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SUMMARY
The increasing deployment of multiple unmanned vehicles systems has generated large
research interest in recent decades. This paper therefore provides a detailed survey to
review a range of techniques related to the operation of multi-vehicle systems in different
environmental domains including land based, aerospace and marine with the specific
focuses placed on formation control and cooperative motion planning. Differing from
other related papers, this paper pays special attention to the collision avoidance problem
and specifically discusses and reviews those methods that adopt flexible formation shape
to achieve collision avoidance for multi-vehicle systems. In the conclusions, some open
research areas with suggested technologies have been proposed to facilitate the future
research development.

KEYWORDS: collision avoidance; cooperative path planning; formation control;
trajectory optimisation; unmanned vehicle formation.

1. Introduction
Over the past decade, there has been an increasing trend towards the development and
deployment of unmanned vehicles. Due to an improved degree of autonomy and personnel
risk minimisation through the reduction of the human operator interaction, unmanned
vehicles are being used in a number of specialist fields, ranging from military operations
to search and rescue, to carry out high risk tasks. In particular, for military operations,
the importance of increasing the use of unmanned vehicles in the future battlefield has
been addressed by the U.S. Department of Defense (DoD). In their report, published in
2011, it was noted that an increasing percentage of the defense budget had already been
allocated to the studying, developing and improving of unmanned vehicle systems, with
the vision of creating seamless integration of unmanned vehicle systems with conventional
military assets1. In addition, UK Ministry of Defence (MoD) has also cast its vision on
unmanned vehicles and subsequently proposed and developed the ‘Unmanned Warriors’
project. This project has first involved more than 50 autonomous vehicles operating in
different environmental domains to demonstrate the cooperation between these vehicles
and their prospective benefits to the future battlefield.2

Depending on its designed mode of operation, an unmanned vehicle can be categorised
as an Unmanned Aerial Vehicle (UAV), an Unmanned Ground Vehicle (UGV), an
Unmanned Surface Vehicle (USV) or an Autonomous Underwater Vehicle (AUV)3. For
further clarity, UGV refers to a vehicle operating while in contact with the ground4

while USV refers to an autonomous marine vehicle that navigates on the water surface5.
A number of practical platforms for each of these autonomous vehicle types have already
been built and deployed. When comparing the applications of these platforms, one of
common limitations that has been noted is that they are typically small in size and low
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in capacity, hence only capable of conducting relatively simple missions. In addition,
most of the present unmanned vehicle platforms have low levels of autonomy while some
are remote-controlled or are only semi-autonomous. To help overcome or mitigate these
problems, it is often more effective to deploy these relatively small vehicles as a fleet in
formation (or multi-vehicle formation system) to carry out tasks since, when compared
to a larger individual vehicle, a fleet is able to cover a wider mission area with improved
system robustness, coordination and fault-tolerant capabilities.

To better deploy multi-vehicle formation systems, extensive formation related studies
have been carried out in recent decades with formation control being the most actively
investigated area. The aim of formation control is to generate appropriate control
commands to drive multiple vehicles to achieve the prescribed constraints on their own
states6, and a large body of the research has focused on consensus based formation
control, which utilises the inter-vehicle distance information to allow the formation to
retain a certain shape while navigating. More recently, the concept of using flexible
formation shapes for collision avoidance purposes has been proposed and studied in
a number of different papers. However, the focus of these research efforts remains on
generating the commands for low-level controllers with the absence of high-level decision
making capability.

In order to overcome this deficiency and thereby promote the utilisation of multi-
vehicle formation systems in complex missions, another research area, i.e. cooperative
motion planning, has become dominant in parallel with formation control. By taking
into account information such as the mission start and end points and the environmental
constraints, the aim of cooperative motion planning is to provide practical guidance
information such as the optimised trajectories for the formation to benefit the
coordination of multiple vehicles7. In addition, when performing the planning, apart
from the costs that are routinely considered in conventional planning, such as the shortest
distance cost, constraints specifically related to the formation itself, such as the required
formation shape, also need to be considered to facilitate the formation control8.

Figure 1 provides a comparison of formation control and cooperative motion planning
by listing the key factors that need to be considered when designing algorithms. For
formation control, in addition to control stability and robustness, vehicle dynamic
constraints are important when designing the controller9; whereas for cooperative motion
planning, safety distance from obstacles, total distance cost, computational time and
trajectory smoothness are key costs when planning the path10;11. It should also be noted
that, as presented in Figure 1, the large overlap between these two research topics clearly
indicates that formation control and cooperative motion planning share a number of
key concepts, and hence they should be working interactively when being implemented
in multi-vehicle formation systems. For example, when performing cooperative motion
planning, the trajectory for each vehicle should be generated with consideration for the
required formation shape so that the shape can be attained efficiently. At the same time,
the formation control strategy should also be capable of evaluating the features of the
generated trajectories and decides whether or not to rigorously follow each individual
path or modify them sufficiently it to avoid collisions.

Based upon the above discussions, in order to intelligently and securely operate a
multi-vehicle formation system, the importance of the formation control and cooperative
motion planning is evident. In fact, a large number of high quality survey papers12–14

have investigated the formation control problem and pointed out several feasible control
approaches including the leader-follower, virtual structure and behaviour-based methods.
However, most of these papers only review mobile robots platforms and do not discuss
the related technologies applied to unmanned vehicles, which have more complex motion
constraints. Also, the absence of the reviewing of cooperative motion planning algorithms
has also prevented these papers from proving a thorough vision on the development of
multi-vehicle platforms.

Therefore, the purpose of this paper is to bridge this gap and to provide a review of
the different approaches to formation control and cooperative motion planning used
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Fig. 1: Comparison of formation control and cooperative motion planning.

by unmanned vehicles over recent decades and to provide a comparison. The key
focus is placed upon the analysis of how the different approaches are used to achieve
various formation behaviours, such as the formation forming, maintenance and variation.
The advantages and disadvantages of each method are analysed to determine common
shortcomings and to consider the development trends for future research.

In addition, since this paper considers unmanned vehicles, which are usually deployed
in practical environments and are required to avoid obstacles, collision avoidance
has become an important criterion when evaluating different methodologies. Specific
attention has been given to those studies that have developed evasive strategies that
implement flexible and varying formation shapes. Such a strategy is able to provide
efficient and effective collision avoidance performance and is therefore generally preferred
for practical applications.

At this juncture it needs to emphasise that motion planning is at times referred to as
path planning, and these two topics are closely related. The subtle difference between
them is that path planning focuses on a collision-free or safe path from start to goal
configuration, disregarding dynamic properties, i.e. velocity and acceleration; whereas,
motion planning is the superset of path planning, with additional dynamic properties
taken into consideration15. As a result, path planning typically refers to the computation
of robot position and orientation geometric specifications only while motion planning
involves evaluation of linear and angular velocities, taking robot or vehicle dynamics
into account. However, because the difference is relatively minor, in many review papers
(such as Tam et al.15, Campell et al.16 and Elbanhawi et al.17), both terms have been used
and share the same meaning. In this paper, a similar convention has been followed and
both motion and path planning have not been particularly distinguished or compared.
However, for reader seeking more in depth differentiation and comparison a paper that
specifically discusses the motion planning problem, readers are referred to Goerzen et
al.18.

The organisation of this article is as follows. In Section 2, a general overview of
the unmanned vehicles formation is presented. The historical development as well
as the system architecture of unmanned vehicles formations are discussed. Section 3
and 4 review the formation control strategies and formation path planning algorithms
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respectively with comprehensive comparison and analysis. Section 5 gives the conclusion
remarks.

2. Unmanned vehicles formation
The concept of formation is inspired by natural animal behaviours such as birds flocking
or fish schooling, where a number of animals adopt certain formations to enhance the
survival of the individuals within a group strategy. By mimicking animal formation
behaviour, groups of unmanned vehicles can be deployed in formation to accomplish
complex tasks and improve the level of system autonomy19. In the 1980s, multi-
robot formation systems had become a pioneering research field. Typical work included
Fukuda's reconfigurable robot system, where the shape of a robot formation can be
adjusted depending on task requirement20, and the ACTor-based robots and equipments
synthetic system (ACTRESS), which is a system architecture allowing multiple robots
to cooperatively accomplish tasks, developed by The Institute of Physical and Chemical
Research, Japan21.

Then, as the technology became more mature, the concept, developed from the multi-
robot systems, paved the way to the utilisation of multiple unmanned vehicle platforms in
real-world applications. One of the crucial applications is the rescue missions carried out
by UGV formations in disaster areas to minimise exploration time and reduce the risk of
further casualties22–24. Similarly, a number of efforts have been put into the deployments
including the area mapping25;26 and border patrol and surveillance27. In addition, some
highly task-oriented missions make use of multiple unmanned vehicles in special cases
such as the lunar polar crater exploration missions conducted using a wheeled UGV, a
legged scout and several immobile payload items28.

It is important to mention that an equivalent scale of the deployment of USV
formations has not been seen in recent decades. However, it does not affect the impact
brought by using the multi-USVs in accomplishing maritime activities in the future.
In the report published by the U.S. Department of Defence (DoD), the importance of
the collaboration between multiple manned vessels and USVs has been addressed. The
primary aim is to extend the hydrographic area where human operations cannot reach1.
Figure 2a shows an example of how manned and unmanned vessels perform a sea mapping
operation. The manned surface vehicle in the middle is acting as the leader vehicle to
guide the two USVs to conduct the mission. Compared with single vessel operation, the
dimensions of the area being explored are significantly increased.

In fact, due to the nature of surface operations of USVs, more important roles are
going to be played by the USV in large scale cross-platform cooperation acting across
different unmanned vehicles. One of the potential utilisations is the cooperation of USVs
with other unmanned vehicles to form an unmanned system network (shown in Figure
2b). The USV is unique in the sense that it is able to communicate with both above and
under water vehicles. In the cooperative formation deployment of multiple unmanned
vehicles, the USV can work as an interchange station such that the real-time information
is gathered by one USV and distributed to other vehicles to improve communication
efficiency29.

2.1. System architecture of multi-vehicle formation
A generic hierarchical architecture formation system has been proposed by Liu and
Bucknall30 as displayed in Figure 3. The structure consists of three layers, i.e. the
Task Management Layer, the Path Planning Layer and the Task Execution Layer31.
The Task Management Layer allocates missions to individual vehicles based upon the
criteria of maximum overall performance and minimum mission time32. A mission can
be generally defined as a set of waypoints including mission start point and end point.
In Gerkey et al.33 and Khamis et al.34, comprehensive reviews regarding the multi-
robot task allocation have been provided with dominant methodologies being listed. It
also should be noted that due to the popularity of the utilisation of neural networks
in solving robotics related problems, in recent years there has been a large amount of
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Fig. 2: USV formation applications. (a) The sea mapping operation accomplished by
formation consisting of USV and manned vehicles. (b) The cooperation between USV,
AUV and UAV. Both are taken from29.

work using artificial neural network (ANN) such as the self-organising map (SOM) to
address multi-task allocation for unmanned vehicles. For example, Zhu et al.35 proposed
to use the SOM to plan tasks for multi-AUV systems and develop a velocity synthesis
method for path planning according to the assigned tasks. Faigl and Hollinger36 also
applied the SOM for AUV systems and have specifically investigated SOM application
in data collection missions. Liu and Bucknall37 expanded utilisation of the SOM to
USV platforms and have integrated the potential field into the SOM to achieve collision
avoidance functionality.

According to mission requirements, the second layer, i.e. the Path Planning Layer,
plans feasible trajectories for the formation. This layer is comprised of three sub modules:
the real-time trajectory modification module, the data acquisition module and the
cooperative path planning module. Among them, the cooperative path planning module
is the core of the system and determines the overall optimised path for each vehicle.
However, since a number of uncertainties may occur along the trajectory in practical
applications, the real-time trajectory modification module is added to the system such
that the formation is able to deal with emergency situations such as a suddenly emerged
obstacle. A good example of integrating path planning capability with the task-planning
requirement can be found at Munoz et al.38, where a unified framework has been
proposed for exploration missions. Also, in Mahmoudzadeh et al.39, a novel combinatorial
conflict-free task assignment and path planning strategy has been proposed for large-
scale underwater missions and based upon such a strategy, Zhu et al.40 incorporated a
biologically inspired neural network (BINN) into the task-allocation algorithm to address
the dynamics constraints of the vehicles when generating the path.

Generated paths will then be passed down to the Task Execution Layer. This layer has
the direct connection with the propulsion system of the unmanned vehicle and generates
the control laws. In order to improve system performance, real-time information, i.e.
vehicle velocity and position, is fed back to the upper layer to modify the trajectory in
the near future, which generates a closed control loop. Present dominant control strategies
include that Dong et al.41 developed an approach adopting a switching interaction
topologies to solve the time-varying formation control problem for UAVs. Yamchi et
al.42 proposed a distributed predictive controller which helps improve system stability
as well as avoid collisions en route for mobile robots. Li et al.43 improved the common
receding horizon formation control to achieve stabilised tracking performance for AUVs.
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Fig. 3: Hierarchical structure of multiple unmanned vehicles system. There are three
layers, i.e. task management layer, path planning layer and task execution layer from top
to bottom30.

2.2. System patterns of multi-vehicle formation
When deploying the formation to efficiently accomplish tasks the choice of tactical
formation shape can be essential. Based upon Campbell et al.16, four commonly used
shapes are summarised as (see Figure 4):r Column shape: The column shape gives a comparatively wide mission area, which is

of special usage in mine sweeping and area mapping missions;r Line shape: The line shape forms a small mission area but can be more useful in a
highly constrained environment;r V shape: The V shape is more suitable in normal operations as it offers a good view
of the neighbouring situation. In the meantime, easy and direct communication can be
established within the formation;r Diamond shape: The diamond shape is a variation to the V shape, and it is also
frequently used in normal operations.

It should be noted that there are no particular restrictions on the choice of formation
shape. As shown in Figure. 3, the shape of formation is determined in the task
management layer and should be selected adaptively according to specific mission
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Fig. 4: Four different formation shapes16.

requirements or environments, thus making the formation ‘deformable’. For example,
when a formation with a wide V shape is about to enter a narrower area, to avoid
collisions with the obstacles the V shape could be modified towards a more linear
shape. In addition, when the formation shape change is taking place, compared with
the conventional approach, the design of the formation control strategy should consider
additional constraints. These include:16:r Inter-vehicle collision avoidance: vehicles in the formation need to consider each

other as additional moving obstacles and take appropriate evasive actions;r Coordinating of multiple vehicles: the designed controller should avoid the
situation that waiting or coming to full stop occurs due to one or more vehicles in
the formation lagging behind;r Avoiding deadlock situation: the movement of the vehicles should be controlled in
such a manner that the scenario where one or more vehicles block the paths of others
does not occur.
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3. Review of formation control strategies
While in operation, the control strategy is important for the formation to maintain
the formation shape and behaviour. Three main types of formation maintenance are
summarised here by the author according to different travel scenarios:r Formation generation and maintenance (Type 1): the formation shape has to be

formed from a condition where the unmanned vehicles are located at random positions
with arbitrary headings. Once attained the shape also needs to be maintained to
continue the mission (shown in Figure 5a).r Formation maintenance during trajectory tracking (Type 2): the formation
shape needs to be rigorously maintained while the formation is in operation following
a predefined trajectory (shown in Figure 5b).r Formation shape variation and re-generation (Type 3): the formation shape
needs to be maintained as defined in Type 2; however, shape also requires adjustment
and re-generation while the formation is avoiding an obstacle (shown in Figure 5c).

To achieve formation maintenance, a number of methods have been proposed including
leader-follower, virtual structure and behaviour-based methods. The first two methods
address the formation maintenance problem better than behaviour-based approach;
whereas, a formation controlled by the behaviour-based approach has a more flexible
formation shape44. The detailed explanations of each method will be provided in the
forthcoming sections with critical assessments. However, differing from the conventional
way of reviewing the formation control, where the main focus has been placed on the
analysis of the controller design as well as the controller's performances, in the following
section, not only the design methods will be specifically reviewed and discussed, each
method will also be compared against to the three formation maintenance types. This is
in fact a new approach to categorise the formation control methods, specifically to assist
with the evaluation of each method's suitability for immediate practical applications.
For example, if one method can achieve all three types of formation maintenance at the
same time, it is evident that in addition to the simple environments containing sparse
obstacles (mainly using the Type 1 and Type 2 maintenance), the controller is also
capable of satisfying the formation shape maintenance requirement for highly complex
environment involving cluttered obstacles or multiple moving obstacles (mainly Type 3
maintenance), and therefore such a method will be better suited for addressing practical
application needs.

3.1. Leader-follower formation control
In the leader-follower control approach, one vehicle is regarded as the group leader with
full access to the overall navigation information and works as the reference vehicle in
the formation. In some cases where system robustness is critical, a virtual leader can be
assigned to replace the actual vehicle in the formation44.

Apart from the leader vehicle, other vehicles in the formation are viewed as followers.
Followers operate under the guidance of the leader with the primary aim being retention
of the formation shape by maintaining the desired distance from and pose angle to the
leader.

Figure 6 illustrates the leader-follower scheme designed by Wang45. Lij and Ψij are
the actual distance and angle between leader and follower vehicle while Ldij and Ψd

ij are
the desired distance and angle. The control task is to determine the linear velocity and
angular velocity for follower vehicle to eliminate the error value of distance and angle
between leader and follower such that:

lim
t→inf

(Lij − Ldij) = 0 (1)

lim
t→inf

(Ψij −Ψd
ij) = 0 (2)
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Fig. 5: Three different types of formation shape maintenance. (a) Formation generation
and maintenance. (b) Formation maintenance while tracking trajectory. (c) Formation
shape variation and re-generation.

Normally, two types of controllers are employed to design the control law: 1) l-l
controller and 2) l-φ controller. The first controller focuses on the relative positions
between each vehicle in the formation; while the second one deals with the distance and
angle between leader and follower46.

The leader-follower approach described here is only feasible for formation control in
open space, as it only provides a solution to the Type 1 and Type 2 formation maintenance
problems. Desai et al.48 improved the leader-follower approach by adding collision
avoidance capability to enhance control of the formation in a cluttered environment
(by solving the Type 3 maintenance problem). The obstacle was avoided by letting the
vehicle maintain a new desired distance, which is the distance between the vehicle and
the obstacle. When the formation was avoiding the obstacle, the formation shape could
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Fig. 6: Leader-follower formation control approach. Formation is maintained by keeping
the desired distance and angle between the leader and each follower47.

Fig. 7: Leader-follower formation control when the formation is encountering with an
obstacle. Formation shape is changed to avoid the obstacle48

be adaptively changed as shown in Figure 7, and returned to the desired shape after the
risk of collision was averted.

The work of Wang45 and Desai et al.48 has become the standard approach when the
leader-follower approach is applied to unmanned vehicle formation platforms. Adequate
modifications are made according to specific needs provided by different platforms.

One of the problems of the implementation is the vehicle's bounded control inputs or
constrained inputs. The inputs are normally subjected to a control boundary meaning
the control system requires more reaction time, so the stability of the system could also
be affected.49 transformed the physical constraints on the velocity into a geometrical
representation. As shown in Figure 8, the follower's stable point was expanded to an arc
instead of a point, which increases the system stability margin. Peng et al.47 observed
that impractically large control torque inputs could occur in conventional leader-follower
controllers, which could lead to unstable performance. A bio-inspired neuro-dynamics
based controller was developed to specifically reduce the required linear and angular
velocities in initial state and subsequently reduced the force and torque inputs.

Another issue is system communication. When the leader-follower is implemented,
robust communication throughout the formation needs to be assured such that leader
and followers are able to exchange their pose information accurately. Unfortunately,
such a communication channel is hardly available in practical applications. Edwards



A Survey of Multiple Unmanned Vehicles 11

Fig. 8: The transformation of system stable point to a arc of circle as Ad(δ, σ1, σ2)
49.

et al.50 studied the malfunction problem brought about by loss of communication.
Orqueda et al.51 proposed a monocular vision system to assist with recording the
relative motion between leader and follower. A high gain observer is used to estimate
the derivative of leader to follower distance and bearing angle. Peng et al.52 investigated
uncertainties associated with marine surface vehicles such as un-modeled hydrodynamics
and disturbances from the environment when controlling the formation. An adaptive
control law based upon neural networks and backstepping techniques was designed to
compensate for uncertainties through an online learning scheme.

3.2. Virtual structure formation control
Another important formation control approach is the virtual structure method proposed
by Tan et al.53. The virtual structure (VS) as defined in this context is a collection
of elements (unmanned vehicles), which maintain a rigid geometric relationship to each
other and to a frame of reference54. The main concept behind the virtual structure is that
by treating the formation shape as a VS or a rigid body, the formation is maintained by
minimising the position error between the VS and actual formation position. To achieve
this, a bi-directional control scheme is proposed in an interacting way that the vehicles are
controlled by the virtual force applied to the VS while the positions of VS is determined
by the positions of formation.

The specific control strategy of the virtual structure method mainly involves three
stages (see Figure 9):r VS position alignment (stage 1 ): before moving the formation to the next point, a

position error based upon the projection of the point-to-point error in x-y coordinate
may occur between the actual positions of the formation and the corresponding
positions in the VS. Hence, at this stage, pre-defined one-to-one mapping is used to
minimise such errors by following the equation:

f(X) =
N∑
i=1

d(rWi , I
W
R (X) · pRi ) (3)

where N is the total number of vehicles in the formation, d(•) is the function to
calculate the distance, rWi is the position of vehicle in the world coordinate whereas
pRi is the corresponding position of the vehicle in the VS coordinate, and IWR (X) is the
coordinate transforming function between world coordinate and VS coordinate.r VS movement (stage 2 ): after the VS adjusts itself to the optimal position, a virtual
force is applied at the VS to move the VS to the next point. It should be noted that
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Fig. 9: Steps of virtual structure formation control. (1) VS position alignment. The
triangle in red is the initial position of VS, and the triangle in green is the aligned VS by
minimising the position error. (2) Move the VS to next position. (3) Move the formation
according to the position of VS.

the displacement of the VS is determined not only by the mission requirement but also
the dynamic characteristics of the vehicles. The displacement needs to be appropriately
calculated such that the vehicle can reach it in the next time step.r Formation movement (stage 3 ): based upon the new position of the VS, each vehicle in
the formation can now move towards its new position by referring to its corresponding
point in the VS. A control input is generated for each vehicle, and to achieve more
precise tracking performance, the vehicle is first controlled to alter its heading to the
desired orientation and then transits towards the target point.

Compared with the leader-follower approach, one of the most appealing advantages of
the virtual structure method is an increase in fault-tolerant capability. In leader-follower
control, due to the lack of feedback of positions of each vehicle in the formation, a faulty
vehicle will not be detected by other vehicles, causing the formation to disintegrate.
However, such a drawback can be overcome by using the virtual structure approach. It
has been proven in Lewis and Tan54 that the tracking error caused by the faulty robots
can be compensated for by other robots in the VS alignment stage so that the formation
can be retained (see Figure 10). It should be noted that such formation maintenance
is only a temporary solution as the faulty vehicle has not been repaired. To achieve
comprehensive fault-tolerance, some high-level decision processes are needed to either
change the formation shape or call up a new vehicle to replace the faulty unit.

Like the leader-follower approach, a robust communication channel is vital for the
virtual structure method as each vehicle is highly dependent on the information being
exchanged to obtain real-time navigation data. In the work of Do and Pan55, such a
problem has been addressed by introducing the communication limitation through a
potential function. Suppose the designed controller for the ith vehicle is ui, which was
calculated not only related to its own position and velocity, but also the communication
range, which was described as a potential function βij as:

βij =

 = 0 if dij ≥ dcom,
> 0 if 0 < dij < dcom,

=∞ if dij = 0.
(4)

where dij is the distance between ith and jth formation agent, and dcom is the predefined
communication range. It can be observed that if the distance between two vehicles is
larger than the communication range, the potential value βij is zero and thereby the
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Fig. 10: Fault-tolerant formation control by using the virtual structure method. During
a robot failure, the other robots adjust their paths to maintain formation. The new
formation has the correct formation shape as well as the desired orientation54.

designed ui is not dependent on jth agent information. Based on this, further work has
been carried out by Do56 to solve the USV formation control problem. An elliptical shape
was adopted to simulate the dimension of the vessel with a circular area centred on the
mid point of the vessel representing the communication range.

3.3. Behaviour-based formation control
Behaviour-based formation control was first proposed by Balch and Arkin57. It solves
the formation control problem by using a hybrid vector-weighted control function, which
is able to generate the control command based upon various kinds of formation missions.
For example, according to the general mission requirements, four different control schemes
(behaviours) were developed as move-to-goal (uMG), avoid-static-obstacle (uAO), avoid-
robot (uAR) and maintain-formation (uMF ) schemes. Each scheme was assigned with a
gain value according to the specific mission or traffic environment, and the final control
scheme was determined as the weighted combination of these gains by:

u = a1 · uMG + a2 · uAO + a3 · uAR + a4 · uMF (5)

where a1, a2, a3, a4 are the weighting gains for controllers with high gain value
representing high importance for the corresponding behaviour. By implementing
behaviour-based formation control, not only the formation generation and keeping,
but also the collision avoidance can be simultaneously solved. It makes such a control
approach superior to the other approaches in terms of practical application. However, in
essence, the designed controller is not based upon kinematic/dynamic characteristics of
the vehicles, thus the mathematical proof of system stability is highly complex, which
makes it hard to theoretically justify the performance of this approach58. Despite this, the
behaviour-based formation control is still of great importance, and a number of studies
have adopted such an approach.
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In the work of Cao et al.59, the genetic algorithm was integrated with the behaviour-
based formation control to assist the determination of weighting gain values of each
behaviour. The simulation results show that besides improved control performance, the
formation also presented a certain adaptability in an unknown environment by optimising
the gain values detailed in Equation 5.

Later, Cao et al.60 investigated formation control in an unknown environment with
moving obstacles. A prediction model based upon the recurrence least square algorithm
was used to estimate the position of a moving obstacle, and a new behaviour named the
random behaviour was established to operate in conjunction with the conventional four
behaviours, to handle the unstable state occurring in a cluttered environment.

Since it is hard to mathematically analyse the formation stability by using the
behaviour-based method, a hybrid control scheme which includes both the leader-follower
and the behaviour-based methods was proposed by Yang et al.61. The formation was
generated and maintained by the leader-follower while the behaviour-based scheme
specifically focused on the motion planning of individual vehicles. A supervision
mechanism has been built between the leader and followers such that the formation
integrity can be ensured when the number of controlled vehicles changes. The supervision
is achieved in a way that an inter connection between the leader and each follower is
established so that the leader can have a full-time monitoring of the status of followers.

3.4. Discussion on formation control strategies
In Table I, three main formation control strategies are summarised and compared. From
the deployment platforms’ perspectives, it shows that the most widely adopted strategy
is the leader-follower approach, which has been applied not only on the mobile robot
platforms, but every kind of unmanned vehicle platform. The primary reason for such
wide scale deployment is probably because the leader-follower approach is relatively
simple to design and implement. Such an approach is developed based upon the common
concept when managing a group, i.e. a leader is selected from the group to supervise
the group while other group members follow the behaviour of the leader62. Therefore
by using the leader-follower approach, the formation relationship is more explicit than
with other approaches. Also, as mentioned in Section 2.2.1, the leader-follower approach
adopts a centralised communication strategy, which requires vehicles in the formation to
only establish connections with the leader. The overall amount of exchanged information
is much less than with a decentralised approach, and as a consequence the communication
efficiency is much higher. However, the primary disadvantage of the leader-follower is its
high dependence on the leader vehicle's performance. If the leader malfunctions or the
communication between the leader and the follower is disrupted, the formation is hard
to control and maintain.

The virtual structure strategy provides better performance in terms of formation
maintenance as the formation is designed to follow the rigid body virtual structure.
However, such good performance in formation keeping is not beneficial for formation
modification. The change of the formation requires re-design of the virtual structure,
which has the potential to increase the computational burden of the formation. The
inflexibility in the formation eventually leads to limited capability for dealing with
collision avoidance with obstacles, making the virtual structure an unsuitable option
for Type 3 formation maintenance (shown in the ‘Formation maintenance type’ column
in Table I).

The behaviour-based control methodology seems to be the most adoptable approach
as it is able to accomplish a number of different mission requirements through one control
command. But the lack of system stability analysis makes it unsuitable for large scale
utilisation.

As regards future development, a hybrid control strategy appears to be the trend.
No single solution exists that is appropriate for all scenarios. A hybrid approach can be
developed such that in the open space, where stabilisation of the system is the priority,
the leader-follower and/or the virtual-leader method could be used. When the formation
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is navigating in a complex environment, the behaviour-based method takes over the
control.

Another important development for formation control will be the integration with
fault-tolerant control. One of the benefits gained from the deployment of unmanned
vehicles as a formation is the improved system robustness that comes to the fore if and
when vehicles in the formation fail. However, this aspect is generally ignored by much of
the research work accomplished thus far. Fortunately, there have already been in-depth
publications from Tousi et al.63, Yang et al.64 and Tousi et al.65, who have studied the
fault tolerance control from a mathematical perspective. There is no doubt that the
seamless merging of fault-tolerance control and formation control would dramatically
improve the utility of the research.
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Table I : Comparison of formation control strategies.

Methods Advantages Disadvantages Formation maintenance types Platforms

Leader-follower45;47;48

1. Easy to be designed and
implemented.
2. Efficient communication
within the system

1. Highly dependent on the
leader vehicle.
2. Lack of the feedback from
the follower to the leader.

Type 1, Type 2 and Type 3
Widely adopted across
various platforms

Virtual Structure54–56

1. Good performance in shape
keeping.
2. Good representation of the
relationship and the coordination
between each vehicle in the
formation.

1. Not flexible for shape deformation.
2. Not easy for collision avoidance

Type 1 and Type 2

Most applications seen
on mobile robots. Less
application on unmanned
vehicles

Behaviour-based57;59;61 1. Capable of dealing with
multi-task mission

1. Not easy to mathematically express
the system behaviour.
2. Difficult to prove and guarantee the
system stability.

Type 1, Type 2 and Type 3
Mobile robots and UGVs are
two popular platforms
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4. Review of cooperative formation path planning
In this section, algorithms developed for formation path planning will be grouped,
reviewed and analysed accordingly with some typical work listed. It should be noted
that alongside formation path planning, there has been research into another emerging
path planning method in recent years, the multi-vehicle cooperative path planning. It can
be viewed as a weaker challenge than the formation path planning with less conditions;
however, solutions for the cooperative path planning are also beneficial with some core
algorithms able to assist the formation with minor modifications to the algorithms. In this
section, methods for both the formation path planning and the multi-vehicle cooperative
path planning are going to be reviewed.

The path planning problem is to find a feasible route connecting the start and end
points in a collision free space while satisfying a set of constraint conditions. The problem
itself can be expressed as an optimisation process subjected to several costs, and for a
2D path planning problem, it can be mathematically written as31:

Ps(xs, ys, ϕs)
τ(t)−−−−−−−→

s.t.
∐

single

Pe(xe, ye, ϕe) (6)

where Ps (xs,ys,ϕs ) and Pe (xe,ye,ϕe ) denote the start and end point configuration
respectively, which include start and end point coordinates and orientation. τ(t)
represents the trajectory which is subjected to the cost

∐
single. When extending the

problem to the multi-vehicle formation path planning, the formulation can be written
as:

Ps,i(xs, ys, ϕs)
τ(t)−−−−−−−−→

s.t.
∐

multiple

Pe,i(xe, ye, ϕe) i = 1, 2, .., N (7)

where N is the total number of vehicles in the formation and
∐
multiple is the cost for

multiple vehicles paths.
In single vehicle path planning, to obtain the most effective and efficient path,

∐
single

normally contains the least distance, the highest safety, the minimum energy consumption
and so on. However, in contrast, costs for multiple vehicles path planning (

∐
multiple) are

more complicated, and a comparison between single vehicle and multiple vehicles costs
has been provided in Liu and Bucknall30. As shown in Figure 11, additional costs are
explained as:r Internal collision avoidance: as multiple vehicles are simultaneously and

cooperatively working, each vehicle becomes a potential collision risk to other vehicles
in the same group. To ensure the safety of the group, the internal collision avoidance
needs to be addressed;r Formation behaviour: if multiple vehicles are travelling in a formation, the formation
behaviours, such as shape keeping and shape changing, are required;r Cooperation behaviour: the cooperation behaviour is the most important factor,
which can be expressed in two different forms as the time cooperative behaviour and
the time and position cooperative behaviour. Illustrations of these two different forms
are displayed in Figure 12. The first one only imposes time requirements on the
final trajectories, i.e. by following planned trajectories, each vehicle within the group
should leave and arrive at each mission point simultaneously or in order. Since no
formation behaviour is represented en route except the start and end points, the path
planning problem involving such behaviour is known as the multi-vehicle cooperative
path planning.
In contrast, the second form not only places the requirement on time but also on
instantaneous position of each vehicle. Generated trajectories should, to the most
extent, maintain the predefined distances between each other thereby solving the
formation path planning problem;



18 A Survey of Multiple Unmanned Vehicles

Optimisation objectives of 

multiple vehicles path planning

Optimisation objectives of 

single vehicle path planning

Path distance Transition time

External collision 

avoidance

Energy 

consumption

Path smoothness
Environmental 

influences

Internal collision 

avoidance

Formation shape 

keeping 

Cooperation 

behaviour

Formation shape 
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Fig. 11: Comparison of costs between single vehicle path planning and multiple vehicles
path planning30.

r Total distance: to achieve the most efficient outcome, the total distance of all
trajectories should be optimised.

4.1. Path planning algorithms and the categorising
A number of different path planning algorithms have been proposed, and according to
Tam et al.66 these algorithms can be categorised into two different general approaches
based upon its searching characteristics (as shown in Figure 13):r Deterministic path planning;r Heuristic path planning.

The deterministic searching approach is accomplished through the following of a set of
defined steps and has the advantage of completeness and consistency. A searching result
can be guaranteed to be found as long as it exists; also, the output remains the same
each time if there is no variation of searching environment. Therefore, the deterministic
algorithm can also be referred to as an exact algorithm. Popular deterministic approaches
include the artificial potential field, the roadmap based algorithm and the optimisation
method.

The heuristic searching approach is proposed to specifically solve the problem which
can not be efficiently addressed by a deterministic approach. Also, it is able to provide
an approximate solution when exact solutions are hard to find67 and thus the heuristic
algorithm can also be referred to as an approximation algorithm. However, since it only
searches the subspace of the search space, the global optimality of the results cannot
be guaranteed, i.e. only near optimal result can be obtained. In addition, because the
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Target point

Time cooperative 
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(a)

Formation fleet
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position 
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Fig. 12: Cooperative path planning. (a) Time cooperative trajectories: by following the
generated paths, vehicles need depart from the start point and arrive at end point
simultaneously but without the need to keep the relative position to each other. (b)
Time and position cooperative trajectories: apart from the same departing and arriving
time, vehicles also need to keep the relative distance en route, and they tend to move in
a formation31.
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Fig. 13: The categorising of path planning algorithms based upon deterministic and
heuristic approaches.
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Fig. 14: The categorising of path planning algorithms based upon reactive and
deliberative approaches69.

algorithm stochastically searches within the space, the consistency of the results is not
as good as those delivered by the deterministic method68. Typical heuristic algorithms
include the evolutionary algorithm (EA) such as the genetic algorithm, the particle swarm
optimisation and the ant colony optimisation66.

Another promising classification strategy for path planning algorithms, as proposed in
Sharma et al.69, is to evaluate the algorithm depending upon if it has been developed in a
deliberative or reactive way. For example, when the environment is partially known to the
vehicle, algorithms can only generate the trajectory within a certain area and therefore
has to constantly and reactively update the trajectory as the vehicle is navigating; hence,
such a strategy is regarded as a reactive approach. Conversely, when the environment is
fully mapped a deliberative approach is adopted and in this case, the generated trajectory
is able to provide full guidance information to the vehicle and is always used as the global
reference path. In Figure 14, favourable path planning algorithms have been re-grouped
based upon reactive or deliberative approaches. It can be seen that compared with
Figure 13, evolutionary algorithms and roadmap/grid based algorithms now belong to
the deliberative approach; whereas, potential field algorithms are grouped in the reactive
category together with the optimisation method (especially the model predictive control).

In the following sections, literature in regard to multiple vehicles path planning is
going to be reviewed based upon the adopted searching methodology.

4.2. The potential field method
The artificial potential field (APF) method was first proposed by Khatib70 to control a
robot manipulator. The method converts the configuration space into the potential field,
which consists of an attractive field (Uatt) around the target point and repulsive fields
(Urep) around obstacles. The attractive field is proportional to the distance to the target
point and is influential over the whole space; whereas the repulsive fields are inversely
proportional to the distance to the obstacles and are only effective in certain areas around
obstacles. The path is calculated by following the total force at each location, which is
the gradient of the sum of fields as:

Ftotal = Fatt + Frep = ∇(Uatt) + (−∇(Urep)) (8)
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Obstacle

Target

Unmanned 

vehicle formation

Fig. 15: The formation path planning using the APF. An internal attractive potential
field first needs to be constructed to maintain the formation shape (shown as the red line
). Internal repulsive fields are also needed to prevent two vehicles from moving too close
and colliding with each other (shown as the blue line)71.

In terms of the implementation of the APF in formation path planning, in addition
to the attractive and repulsive fields, new fields are needed to represent cooperative
formation behaviours. An internal attractive potential field first needs to be constructed
to maintain the formation shape (shown as the red line in Figure 15) such that when a
vehicle is away from its formation position, the force is capable of dragging it back to
prevent destruction of the formation shape. In addition, internal repulsive fields are also
needed to prevent two vehicles from moving too close and colliding with each other (blue
line in Figure 15).

Wang et al.72 constructed such potential fields by referring to the concepts of electric
fields. Each vehicle was treated as a point source in the electric field with varying electrical
polarity. If the distance between vehicles was larger than the expected value, opposite
charges were used to attract them to move towards each other; otherwise, like polarities
were used to prevent them from colliding if the distance between vehicles was less than
the expected value.

Paul et al.73 also built the fields to solve the problem of UAV formation path planning.
To increase control accuracy, an attractive potential field was a function of the error value
between desired distance and actual distance, such that any deflection from the desired
position can be quickly modified and corrected.

Yang et al.74 published work on motion planning for an AUV formation in an
environment with obstacles based upon the APF. The algorithm concentrated on overall



A Survey of Multiple Unmanned Vehicles 23

mission requirements instead of the development of an individual vehicle's control law and
treated the AUV formation as a multi-body system with each vehicle modelled as a point
mass with full actuation. Potential fields for formation path planning were constructed
for particular mission requirements, ocean environment and formation geometry.

It should be noted that the primary disadvantage of using the APF is the local minima
problem. It is caused by the sum of total forces at certain point equalling zero, which
results in the vehicle becoming ‘trapped’ at that point. Many researchers solved this
problem by constructing new kinds of fields such as the Harmonic Potential Fields75–78,
which is constructed by the harmonic function containing no local minima.

Recently, another effective way to deal with the local minima problem was reported in
Garrido et al.10 and Gomez et al.11, which employed the Fast Marching Method (FMM)
to construct the potential field. Differing from the conventional way of combining all fields
to generate the total potential field; the FMM produces the potential field by simulating
the propagation of an electromagnetic wave. A propagation index ranging from 0 to 1
is first calculated at each point to indicate the speed of propagation of the wave, i.e. 0
value means the wave cannot pass and hence is given to obstacle area. The wave then
emits from the start point by obeying the propagation index and stops when the target
point is reached. The generated potential field represents the local arrival time of the
wave and only has the minima potential at the start point.

4.3. Evolutionary algorithm
The evolutionary algorithm (EA) method including genetic algorithm (GA), particle
swarm optimisation (PSO) and ant colony optimisation (ACO) is a heuristic search
algorithm based upon biological evolution process. When applied to the path planning
problem, the EA mimics the natural selection process in the way that possible paths
are treated as individuals and evolve themselves through mutation, reproduction and
recombination by comparison against a fitness function. The function, as a weighted
function consisting of several optimisation criteria, determines the quality of each
individual and only the individual with the best fitness result will survive as the final
path.

In terms of using the EA for multiple vehicles cooperative path planning, a two-layer
evolution process is normally used. In Figure 16, each vehicle has its own EA process,
which generates an optimal trajectory subject to each individual vehicle's planning
conditions. Then, all the individual paths are compared against a master fitness function
in the Master EA process to achieve cooperative behaviour. The master fitness function
takes costs such as the internal collisions, the target point arrival time and the distance
between each vehicle into consideration, and re-evolves individuals to make them suitable
for multiple vehicle cooperation. Note that the cooperative behaviour addressed by the
EA method normally belongs to time cooperative behaviour because of the characteristic
of the randomness of EA search, which makes it hard to follow the rigorous condition of
formation shape maintenance.

Among the applications of EA in multiple vehicle path planning, Zheng et al.79

proposed a coevolving and cooperating path planner for multiple UAVs based upon the
GA. In order to make the generated path practical, dynamic characteristics constraints
such as the minimum path led length, the minimum flying height, and the maximum
climbing angle were incorporated into the algorithm. However, the computation speed
was not fast enough to make the algorithm applicable for real-time planning. Hence,
Kala80 and Qu et al.81 improved it by introducing new evolution operators to increase
the convergence speed of the algorithm.

4.4. Optimal control method
Using the optimal control method is another main approach for multiple vehicle
cooperative path planning. This approach considers the path planning problem as a
numerical optimisation problem by following a set of constraints82. It breaks down the
multiple vehicle path planning into several single vehicle path planning processes, and
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Fig. 16: The two-layered EA process for multiple vehicles cooperative path planning.

the multi-vehicle cooperation is achieved by satisfying a set of predefined ‘cooperation
constraints’.

A general form of using the optimal control method for multiple vehicle path planning
was reported in Schouwenaars et al.83. The group consisted of a number of N vehicles,
and for the pth vehicle in the group, a fuel-optimal cost function was first defined as:

Jp =
T∑
i=1

q
′

p|spi − spf |+
T∑
i=1

r
′

p|upi|+ p
′

p|spT − spf | (9)

where spi, upi and spf denote the state, input and final state of the vehicle. q
′

p, r
′

p and p
′

p

are the weighting factors. Constraints for single vehicle optimisation included boundary
conditions for the vehicle's state and control inputs, and position constraints to avoid
static and moving obstacles. Then, a ‘cooperation constraint’ was defined, in this case,
to keep two vehicles away from each other by a certain distance to maintain the safety
as:

|xpi − xqi| ≥ dx |ypi − yqi| ≥ dy (10)

where (xpi, ypi) and (xqi, yqi) are the coordinates for pth and qth vehicle at time step i, and
dx and dy are the two safety distances. By subjecting to all constraint conditions, mixed
integer linear programming (MILP) was used to find the optimal control input u for each
vehicle, which could finally generate a feasible path by substituting it into the system
dynamic functions. Yilmaz et al.84 expanded such a method to a larger scale multiple
vehicle cooperation such as AUV-USV cooperation, AUV-Shore station cooperation and
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AUV-AUV cooperation. To achieve these cooperation, constraints were developed to
ensure sufficient distances were maintained to keep robust communication.

However, even though the MILP is powerful enough to handle different constraints
for the optimisation problem, high computation complexity is its main disadvantage and
prevents its use for on-line planning. To improve MILP, Bemporad and Rocchi85 applied
receding horizon control (RHC) to solve optimisation problems for UAV formations.
Unlike conventional methods which seek for the optimal result for the whole time period,
an on-the-fly strategy is used by the RHC to only minimise the cost function for a
relatively short horizon in each time step and compute the according control input, which
could largely decrease the computation time. Based on such an online scheme, Chen et
al.86 designed a formation hybrid formation path planner by combining the RHC and
the APF methods for UAVs. An additional control force generated by APF was added to
the system control input to improve the collision avoidance capability of the formation.

4.5. Discussion on formation path planning
Formation path planning, working as a command generator for the formation control
system (referring to Figure 3), takes the description of the environment as the input
and produces sets of waypoints as trajectories. The artificial potential field method, the
evolutionary algorithm and the optimal control method are three mainstream approaches
used for multi-vehicle path planning, and a comparison of these approaches is listed in
Table II. Among them, the potential field and the evolutionary based methods are the
most widely adopted approaches. These are significantly different from single vehicle path
planning, where the grid based87–89 or the road map based methods90–93 are preferred.

A possible reason is the multiple-vehicle system needs a path planning algorithm to
have fast computation speed as a number of vehicles are involved; however, both the
road map and the grid based methods need significant memory capacity to store the
environment information, which has the potential to decrease the speed of the algorithm.
More importantly, the trajectories generated by the potential field or the evolutionary
algorithm are more practical than other methods. The potential field method can produce
a smooth and continuous path and the evolutionary algorithm is able to optimise the
trajectory's costs for different mission requirements.

However, the FMM based potential field method may have more advantages than the
evolutionary algorithm. First, in terms of the algorithm completeness and consistency,
the FMM performs well whereas the evolutionary method lacks consistency and the
conventional potential field method is not complete.

Second, the FMM is able to achieve various cooperative behaviours. Generated
trajectories can either be time cooperative, or time-and-position cooperative, and a
‘deformable’ formation shape can be easily established, which is difficult to achieve with
the other methods. In Gomez et al.11 and Garrido et al.10, a generic formation path
planning algorithm based upon the FMM has been proposed and employed for indoor
robot formations. From the simulation results, the formation is able to adjust its shape
to avoid complex obstacles such as a narrow pathway.

Third, differing from the conventional potential field method of only constructing
attractive and repulsive fields; some other fields representing different costs can also be
used by the FMM. In Garrido et al.94, a weighting matrix which addresses different path
constraints was used and blended with the potential field to generate the path. The final
trajectory was optimised in terms of the least energy consumption, the shortest distance
and the plainest terrain.

However, some limitations of current multi-vehicle path planning also need be taken
into consideration:

r The collision avoidance strategies were not effective enough to deal with the complex
environments. Most publications used either rigid formations or dynamic formations to
avoid the obstacles. However, this may not be the best solution, and in some cases the
formation could be partially maintained to seek a more optimised result. For example,
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Fig. 17: The split-merge formation collision avoidance strategy. When the formation
encounters a small-size obstacle, which only has the collision risk with the vehicle in red,
the red vehicle needs to take manoeuvres while the others remain unaffected.

as shown in Figure 17, the split-merge strategy can be adopted when the formation
encounters a small sized obstacle.r Formation path planning in an environment with true dynamic obstacles has not been
studied. For the purpose of simplicity, most of the dynamic obstacles moved only at slow
or constant speed. In reality, such obstacles normally have unpredictable movement
patterns, which requires a path planning algorithm to be integrated with advanced
sensors and a prediction algorithm. In Yao et al.95, the Kalman filter was used to
predict the path of a moving obstacle in the immediate future, and the path planning
algorithm can accordingly adjust the path to avoid the obstacles more effectively.r Environmental factors were not included in the problem. In real applications,
environmental aspects such as wind for UAVs and sea currents for AUVs or USVs
have immediate influences on the vehicle. Harsh environment conditions can severely
degrade or even cut-off the communication, especially for the multi-vehicle systems.
For example, when deploying multiple USVs to investigate a flooded area, the
communication between vessels and the ground station can be affected by debris or
line-of-sight obstructions. To address such issues, UAVs can be used as communication
relay to retain the communication and support the mission of USVs.
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Table II : Comparison of cooperative multi-vehicle path planning algorithms.

Method
Deployment
platforms

Algorithm completeness Algorithm consistency Cooperative behaviour type
Capability for
multi-optimisation

Potential field method72–74
Mobile robots
AUV
UAV

Incomplete Consistent

1. Time and position
cooperative behaviour.
2. Time cooperative
behaviour.

No

Fast marching method
based potential field10;11 Mobile robots Complete Consistent

1. Time and position
cooperative behaviour.
2. Time cooperative
behaviour.

Yes

Evolutionary79;81

algorithm
Genetic algorithm
Partical swarm optimisation

Mobile robots
UAV

Probabilistic complete Inconsistent
1. Time cooperative
behaviour

Yes

Optimal control method83;86

Mixed integer linear programming
Model predictive control

Mobile robots
UAV
AUV

Complete Consistent
1. Time and position
cooperative behaviour
2. Time cooperative behaviour

Yes
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5. Conclusion and future research areas
A review of the multiple unmanned vehicles formation system has been presented in
this paper. The principle structure of the multi-vehicle system as well as the critical
development technologies have been reviewed. In terms of the key research involved in
the multi-vehicle formation system, both the formation control and cooperative path
planning are important. Even though they are two different research topics, a number
of overlaps make them coherent. For example, the problem of collision avoidance, which
primarily resides in the path planning problem, has many solutions in formation control
literature, having designed and generated necessary control commands to manoeuvre
the vehicle. In the meantime, the recent path planning trend is towards the kinodynamic
planning, for which velocity, acceleration and force/torque limitations must be satisfied96.
The paths generated by the kinodynamic planning algorithms are physically compliant
with the vehicle's dynamics, which facilitates the controllers to track, and are also able
to avoid obstacles in the environment97;98.

Compared with single platform deployment, a relatively small number of multi-vehicle
system deployments have been seen in recent decades. However, there is considerable
potential future development for such systems as the multi-vehicle system is more
effective and able to undertake complex missions for which single vehicles are incapable. It
is without doubt that by fully implementing a formation control and navigation system
into current unmanned system platforms, the autonomy and efficiency of unmanned
vehicles can be successfully enhanced.

To further push the boundary of the research of multi-vehicle systems, extensive work
needs to be carried out from both control and path planning perspectives. First, as
presented in this review, most of the work only focuses on single types of platforms, and
the problem of formation control and path planning for multi-vehicle cross-platform
system has not been rigorously addressed. In the future, the dominant approach to
deploy multi-vehicle systems may be to use various types of vehicles to cooperatively
work together to provide the persistent autonomy. For example, a cross-platform system
consisting of UAVs, USVs and AUVs can be deployed for search and rescue missions
in post-disaster scenarios, where the UAV provides long-range detection capability, the
USV works as a communication relay station and the AUV is responsible for underwater
search and detection. To effectively operate such a combined system, new considerations
must be given to the development of the associated control algorithms. In terms of
formation control, as each type of vehicle has its unique dynamic characteristics, such
a system becomes highly heterogeneous and consequently its formation control become
more challenging. In addition, when deploying such cross-platform systems to conduct
persistent mission, the energy consumption will become a significant limitation and
would need to be properly addressed by balancing the energy usage issue with other
requirements. With respect to the path planning, computation efficiency is the major
issue that needs to be specifically taken into account as a cross-platform system would
normally be conducting missions in a 3D environment. Path planning algorithms reviewed
in this paper normally belong to grid-based path planning algorithm, which are powerful
in dealing with 2D environments but lack effectiveness in 3D. Therefore, the sampling-
based algorithm such as the rapidly exploring random tree (RRT)97 can be modified and
improved for this application.

Another important research area is development of multi-vehicle systems towards the
swarm concept. Because the number of vehicles involved in a swarm is far more than
that in a formation99, the required algorithm for operating a swarm is different and more
complex. This has therefore led to a phenomenon that a large number of bio-inspired
control methods such as insect colonies and flocks of birds, have been adopted as they
are capable of providing solutions to the complex problem that conventional approaches
cannot address100. In fact, when developing the algorithm for a swarm, due to the large
amount of vehicles, which provides a certain degree of redundancy, new functionality
called the obstacle enclosure can be considered as a potential research area. This in fact
will be a new way of dealing with moving obstacles. For example, for a conventional
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formation system, generating the safe evasive actions is always the priority when the
formation encounters moving obstacles. However, for a swarm system, instead of avoiding
the obstacles, part of the swarm can be used to enclose an obstacle to effectively block its
trajectory and delay its movement, while the rest of the swarm can continue to transit
towards the target point. It might still be viewed as having accomplished the mission
even if not all the vehicles but only part of them arrive at the target point. To successfully
implement such a strategy, the choice of the obstacle enclosure time would be critical and
should be calculated according to the movement of the obstacle. Also, internal collision
within the swarm when performing the enclosure might not be negligible and must be
addressed in the algorithm design.

Acknowledgements
This work is supported by the ACCeSS group. The Atlantic Centre for the innovative
design and Control of Small Ships (ACCeSS) is an ONR-NNRNE programme with Grant
no. N0014-10-1-0652, the group consists of universities and industry partners conducting
small ships related researches. The authors are also indebted to Mr. Konrad Yearwood
for his valuable critique of this paper.

References
1. US Military. Unmanned System Integrated Roadmap, FY2011-2036. Technical

report, US Department of Defense (DoD), 2011.
2. Royal Navy. UNMANNED WARRIOR, year = 2016, url =

”https://www.royalnavy.mod.uk/news-and-latest-activity/operations/uk-home-
waters/unmanned-warrior”, note = Accessed: 2017-11-08.

3. Youmin Zhang and Hasan Mehrjerdi. A survey on multiple unmanned vehicles
formation control and coordination: Normal and fault situations. In Unmanned
Aircraft Systems (ICUAS), 2013 International Conference on, pages 1087–1096.
IEEE, 2013.

4. Larry Matthies, Alonzo Kelly, Todd Litwin, and Greg Tharp. Obstacle detection for
unmanned ground vehicles: A progress report. In Robotics Research, pages 475–486.
Springer, 1996.

5. Justin E Manley. Unmanned surface vehicles, 15 years of development. In OCEANS
2008, pages 1–4. IEEE, 2008.

6. Kwang-Kyo Oh, Myoung-Chul Park, and Hyo-Sung Ahn. A survey of multi-agent
formation control. Automatica, 53:424–440, 2015.

7. John S Bellingham, Michael Tillerson, Mehdi Alighanbari, and Jonathan P
How. Cooperative path planning for multiple uavs in dynamic and uncertain
environments. In Decision and Control, 2002, Proceedings of the 41st IEEE
Conference on, volume 3, pages 2816–2822. IEEE, 2002.

8. Antonios Tsourdos, Brian White, and Madhavan Shanmugavel. Cooperative path
planning of unmanned aerial vehicles, volume 32. John Wiley & Sons, 2010.

9. Magnus Egerstedt and Xiaoming Hu. Formation constrained multi-agent control.
IEEE transactions on robotics and automation, 17(6):947–951, 2001.

10. Santiago Garrido, Luis Moreno, and Pedro U Lima. Robot formation motion
planning using fast marching. Robotics and Autonomous Systems, 59(9):675–683,
2011.
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