This pdf of your paper in *Deer and People* belongs to the publishers Oxbow Books and it is their copyright.

As author you are licenced to make up to 50 offprints from it, but beyond that you may not publish it on the World Wide Web until three years from publication (December 2014), unless the site is a limited access intranet (password protected). If you have queries about this please contact the editorial department at Oxbow Books (editorial@oxbowbooks.com).
An offprint from

Deer and People

edited by

Karis Baker, Ruth Carden
and Richard Madgwick

Contents

Preface .. vii
List of Contributors ... ix

Deer Dispersal and Interactions with Humans

1. Genetic Analyses of Natural and Anthropogenic Movements 2
 in Deer
 Allan D. McDevitt and Frank E. Zachos

2. Historic Zoology of the European Fallow Deer, *Dama dama dama*:
 Evidence from biogeography, archaeology and genetics 13
 Marco Masseti and Cristiano Vernesi

3. Human–Deer Interactions in Sardinia ... 23
 Gabriele Carenti, Elisabetta Grassi, Stefano Masala and Barbara Wilkens

4. Enduring Relationships: Cervids and humans from Late Pleistocene
 to modern times in the Yukon River basin of the western
 Subarctic of North America .. 34
 Carol Gelvin-Reymiller

Cervid Exploitation and Symbolic Significance
in Prehistoric and Early Historic Periods

5. Hunting, Performance and Incorporation: Human–deer encounter
 in Late Bronze Age Crete ... 48
 Kerry Harris

6. Archaeozoology of the Red Deer in the Southern Balkan Peninsula
 and the Aegean Region during Antiquity: Confronting
 bones and paintings ... 59
 Katerina Trantalidou and Marco Masseti

7. The Italian Neolithic Red Deer: Molino Casarotto .. 78
 Katherine Boyle

8. Evidence for the Variable Exploitation of Cervids at the Early
 Bronze Age Site of Kaposújlak–Várdomb
 (South Transdanubia, Hungary) .. 92
 Erika Gál

9. Red Deer Hunting and Exploitation in the Early Neolithic Settlement
 of Rottenburg-Fröbelweg, South Germany .. 103
 Elisabeth Stephan
Contents

10. Red Deer Antlers in Neolithic Britain and their Use in the Construction of Monuments ... 119
 Fay Worley and Dale Serjeantson

11. Antler Industry in the Upper Magdalenian from Le Rond du Barry, Polignac, Haute-Loire, France ... 132
 Delphine Remy and Roger de Bayle des Hermens†

12. Deer (Rangifer tarandus and Cervus elaphus) Remains from the Final Gravettian of the Abri Pataud and their Importance to Humans ... 145
 Carole Vercoutère, Laurent Crépin, Dorothee G. Drucker, Laurent Chiotti, Dominique Henry-Gambier and Roland Nespoulet

13. Deer Stones and Rock Art in Mongolia during the Second–First Millennia BC ... 159
 Kenneth Lymer, William Fitzhugh and Richard Kortum

Zooarchaeological Analyses from the Roman and Medieval UK

14. Chasing Sylvia’s Stag: Placing deer in the countryside of Roman Britain ... 174
 Martyn G. Allen

15. Deer and Humans in South Wales during the Roman and Medieval Periods ... 187
 Mark Maltby and Ellen Hambleton

16. Making a Fast Buck in the Middle Ages: Evidence for poaching from Medieval Wakefield ... 200
 Matilda Holmes

17. ‘Playing the stag’ in Medieval Middlesex? A perforated antler from South Mimms Castle – parallels and possibilities 208
 John Clark

Landscapes

18. Forest Law in the Landscape: Not the clearing of the woods, but the running of the deer? ... 218
 John Langton

19. Parks and Designed Landscapes in Medieval Wales ... 231
 Spencer Gavin Smith

20. Preliminary Fieldwork and Analysis of Three Scottish Medieval ‘Deer Parks’ ... 240
 Derek Hall, Kevin Malloy and Richard Oram
Contents

Post-Medieval Hunting in the UK

21. English Icons: The deer and the horse .. 248
 Mandy de Belin

22. Femmes Fatale: Iconography and the courtly huntress
 in the Later Middle Ages and Renaissance .. 257
 Richard Almond

Deer Management

23. Supplemental Feeding and our Attitude towards Red Deer
 and Natural Mortality ... 270
 Karoline T. Schmidt

24. Estimating the Relative Abundance of the Last Rhodian
 Fallow Deer, Dama dama dama, Greece, through Spotlight
 Counts: a pilot study .. 280
 Marco Masseti, Anna M. De Marinis, Nikos Theodoridis
 and Konstantinia Papastergiou
Making a Fast Buck in the Middle Ages: Evidence for poaching from Medieval Wakefield

Matilda Holmes

Introduction
Animal bones are often one of the most abundant finds recovered from archaeological sites. They can represent domestic waste or that resulting from industrial or craft-based processes. However, occasionally they are the result of events that are harder to classify. In the deposit discussed in this paper, a large number of fallow deer bones were recovered from a single cess pit, context (20141), in Wakefield, northern England dated to the fifteenth or sixteenth centuries. This paper will consider the likely events that led to the deposition of this group of bones, and what this can tell us of those living in the associated property.

Methods
Site excavation
During November 2008, Birmingham Archaeology excavated a site to the west of the centre of Wakefield, northern England (NGR SE 328 207) in advance of a multi-use development (McNicol and Hewitson 2009). Excavation revealed three burgage plots dating from the Early Medieval period that fronted onto Westgate, a street which is still in use today. The backyards were used for industrial processes, most likely cloth manufacture, and the tenements at the front of these plots likely housed the workers and their families who would have been of relatively modest status. The group of bones central to this discussion came from a domed, stone-lined cess pit, situated at the south-western edge of the middle tenement, dated by other artefacts from the same fill to the Late Medieval period (fifteenth to sixteenth century). The cess deposits were in a clear sequence: the bottom was lined with clay, and then a twenty centimetre layer of organic fill was sealed by another layer of organic waste which contained a
large amount of animal bone that forms the basis of this discussion. The plant macrofossil evidence (Grinter 2009) suggests that there was an area of stabling nearby (probably in the backyard of a neighbouring tenement), and open common or agricultural land directly to the north-west.

Results

Although fallow deer (*Dama dama*) bones predominate in the fill of the cess pit, fragments from a cattle (*Bos* sp.) mandible and maxilla and a pig (*Sus* sp.) ulna were also recovered, in similar condition to the deer remains. The inclusion of these bones from other species is most likely coincidental, and it is the group of fallow deer bones that will be explored further in this paper. The bones were in good condition with no refits and only one fresh break suggesting good preservation coupled with limited, if any, post depositional movement. There was no evidence of canid or rodent gnawing, indicating they were buried quickly. No bones had been burnt or exhibited craft working modifications, although butchery marks were consistent with the removal of antlers from the skull and subsequent chopping and sawing of the antlers, as well as the disarticulation of the femur and pelvis with a knife. Jointing of the carcass was evidenced by transverse chops through a femur and a cervical vertebra that is presumed to be fallow deer, but could only be identified to the level of cervid species.

As the majority of bones appear to have been buried rapidly after deposition, and were from one context, it is suggested that they result from one activity that occurred over a short time.

The fallow deer assemblage was dominated by fragments from the metapodials (lower leg) as well as a few other limb bones as Table 16.1 shows. There were no girdle elements (pelves or scapulae) or countable vertebrae, with the exception of the aforementioned vertebra. One complete skull, without antlers, and one partial skull with antlers, two mandibles and two antlers with the frontal bone attached were also recovered, as well as various other antler fragments. Foot bones (phalanges) were recorded, but not in large enough quantities to suggest they were deposited articulating with the lower leg bones. Although this could be an example of recovery bias (i.e. being missed during hand excavation), fallow deer phalanges are robust and fairly large, and with no sieved samples to

<table>
<thead>
<tr>
<th>Element</th>
<th>MNE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antler</td>
<td>2</td>
</tr>
<tr>
<td>Skull</td>
<td>2</td>
</tr>
<tr>
<td>Mandible*</td>
<td>2</td>
</tr>
<tr>
<td>Radius P</td>
<td>1</td>
</tr>
<tr>
<td>Radius D</td>
<td>1</td>
</tr>
<tr>
<td>Ulna</td>
<td>1</td>
</tr>
<tr>
<td>Femur P</td>
<td>1</td>
</tr>
<tr>
<td>Femur D</td>
<td>1</td>
</tr>
<tr>
<td>Tibia D</td>
<td>1</td>
</tr>
<tr>
<td>Calcaneus</td>
<td>1</td>
</tr>
<tr>
<td>Metacarpal P</td>
<td>24</td>
</tr>
<tr>
<td>Metacarpal D</td>
<td>22</td>
</tr>
<tr>
<td>Metapodial D</td>
<td>1</td>
</tr>
<tr>
<td>Metatarsal P</td>
<td>18</td>
</tr>
<tr>
<td>Metatarsal D</td>
<td>18</td>
</tr>
<tr>
<td>1st phalange**</td>
<td>2</td>
</tr>
<tr>
<td>2nd phalange**</td>
<td>1</td>
</tr>
<tr>
<td>3rd phalange**</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

** adjusted for frequency bias
* mandibles with molars
P = proximal end; D = distal end

Table 16.1. Minimum number of fallow deer elements recorded from Wakefield.
compare with, the degree to which this explains their apparent absence cannot be confirmed.

Based on the greatest number of left proximal metacarpals at least thirteen animals are represented in the assemblage.

Work carried out on fallow deer bones from Dudley Castle has shown that measurements from metapodia can be used to investigate sexual dimorphism with some success, as there is a notable difference between the relatively short and slender female (doe) and the longer and more robust male (buck) metapodia (Thomas 2005, 61). These measurements (greatest length against smallest diameter) have been plotted in Figure 16.1 using the most abundant complete bones present (the metatarsals). These elements show a clear separation between a large grouping similar to metatarsi of does from Dudley Castle and a single element corresponding with those of bucks. There are also two ambiguous measurements, which may be bucks or does. The presence of bucks is also apparent from at least two antlers with parts of the skull connected, meaning they were not from chance finds of cast antler.

The most abundant data available for investigating the age at death of the fallow deer was from bone fusion (Carden and Hayden 2006). Figure 16.2 shows that, although most bones were fully fused, the animals were not selected for a cull at a particular age. Instead, there were a mixture of new born animals and those which died before reaching 23 months, 29 months and 42 months of age.

The presence of bucks with sets of antlers narrows the season of death for these animals to between early summer, when the antlers are nearly full grown until after the rut when they are shed during March and April (Chapman and Chapman 1997, 106). However, the best indication for seasonality comes from the presence of fawns which are traditionally born from May to late June (Chapman and Chapman 1997, 139). Thus, the presence of neonatal animals implies that the likely season in which these animals were killed was between May and July.

Discussion

Origins of the assemblage

The assemblage is characterised by a predominance of metapodials, which are bones of little meat value. When combined with the scarcity of limb bones and vertebrae this suggests that the deposit did not represent food waste as these elements are commonly removed with joints of meat, or filleted out as part of the secondary butchery process. Antler and metapodials are also useful sources of raw material for craftsmen; however, although the antler has been heavily chopped and sawn there are no signs of offcuts or working on these elements, so their disposal as a result of craft-work may also be discounted.
Once food and craft-based origins have been disregarded, the implication is that the assemblage derives from some other form of processing waste. Two closely linked modes of processing frequently provide skeletal patterns observed within this deposit—those of primary butchery and skin processing. The particular elements discarded from each of these processes vary with the need of the individual practitioner and the anatomy of the animal. For example, when domestic animals were skinned and the pelts processed by the tanner or whittawyer, they often included the feet, tail and sometimes horn cores and metapodials of the animal, but generally not the skull, which would have made the skin heavy and cumbersome to move (Serjeantson 1989, 136–139; Armitage 1990, 84; Albarella 2003, 77). However, a group of roe deer (*Capreolus capreolus*) bones were recovered from a tannery in London, which included the antlers, suggested by the authors to have been left on to aid identification (Armitage and Butler 2005). Indeed this assemblage is similar to contemporary skin processing deposits (e.g. Harman 1996; Holmes 2009), except for the inclusion of skull and antler fragments, and the paucity of phalanges. The other possibility, that the bones originated from primary butchery activities, should also be considered. The butcher may be expected to remove the skin and pass it on to the tanner or tawyer, as well as dismembering the carcass, thereby removing the limb bones and vertebrae with the joints of meat. The skull may also have been passed on as a source of cheek meats, tongue and brawn, although it is not unreasonable to suggest that antlers may have been removed to make the head more portable.

Given the relative absence of phalanges and caudal (tail) vertebrae, elements that are commonly removed with the skin and taken elsewhere, it is therefore most likely that this group of bones were deposited following processing of the carcass—after skinning and jointing for meat— the metapodials and antlers were disposed of as waste products of the primary butchery process.

Procurement of venison

Legally, the right to hunt deer during the fifteenth and sixteenth centuries was reserved for the aristocracy, and the house within which the fallow deer were recovered would not have accommodated a high status household. It is also unlikely that the inhabitants of this part of Wakefield could have legitimately bought this quantity of venison. In an attempt to keep the status of venison as a highly desirable meat, a proscription was placed upon its sale or purchase until the early nineteenth century (Munsche 1981, 177; Manning 1993, 11), thereby restricting the availability, reinforcing social obligations through gift giving and making obvious to law enforcers that lower classes in possession of the venison were not doing so legally (Birrell 1996, 85).
As well as rules regarding who could hunt deer or have access to venison, there were also rules of a more practical nature. Not only was hunting deer prohibited during the fawning (birthing) season, rights of way through parks were often restricted at this time to minimise disturbance to the does (Almond 2003, 86). In this instance this was not the case – there is clear evidence that the deer were hunted during this time from the presence of new born fawns. Additionally, legitimate hunts would be carried out in seasons specific to the prey – for example, bucks would be hunted between June and September, and does between September and February (Cummins 1988, 33; Almond 2003, 87). The presence of both bucks and does in the Wakefield assemblage again points to nefarious origins, as does the likely season of death (May to July), which is outside the official hunting seasons for both sexes.

Furthermore, the representation of carcass parts is unusual. Traditionally, fallow deer were hunted in the same way as red deer (*Cervus elaphus*), either on horseback with a pack of hounds, or by being rounded up and driven towards hunters who would have killed many at once (Almond 2003, 22). Following the hunting and killing of a deer on a legitimate hunt, there was a strict ‘unmaking’ ceremony, described in Medieval hunting manuals, whereby specific portions of the carcass were redistributed in particular ways. As a result, the hind legs were taken to high-status sites, while hunt servants were given the foreleg (Sykes 2007, 150–153; Thomas 2007, 137). This process is reflected archaeologically, where a predominance of hind limb bones has been observed at many high status sites such as the nearby Sandal Castle (Griffith *et al.* 1983) as well as Dudley Castle (Thomas 2003), Okehampton Castle (Maltby 1982) and Launceston Castle (Albarella and Davis 1996). This bias can be directly related to the breaking up of the deer carcass in a highly ritualised manner. If the body parts from Wakefield are compared with those recorded at contemporary high-status sites (Table 16.2), it is clear that the bones from the cess pit are atypical of the patterns recorded at more likely legitimate locations as there are considerably fewer meat-bearing bones, and greater numbers of lower fore leg bones (Figure 16.3).

The evidence implies that the assemblage excavated at Wakefield was not one of legitimate gain: (i) the remains of so many deer outside of a high-status

<table>
<thead>
<tr>
<th>Carcass Parts</th>
<th>Dudley Castle</th>
<th>Sandal Castle</th>
<th>Okehampton Castle</th>
<th>Launceston Castle</th>
<th>Wakefield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandible</td>
<td>-</td>
<td>14</td>
<td>28</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Vertebrae</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Upper Foreleg</td>
<td>7.3</td>
<td>14.5</td>
<td>11.3</td>
<td>5.7</td>
<td>2</td>
</tr>
<tr>
<td>Lower Foreleg</td>
<td>19</td>
<td>34</td>
<td>45</td>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td>Upper Hindleg</td>
<td>55.2</td>
<td>28.5</td>
<td>54</td>
<td>51.3</td>
<td>2.4</td>
</tr>
<tr>
<td>Lower Hindleg</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>75</td>
</tr>
<tr>
<td>Phalanges</td>
<td>16</td>
<td>-</td>
<td>45</td>
<td>12</td>
<td>5.3</td>
</tr>
<tr>
<td>Total Number</td>
<td>570.5</td>
<td>622</td>
<td>396</td>
<td>163</td>
<td>96</td>
</tr>
</tbody>
</table>

Table 16.2. Relative proportion of carcass parts recorded at Wakefield and selected high-status sites referred to in the text. Due to the way data were recorded in the comparanda, this is given as the mean proportion of the most common anatomical element. Upper foreleg = scapula, humerus, radius and ulna; upper hindleg = pelvis, femur, tibia, astragalus and calcaneus; lower legs = metapodials.
context; (ii) the presence of animals killed out of season; (iii) an atypical representation of anatomical elements usually subject to ritualised distribution; (iv) and the rapid disposal of the remains of one episode of carcass processing in the backyard of a house with no other evidence of butchery activity.

During the Medieval period restrictions on hunting game, and particularly deer, were not rigorously adhered to (Manning 1993, 66), so that by the end of the sixteenth century poaching was rife. Poaching was prevalent amongst the upper classes that did it for sport and social engagement, and the peasant classes who supplied a prolific black market in venison and deer skin (Birrell 1996; 2001). The act of poaching itself was a potent social statement, reflecting an unwillingness of the peasant classes to accept a law that considered wild creatures as possessions of the gentry (Manning 1993, 34). Nonetheless, the risk of receiving and distributing venison was a crime punishable by fine which, if it could not be paid, would result in the perpetrator being imprisoned. Research undertaken by Jean Birrell (1996) into the legal proceedings of poaching trials has indicated that receivers and peasant poachers were often poor, although there was a thriving market for venison for those prepared to chance the consequences.

It is likely that the deer were poached from a nearby source. Wakefield was surrounded by many deer parks and the largest called the ‘New Park’ contained around 200 fallow deer at this time; others are recorded at Sandal Castle and Barnsdale Forest (Shirley 1867, 218) so deer would have been readily available. Indeed reference is made to a ‘fellowship’ of poachers who targeted Wakefield New Park (Manning 1993, 43). Poachers would have found that disposing of venison through a receiver in a nearby town (such as Wakefield) could ‘provide a market and a welcome degree of anonymity’ (Birrell 1996, 85–86).

From this address on Westgate, therefore, at sometime during the fifteenth or sixteenth century, the evidence suggests that someone received the poached carcasses of at least thirteen fallow deer, the skins were removed and disposed of and the carcasses cut up and sold on as meat. The highly conspicuous antlers and the lower limb bones which contained little meat or marrow were put into a cess pit and rapidly backfilled to keep the evidence hidden. Those who lived here must have been willing to risk a fine and imprisonment for this act, which suggests they were not above living outside the law.
Conclusions

Little direct archaeological evidence for poaching has previously been recorded, with the exception of the remains of large numbers of red and fallow deer from the rural site of Lyveden, Northamptonshire (Grant 1971; Grant 1975). The likely consumption of poached deer in the urban context has been inferred by Sykes (2007, 156–7), albeit from a small sample of bones from five sites. In both rural and urban cases, the presence of deer remains from poached animals has been conjectured based on the deposition of elements from all parts of the carcass; a pattern that does not conform to legitimate sources typical of high-status sites and game keepers’ residences. Deer remains from the Wakefield excavation offer an important contribution to current knowledge, providing the first hard evidence in an urban context for the presence of poachers and the distribution of venison on the black market. Furthermore, the site has presented a good case for potential applications of animal bone evidence. When used in conjunction with other sources of evidence they can provide nuanced interpretations of the day to day life of people living and working in the urban environment.

Acknowledgements

Thanks to Birmingham Archaeology for the use of their site data and to Richard Thomas for access to metatarsal measurements from Dudley Castle and for commenting on an earlier draft.

References

16. Making a Fast Buck in the Middle Ages

