpression does
not alter neovasculature formation in the retina. Unlike the
Lats1/2 cKO phenotype, VEC proliferation was not upregulated
by YAPS112A although YAP targets genes (Ctgf and Cyr61)
were upregulated in VECs (Fig. S8). Notably, YAPS112A did not
rescue the migration defect in YAP/TAZ knockdown HUVECs
(Fig. 5C and D). To examine whether this pro-migration func-
tion of YAP is through activation of CDC42, we overexpressed
YAPS127D in HUVECs and found that the level of active CDC42
was greatly increased (Fig. 5E). The reduction of active CDC42
with shRNA-mediated YAP/TAZ knockdown was also rescued by
YAPS127D, but not by YAPS112A expression (Fig. 5E). These re-
sults indicate an important role of cytoplasmic YAP in promoting
cell migration by activating CDC42 (Fig. S9). The partial rescue of
the cell migration and CDC42 activity with YAPS127D could be
due to the fact that only the phospho-YAP mimic is overexpressed
in the HUVECs in which both YAP and TAZ are knocked down.
Although YAP and TAZ play redundant roles in regulating retinal
angiogenesis, they may have distinct functions in interacting with
different proteins in the cytoplasm to regulate cell migration.

Discussion

Angiogenesis is a highly regulated process. This reflects the po-
tentially detrimental consequences of a deficiency or an excess of
blood vessels. The Hippo signaling pathway has been implicated
in vascular development (36-38) but the underlying mechanisms
have not been fully described. In this study, we found that the
cytoplasmically localized phospho-YAP, which is not involved in
transcription, plays an important role in promoting cell migration
via activating CDC42.

Cell autonomous function of YAP/TAZ vascular development
in vivo. A migration defect in epithelial-mesenchymal transition
(EMT) during cardiac cushion formation causes early embryonic
lethality instigated by deletion of a floxed Yap allele using Tie2-
Cre. This made it difficult to study YAP function in the developing
vasculature (37). Global knockdown of Yap via siRNA injection in
mice revealed that YAP is important for mediating the stability of
endothelial cell junction and vascular remodeling (36), however,
the cell autonomous function of YAP could not be addressed due
to the systemic distribution of the siRNA. We report here that
deletion of Yap using endothelial cell-expressing Pdgfb-iCreERT2
allows for assessment of postnatal retinal vascular development.
Combined endothelial deletion of Yap and Taz in mice revealed
gene dosage-dependent effects on retinal vascular sprouting, en-
dothelial cell proliferation, and migration.

We found that YAP target genes such as Ctgf and Cyr61
are down regulated in Yap/Taz cKO brain endothelial cells, while
they are up-regulated in Lats1/2 cKO endothelial cells, suggesting
that transcriptional activity of YAP/TAZ might contribute to
the regulation of proliferation in endothelial cells. In contrast
to Yap/Taz cKO and Lats1/2 cKO, YAPS112A overexpression
alone is insufficient for retinal VEC proliferation, and the level
or strength of YAP activity or additional factors such as TAZ
may control EC proliferation. Furthermore, nuclear YAPS112A
overexpression in transgenic mice does not alter angiogenesis

in the retina as opposed to the vascular defects in Lats1/2 cKO
mice, suggesting that LATS1/2 could regulate other effectors,
in addition to the subcellular localization of YAP/TAZ for the
vascular morphogenesis.

The majority of studies of YAP and TAZ report their tran-
scriptional activity in the nucleus via association with TEAD
transcription factors and that phosphorylation of YAP and TAZ
by the upstream kinases induces their cytoplasmic retention and
degradation (20). Studies have revealed that phosphorylated YAP
and TAZ are associated with 14-3-3 to bind to proteins in the cy-
toplasmic and tight junctions (39, 40). In kidney cells, it has been
reported that cytoplasmic YAP and TAZ interact with angiomotin
(AMOT) to facilitate the localization of YAP and TAZ to tight
junctions and to promote phosphorylation by the upstream ki-
nases in the Hippo pathway (41). In addition, cytoplasmically
localized phospho-YAP and -TAZ have been shown to interact
with DVL to inhibit Wnt/β-catenin and SMAD signaling (42, 43).
Expression of YAPS112A in YAP/TAZ knockdown HUVECs
cannot rescue the migration defect while the cytoplasmic mutant
YAPS127D can, suggesting that cytoplasmic YAP but not nuclear
YAP is required for cell migration. Hence, our data reveal a
previously unrecognized function of cytoplasmic YAP/TAZ in the
regulation of endothelial cell migration.

The crosstalk between Hippo signaling and CDC42. The
small Rho family GTPase CDC42 is required for lumen forma-
tion during vasculogenesis and filopodia formation in endothe-
lial cells (17, 27, 44). When Cdc42 was deleted in endothelial
cells using Cdh5(PAC)-CreERT2 (17), vascular extension was not
significantly changed between the Cdc42 mutant and littermate
controls. In our study, we observed a reduced vascular extension
phenotype using Pdgfb-iCreERT2 to delete the floxed Cdc42 al-
lele. The difference in the phenotype between these two studies
could be due to the distinct Cre line used and the timing of
tamoxifen administration. A previous study reported that dele-
tion of Cdc42 in kidney progenitor cells resulted in reduced YAP
nuclear localization and target gene expression, suggesting that
CDC42 acts upstream of YAP in mouse kidney development (45).
Our study demonstrated that cytoplasmic YAP promoted CDC42
activation, providing a complementary mechanism of crosstalk
between the Hippo pathway and CDC42. How cytoplasmic YAP
regulates CDC42 activity in endothelial cell migration remains to
be defined. A recent study indicates that YAP regulates RhoA
activity through the controlling the expression of ARHGAP29
(Rho GTPase activating protein) (46). While CDC42 is not able
to be directly activated by YAPS127D, there is a possibility that
cytoplasmic YAP regulates CDC42-GEF or CDC42-GAP activity
in migrating endothelial cells. The result of the rescue experiment
using CDC42F28L, which can bind to GTP in the absence of GEF,
supports this hypothesis.

YAP and TAZ join a collection of cellular factors and signal-
ing molecules with the known ability to promote vascular sprout-
ing and angiogenesis. Although our findings clearly demonstrate
that YAP can activate CDC42 activity to promote endothelial cell
migration, multiple mechanisms likely contribute. More evidence
continues to demonstrate crosstalk between different signaling
pathways to control vascular development. The Notch, VEGF,
and BMP signaling pathways have been shown to play impor-
tant roles in regulating vascular sprouting and tip cell formation
during angiogenesis (9, 12-14). One report showed that BMP9
crosstalks with the Hippo pathway by repressing YAP target genes
in endothelial cells (47). It seems possible that, in turn, YAP and
TAZ could regulate BMP, Notch, and other pathways to con-
trol vascular development. Future investigations would need to
identify the cellular mechanism underlying how cytoplasmic YAP
activates CDC42 and to test the potential synergistic activities
between YAP and regulators in other signaling pathways. The
new findings of cytoplasmic YAP activity may help to develop
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pharmacologic and genetic strategies to further enhance the pro-
angiogenic potential for treating patients suffering from ischemic
diseases.

Materials and Methods
Animals

All animal experiments were performed with the approval of the in-
stitutional animal care and use committee of Cincinnati Children’s Hospital
Medical Center. Please see SI Materials and Methods for origins of knockout
and transgenic mice.

Cell culture
HUVECs were maintained in EGM-2 medium (Lonza) and were infected

with an adenovirus, retrovirus, and lentiviruses. Plasmid transfection was
performed using PolyJet DNA In Vitro Transfection Reagent (Signagen Lab-
oratories). Additional details can be found in SI Materials and Methods.

Immunostaining and EdU labeling.
Eyes were fixed with 4% paraformaldehyde (PFA) for 1 hour, and then

retinas were incubated with IB4-FITC (Molecular Probes) overnight. For EdU
studies, P4 neonates were administered an intraperitoneal (IP) injection

of 5-ethynyl-2-deoxyuridine (EdU, 5μg/g of mouse body weight). EdU in-
corporation was assessed using Click-IT EdU system (Invitrogen). Detailed
information is described in SI Materials and Methods.

Active CDC42 assay
CDC42 activity was performed as previously described (48). Additional

details can be found in SI Materials and Methods.
Statistics
All datasets were taken from n ≥ 3 biological replicates. Data are

presented as mean ± SD. We calculated p values with unpaired Student’s t test
or Tukey-Kramer test with Excel (Microsoft Office); P < 0.05 was considered
significant.
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