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Abstract

For two-scale homogenization of a general class of asymptotically degenerating strongly elliptic
symmetric PDE systems with a critically scaled high contrast periodic coefficients of a small period
ε, we derive a two-scale limit resolvent problem under a single generic decomposition assumption for
the ‘stiff’ part. We show that this key assumption does hold for a large number of examples with
a high contrast, both studied before and some recent ones, including those in linear elasticity and
electromagnetism. Following ideas of V.V. Zhikov, under very mild restrictions on the regularity of
the domain Ω we prove that the limit resolvent problem is well-posed and turns out to be a pseudo-
resolvent problem for a well-defined non-negative self-adjoint two-scale limit operator. A key novel
technical ingredient here is a proof that the linear span of product test functions in the functional
spaces corresponding to the degeneracies is dense in associated two-scale energy space for a general
coupling between the scales. As a result, we establish (both weak and strong) two-scale resolvent
convergence, as well as some of its further implications for the spectral convergence and for con-
vergence of parabolic and hyperbolic semigroups and of associated time-dependent initial boundary
value problems. Some of the results of this work were announced in Kamotski IV, Smyshlyaev VP.
Two-scale homogenization for a class of partially degenerating PDE systems. arXiv:1309.4579v1.
2013 ( https://arxiv.org/abs/1309.4579v1 )

1 Introduction

This work is dedicated to memory of Professor V. V. Zhikov. Some of the results of the present work
were announced back in 2013 in [1] and were then greatly influenced by V.V. Zhikov, which influence
continues to these days.

One of V.V. Zhikov’s many important contributions was development of a powerful operator theoretic
and spectral approach for two-scale convergence and its application to double-porosity type models, see
e.g. [2–5]. The latter models are examples of high-contrast homogenization problems where the solutions
behave non-classically in the sense that they retain a two-scale pattern in their limit asymptotic behavior.
This is a source of a number of interesting physical effects, and a reason for applying and developing
non-classical mathematical tools for analysis of such problems.

In this context, simplest double-porosity type models are divergence form partial differential equations
(PDEs) with ε-periodic coefficients and with a high contrast between the coefficients for the ‘stiff’ and
‘soft’ phases. It has been observed starting from at least [6] that for a critically scaled contrast δ,
δ = O(ε2), the solutions’ asymptotic behavior may display various interesting effects. It was shown in [7]
that certain macroscopic porous media flow models can be derived as two-scale homogenized limits of
two-component Darcy flows with O(ε2)-contrasting properties. Various classes of O(ε2) high-contrast
homogenization problems were studied since. Without attempting here a comprehensive review, such
problems and related physical effects and mathematical issues have since been intensively studied among
others in [2, 3, 5, 8–26].

As probably first observed by Khruslov, see e.g. [9], homogenization of certain parabolic problems
with high contrast leads to weakly coupled systems with memory, i.e. with a non-locality in time.
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Zhikov [2,3] analyzed such models using tools of two-scale operator convergence, which not only confirmed
the time non-locality but for particular cases also established the spectral convergence and existence of
frequency band gaps. Such a non-local behavior as well as the asymptotic description of the band
gaps appear closely related to the so-called ‘negative’ materials where, for certain ranges of frequencies,
some materials with an ε2-contrast behave as if they had certain macroscopic properties negative-valued,
which was first observed probably by Auriault and Bonnet [8, 27] by formal asymptotics, and followed
by mathematical analysis of related diffraction problems in [13], see e.g. [26]. As was shown in [14],
appropriately modified models may display a spatial non-locality by introducing not only high contrast
but also a high anisotropy which may be viewed as a particular case of a ‘partial degeneracy’ where some
components of the ‘stiffness’ matrix remain of order one while others asymptotically degenerate and are
of order ε2. Spatial non-locality appears a generic feature for certain classes of high-contrast media, see
e.g. [28], and appears also a generic property under ‘ensemble averaging’ of composite materials [29]. It
was further shown in [19] by formal asymptotics that in linear elastic context O(ε2) partial degeneracies
may be capable of leading to some sort of combined spatio-temporal non-locality. A particular such
model of partial degeneracy where isolated isotropic elastic inclusions have order ε2 shear modulus but
order one bulk modulus was then rigorously analyzed in [23]. As shown in [24], for a photonic crystal
fiber type waveguide structure with an ‘almost critical’ wave propagation constant along the fibers, the
problem can be reduced to another ‘partially degenerating’ one. Analysis of fully three-dimensional
Maxwell’s systems with high contrast in electric permittivity, cf [25, 26], appears also to display a kind
of partial degeneracy due to intrinsic degeneracies of the Maxwell’s system.

The above background, and in particular the increasing list of examples of high contrast models with
partial degeneracies and of associated additional effects, motivates an attempt to analyze such problems
mathematically in a unifying general setting, as we undertake in the present work. With this aim, we
consider a general class of strongly elliptic symmetric PDE systems with ε-periodic coefficients having
a most general order-ε2 degeneration in their coefficients, i.e. without necessarily any separate stiff and
soft phases at all, see (2.3).

As Zhikov has demonstrated, see e.g. [2], and as then further clarified by Zhikov and Pastukhova [4,30],
analysis of convergence for associated resolvent problem is fundamental for operator and spectral con-
vergences as well as for convergences of associated semigroups and of related time dependent evolution
problems, both parabolic and hyperbolic. We therefore thoroughly analyze the associated general resol-
vent problem (2.1). Under generic conditions (2.2)–(2.7) for symmetry, boundedness and strong elliptic-
ity, we employ the tools of two-scale convergence [31], [11], [2] to pass to the (two-scale) limit in (2.1).
To achieve this, we introduce a single generic decomposition assumption (4.2) for the ‘stiff’ part a(1)(y)
and show that this assumption does hold for a large number of examples involving an ε2-contrast, both
studied before and some recent ones. A curious observation is that for the particular case of constant
a(1), (4.2) appears to be equivalent to a ‘constant rank’ assumption for a(1), with a similar assumption
implying a similar key decomposition property in the A-quasiconvexity theory of Fonseca and Müller [32]
ensuring lower semi-continuity of a wide class of variational functionals subject to differential constraint
Av := a(1)∇v = 0.

We then show that the above key decomposition assumption implies a generalization of Weyl’s de-
composition (Theorem 4.3), and allows to develop some form of generalized two-scale coupled corrector
problem and of associated relation between the two-scale limit fields and fluxes, see (5.1). This in turn
allows to pass to the limit in the variational formulation (2.8) of (2.1) for appropriate product test
functions in the functional spaces corresponding to the degeneracies, see (5.12). This determines a limit
two-scale operator form, and one of the main novel technical ingredients of this work is a proof that,
under very mild restrictions on the regularity of the domain Ω (see Remark 4), the linear span of the
product test functions is dense in associated two-scale energy space U for a general coupling between the
scales, Theorem 5.5.

The above allows to pass to the limit in (2.8), which leads to a well-posed two scale problem, Theorem
5.6. This has numerous further implications: a well-defined limit operator A0 as a two-scale non-
negative self-adjoint operator in a Hilbert space H0 ⊂ L2(Ω × Q) where Q is the unit cell, and ensued
interpretation of Theorem 5.6 in terms of a weak two-scale (pseudo-)resolvent convergence, Corollary 6.1,
cf [2, 4, 30]. This implies associated strong two-scale resolvent convergence (Theorem 7.1), which has in
turn subsequent implications for the spectral convergence (Corollaries 7.2 and 7.3) and for convergence of
parabolic and hyperbolic semigroups and of associated time-dependent initial boundary value problems
(Theorems 7.4 and 7.5).
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2 Formulation

2.1 Resolvent problem for high contrast PDE systems

We consider the following general resolvent-type boundary value problem in domain Ω ⊂ Rd, d ≥ 1

− div
(
aε(x)∇u

)
+ λ ρε(x)u = ρε(x)fε(x). (2.1)

The domain Ω can a priori be any open set in Rd, both bounded or unbounded (in particular Ω = Rd).
Here u ∈

(
H1

0 (Ω)
)n

, n ≥ 1, is the sought (possibly vector-valued) function, λ > 0 is a real positive

(spectral) parameter, 0 < ε < 1 is a small parameter. The right hand side fε ∈
(
L2(Ω)

)n
is generally

assumed uniformly bounded in
(
L2(Ω)

)n
with respect to ε.

The density ρε(x) is assumed to be in general a bounded and uniformly positive ε-periodic symmetric
n× n matrix:

ρε(x) = ρ
(x
ε

)
, ρ(y) ∈

(
L∞# (Q)

)n×n
, ρij(y) = ρji(y),

ρij(y)ξiξj ≥ ν|ξ|2, ν > 0, ∀ξ ∈ Rn, for a.e. y ∈ Q, (2.2)

where the unit cube Q = [0, 1)d is the periodicity cell of the ‘fast variable’ y ∈ Rd. In (2.2) and henceforth
summation is implied with respect to repeated indices, L∞# (Q) denotes functions from L∞

(
Rd
)

which
are Q-periodic.

The rapidly oscillating tensor aε(x) is allowed to degenerate as ε→ 0, as follows:

aε(x) = a(1)
(x
ε

)
+ ε2 a(0)

(x
ε

)
, (2.3)

where
a(l)(y) ∈

(
L∞# (Q)

)n×d×n×d
, l = 0, 1, (2.4)

are symmetric:

a(l)(y) =
(
a

(l)
ijpq(y)

)
, 1 ≤ i, p ≤ n, 1 ≤ j, q ≤ d,

a
(l)
ijpq(y) = a

(l)
pqij(y), ∀i, j, p, q, for a.e. y ∈ Q. (2.5)

The notational conventions in (2.1) and henceforth are: for ζ, η ∈ Rn×d, a ∈ Rn×d×n×d, (aζ)ij :=
aijpqζpq, ζ · η := ζijηij ; the divergence is taken with respect to the second index.

The tensor a(1) is further assumed to be non-negative, i.e.

a
(1)
ijpq(y)ζijζpq ≥ 0, ∀ζ ∈ Rn×d, for a.e. y ∈ Q. (2.6)

The tensor a(0) is in turn assumed to be such that a(0)(y) + a(1)(y) is strongly uniformly elliptic, in
the sense that∫

Rd

[
a(1) (y)∇w(y) · ∇w(y) + a(0) (y)∇w(y) · ∇w(y)

]
dy ≥ ν‖∇w‖2(L2(Rd))n×d , ∀w ∈

(
H1(Rd)

)n
, (2.7)

with some constant ν > 0 independent of u. We remark that while (2.7) seems the most general condition
of strong ellipticity for a(0)(y) + a(1)(y), the condition (2.6) of non-negativity for a(1)(y) may be slightly
restrictive: for example, for constant a(1) the condition ensuring (in the absence of a(0)) (2.7) would be

a
(1)
ijpqξiηjξpηq ≥ ν|ξ|2|η|2, ∀ξ ∈ Rn, η ∈ Rd, which does not generally imply (2.6). However as we illustrate

in Section 4.1, condition (2.6) which is essential for the present method, appears to hold for numerous
systems from physics, notably from linear elasticity and electromagnetism.

For a fixed ε > 0, for any λ > 0 the boundary value problem (2.1) admits an equivalent weak
formulation as follows: find u ∈

(
H1

0 (Ω)
)n

such that∫
Ω

[
a(1)

(x
ε

)
∇u · ∇φ(x) + ε2a(0)

(x
ε

)
∇u · ∇φ(x) +

λρ
(x
ε

)
u · φ(x)

]
dx =

∫
Ω

ρ
(x
ε

)
fε(x) · φ(x) dx, ∀φ ∈

(
H1

0 (Ω)
)n
. (2.8)
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For any fixed positive ε and λ, the conditions (2.2)–(2.7) immediately ensure applicability of stan-
dard theory, with Lax-Milgram lemma, see e.g. [33], guaranteeing the existence of a unique solution in(
H1

0 (Ω)
)n

, denoted uε.
Problem (2.8) can be regarded in a standard way as a resolvent problem for a non-negative self-

adjoint operator Aε as follows. Consider complex Hilbert space Hε =
(
L2(Ω)

)n
with inner product

(u, v)Hε :=
∫

Ω
u(x) · ρε(x)v(x)dx, where the overbar denotes the complex conjugate. Let Bε be a

sesquilinear form1 with domain Vε =
(
H1

0 (Ω)
)n

corresponding to the left hand side of (2.8) with λ = 1,
i.e.

Bε(u, v) :=

∫
Ω

[
a(1)

(x
ε

)
∇u · ∇v(x) + ε2a(0)

(x
ε

)
∇u · ∇v(x) + ρ

(x
ε

)
u · v(x)(x)

]
dx, u, v ∈ Vε.

Then, due to (2.2)–(2.7), the form Bε(u, v) defines an equivalent inner product in
(
H1

0 (Ω)
)n

and is hence
densely defined in Hε, non-negative and closed. It therefore defines a non-negative self-adjoint operator
Aε with a domain D(Aε) dense in Vε. This recasts (2.1), equivalently (2.8), as a resolvent problem in
Hε:

(Aε + λI)uε = fε ⇐⇒ uε = (Aε + λI)
−1
fε, (2.9)

with I denoting the identity operator.
The interest is in establishing a version of ‘resolvent convergence’, i.e. for any λ > 0 in passing to an

appropriate limit, as ε→ 0, for uε whenever fε converges to some f0 (in an appropriate sense).

2.2 Basic definitions and properties of two-scale convergence

For passing to the limit in (2.8) we employ traditional recipes of two-scale convergence, see e.g. [31], [11],
[2]. We list below some basic definitions and properties of the two-scale convergence, in a form closest
to Zhikov see e.g. [2, 4] as adapted to our context.

We will denote by C∞0 (Ω) and C∞# (Q) the linear spaces of all (test) functions which are infinitely

differentiable, and respectively compactly supported in domain Ω and Q-periodic in Rd. For an arbitrary
open domain Ω in Rd, a bounded sequence {uε(x)} in L2(Ω) is said to weakly two-scale converge to a

function u(x, y) in L2(Ω×Q), denoted uε(x)
2
⇀ u(x, y), if

lim
ε→0

∫
Ω

uε(x)φ(x)b
(x
ε

)
dx =

∫
Ω

∫
Q

u(x, y)φ(x)b(y)dxdy, ∀φ(x) ∈ C∞0 (Ω), b(y) ∈ C∞# (Q). (2.10)

The weak two-scale limit is unique since the linear span of φ(x)b(y), φ(x) ∈ C∞0 (Ω), b(y) ∈ C∞# (Q), is

dense in L2(Ω×Q). The sequence is said to strongly two-scale converge to u(x, y) ∈ L2(Ω×Q), denoted

uε(x)
2→ u(x, y), if

lim
ε→0

∫
Ω

uε(x)vε(x)dx =

∫
Ω

∫
Q

u(x, y)v(x, y)dx dy whenever vε(x)
2
⇀ v(x, y). (2.11)

We will recall a key compactness property of weak two-scale convergence: every bounded sequence uε

in L2(Ω) has a subsequence which weakly two-scale converges to some u(x, y) ∈ L2(Ω × Q). Another

simple property of the two-scale convergence on which we will rely is that if uε(x)
2
⇀ u(x, y) (respectively

uε(x)
2→ u(x, y)) and b(y) ∈ L∞# (Q) then b(x/ε)uε(x)

2
⇀ b(y)u(x, y) (resp b(x/ε)uε(x)

2→ b(y)u(x, y)).

For uε(x)
2
⇀ u(x, y),

lim inf
ε→0

‖uε(x)‖L2(Ω) ≥ ‖u(x, y)‖L2(Ω×Q), (2.12)

and strong two-scale convergence is equivalent to weak two-scale convergence in conjunction with the
convergence of the norms:

uε(x)
2→ u(x, y) ⇐⇒ uε(x)

2
⇀ u(x, y) and lim

ε→0
‖uε(x)‖L2(Ω) = ‖u(x, y)‖L2(Ω×Q). (2.13)

1Remark that, in the present context, the original weak formulation (2.8) can be equally stated in a real Hilbert space
with associated bilinear form Bε(u, v), and in its standard complexification with the same form Bε now viewed as a
sesquilinear one. The latter formulation is more appropriate from the spectral-theoretic point of view.
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The strong two-scale convergence implies, assuming sufficient regularity of u(x, y) e.g. u ∈ L2(Ω;C#(Q))
( [11] Theorem 1.8), that ‖uε(x)− u (x, x/ε)‖L2(Ω) → 0 as ε→ 0. For further properties of two-scale

convergence, see e.g. [2, 4, 11,31].
The above is immediately extended to vector or tensor-valued functions, in the component-wise sense.

For example, we regard a matrix-valued ξε(x) =
{
ξεij(x)

}
, 1 ≤ i ≤ n, 1 ≤ j ≤ d, to weakly (strongly)

two-scale converge to ξ0(x, y) =
{
ξ0
ij(x, y)

}
if simply the above definitions hold for every i and j. Remark

also that, due to (2.8) associated with the resolvent problem (2.9) in Hilbert space Hε generally with
(matrix) weights ρε, it could be natural to operate with two-scale convergence with respect to a (matrix)
measure µε = ρεdx, cf. e.g. [2]. This however appears not necessary for the purposes of the present
work, due to the imposed in (2.2) uniform positivity and boundedness of ρε: as a result, the two notions
of two-scale convergence are equivalent.

3 A priori estimates and functional spaces for two-scale limits.

3.1 A priori estimates

In this subsection, for a fixed λ > 0, we derive in a standard way a priori estimates for the solution
uε of (2.8). Henceforth C denotes a positive constant, independent of ε and fε, whose precise value is
insignificant and can change from line to line; ‖ · ‖2 denotes appropriate L2-norm.

Lemma 3.1. For 0 < ε < 1/2, the following a priori estimates hold:

‖uε‖2 ≤ C‖fε‖2, (3.1)

‖ε∇uε‖2 ≤ C‖fε‖2, (3.2)∥∥∥(a(1)(x/ε)
)1/2∇uε∥∥∥

2
≤ C‖fε‖2, (3.3)

with a constant C independent of ε and fε.

Remark 1. Notice that in (3.3)
(
a(1)(y)

)1/2
is well-defined as a square root of a symmetric non-negative

nd × nd square matrix a(1)(y), see (2.4)–(2.6). An alternative approach, avoiding directly introduc-

ing
(
a(1)(y)

)1/2
could be treating in (3.3) ∇uε with respect to a (ε-rescaled) matrix (tensor) measure

dµijpq(y) = a
(1)
ijpq(y)dy and appropriately modifying further the method of two-scale convergence with

respect to measures, cf. [2].

Proof. In a standard way, setting in (2.8) φ = uε results in∫
Ω

[
a(1)

(x
ε

)
∇uε·∇uε(x)+ε2a(0)

(x
ε

)
∇uε·∇uε(x)+λρ

(x
ε

)
uε·uε

]
dx =

∫
Ω

ρ
(x
ε

)
fε(x)·uε(x) dx. (3.4)

The integrals in (3.4) can be viewed as over the whole of Rd by extending uε outside Ω by zero. Then one
observes that the sum of the first two terms and the third term on the left hand side are non-negative
by (2.6)–(2.7) and (2.2), respectively. For the right hand side,∫

Ω

ρ
(x
ε

)
fε(x) · uε(x) dx ≤ 1

2
λν ‖uε‖22 +

1

2
(λν)−1

∥∥∥ρ(x
ε

)
fε
∥∥∥2

2
,

which recalling again (2.2) yields (3.1). Further, (2.7) and (2.6) immediately imply (3.2). Finally, for
the first term on the left hand side of (3.4):∫

Ω

a(1)
(x
ε

)
∇uε · ∇uε(x) dx =

∥∥∥(a(1)(x/ε)
)1/2∇uε∥∥∥2

2

which yields (3.3).

5



3.2 Functional spaces for two-scale limits

We next introduce for the periodicity torus Q the following key linear subspace V of
(
H1

#(Q)
)n

of

Q-periodic (vector-)functions in Rd which are locally in H1:

V :=

{
v ∈

(
H1

#(Q)
)n ∣∣∣∣ a(1)(y)∇yv = 0

}
. (3.5)

V can be interpreted as describing the domain of possible microscopic variations of a (two-scale) limit
of the solution uε.

We also introduce the following ‘dual’ space W of admissible ‘microscopic fluxes’, of tensor fields on
Q:

W :=

{
ψ ∈

(
L2

#(Q)
)n×d ∣∣∣∣ divy

((
a(1)(y)

)1/2

ψ(y)

)
= 0

}
, (3.6)

where L2
#(Q) denotes Q-periodic functions from L2

loc

(
Rd
)
. In (3.6) the divergence is understood in the

sense of distributions on the periodic torus Q, i.e., equivalently,

W :=

{
ψ ∈

(
L2

#(Q)
)n×d ∣∣∣∣ ∫

Q

(
a(1)(y)

)1/2

ψ(y) · ∇φ(y)dy = 0, ∀φ ∈
(
H1

#(Q)
)n}

. (3.7)

It immediately follows from the definitions (3.5) and (3.7) that V and W are closed linear subspaces

of Hilbert spaces
(
H1

#(Q)
)n

and
(
L2

#(Q)
)n×d

respectively, and hence can themselves be regarded as

Hilbert spaces with respective inherited H1
# and L2 inner products.

We will additionally introduce, in a standard way, Hilbert spaces L2
(

Ω;
(
H1

#(Q)
)n)

, L2(Ω;V ) and

L2(Ω;W ) of functions of two independent variables x ∈ Ω and y ∈ Q, which can thereby be regarded as
functions of x with values in the appropriate (Hilbert) space.

The a priori estimates (3.1)–(3.3), via adapting accordingly the properties of the two-scale conver-
gence, imply the following

Lemma 3.2. Let ‖fε‖2 be uniformly bounded. Then there exist u0(x, y) ∈ L2 (Ω; V ) and ξ0(x, y) ∈
L2 (Ω; W ) such that, up to extracting a subsequence in ε which we do not relabel,

uε
2
⇀ u0(x, y) (3.8)

ε∇uε 2
⇀ ∇yu0(x, y) (3.9)(

a(1)(x/ε)
)1/2∇uε 2

⇀ ξ0(x, y). (3.10)

Proof. 1. According to the theorem on (weak) two-scale compactness of a bounded sequence in L2(Ω),
the á priori estimate (3.3) implies, up to extracting a subsequence in ε (not relabelled), the existence of

a weak two-scale limit ξ0 ∈
(
L2 (Ω×Q)

)n×d
= L2

(
Ω;
(
L2

#(Q)
)n×d)

, which yields (3.10).

We show that in fact ξ0(x, y) ∈ L2 (Ω; W ). Take in (2.8) φ(x) = φε(x) = εϕ(x)b
(
x
ε

)
for any

ϕ ∈ C∞0 (Ω) and b ∈
(
C∞# (Q)

)n
. Passing then to the limit in (2.8) we notice, via (3.1) and (3.2), that

the limit of each term but the first one on the left hand-side of (2.8) is zero, and therefore

lim
ε→0

∫
Ω

a(1)
(x
ε

)
∇uε(x) · ε∇

(
ϕ(x)b

(x
ε

))
dx =∫

Ω

ϕ(x)

∫
Q

(
a(1)(y)

)1/2

ξ0(x, y) · ∇yb(y) dy dx = 0, (3.11)

where we have used the assumption (2.4) of boundedness of a(1). The density of ϕ(x) in L2(Ω) implies that

for all b ∈
(
C∞# (Q)

)n
the inner integral is zero for a.e. x ∈ Ω. Since b(y) are in turn dense in

(
H1

#(Q)
)n

,

this implies that, for a.e. x, ξ0(x, ·) obeys (3.7) and hence ξ0(x, ·) ∈W implying ξ0 ∈ L2 (Ω; W ).
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2. Further, according to e.g. [11, Prop. 1.14 (ii)], (3.1) together with (3.2) imply (3.8)–(3.9) for

some u0(x, y) ∈ L2
(

Ω;
(
H1

#(Q)
)n)

.

Show finally that in fact u0(x, y) ∈ L2 (Ω; V ). For any ψ(x, y) = ϕ(x)b (y) with ϕ ∈ C∞0 (Ω) and

b ∈
(
C∞# (Q)

)n×d
,

lim
ε→0

∫
Ω

(
a(1)

(x
ε

))1/2

ε∇uε(x) · ψ
(
x,
x

ε

)
dx =

∫
Ω

∫
Q

(
a(1)(y)

)1/2

∇yu0(x, y) · ψ(x, y) dx dy, (3.12)

where we have used (3.9).
On the other hand, (3.3) ensures that∥∥∥∥(a(1)

(x
ε

))1/2

ε∇uε(x)

∥∥∥∥
2

→ 0,

and hence the limit in (3.12) is zero. This implies for the right hand side of (3.12),∫
Ω

ϕ(x)

∫
Q

(
a(1)(y)

)1/2

∇yu0(x, y) · b(y) dy dx = 0, ∀ϕ ∈ C∞0 (Ω), b ∈
(
C∞# (Q)

)n×d
.

By density of ϕ and b, this gives(
a(1)(y)

)1/2

∇yu0(x, y) = 0 for a.e. x, (3.13)

and therefore, pre-multiplying (3.13) by
(
a(1)(y)

)1/2
, yields u0(x, y) ∈ L2 (Ω; V ), cf (3.5).

4 A generic class of degeneracies and related properties.

A key problem in the homogenization theory is to relate the limit “fluxes” (in the present case the “mod-
ified” fluxes ξ0(x, y)) to the limit “fields” u0(x, y). This can be achieved only if the general degeneracy
described by a(1)(y) satisfies some additional restrictions. We impose below a key generic technical as-
sumption on a(1)(y) which is sufficient for this purpose. We will see that this assumption is satisfied for
most of previously studying models in both classical and non-classical homogenization, as well as will
refer to some more recent examples.

Let ( · , · )H1 be an inner product in
(
H1

#(Q)
)n

. Denote V ⊥ the orthogonal complement to V defined

by (3.5), i.e.

V ⊥ :=

{
w ∈

(
H1

#(Q)
)n ∣∣∣∣ (w, v )H1 = 0, ∀v ∈ V

}
.

Then
(
H1

#(Q)
)n

is a direct orthogonal sum of (closed) V and V ⊥,(
H1

#(Q)
)n

= V ⊕ V ⊥, (4.1)

i.e. any v in
(
H1

#(Q)
)n

is uniquely decomposed into the sum v = v1 + v2, where v1 ∈ V and v2 ∈ V ⊥.

The key assumption is the following:

Assumption 4.1 (Key assumption on the degeneracy). : There exists a constant C > 0 such that for

all v ∈
(
H1

#(Q)
)n

there exists v1 ∈ V with

‖v − v1‖(H1
#(Q))

n ≤ C
∥∥∥a(1)(y)∇yv

∥∥∥
2
. (4.2)
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The condition (4.2) can be equivalently re-written as

‖PV ⊥v‖(H1
#(Q))

n ≤ C
∥∥∥a(1)(y)∇yv

∥∥∥
2
, (4.3)

where PV ⊥ is the orthogonal projector on V ⊥. The equivalence of (4.2) and (4.3) immediately follows
by noticing that v1 = PV v, where PV is the orthogonal projector on V , is the best (i.e. minimizing the
left hand side of (4.2)) choice of v1 for (4.2). The property (4.2), and hence equivalently (4.3), obviously

does not depend on the choice of the (equivalent) inner product and hence the norm in
(
H1

#(Q)
)n

.

4.1 Examples of the key assumption (4.2)

The key assumption (4.2), equivalently (4.3), as well as indeed the initial assumptions (2.2)–(2.7), appears
to hold for most of the previously considered cases which may involve an ε2-contrast of a general form
(2.3). In each particular case, the validity or otherwise of (4.2) has to be established by separate means,
and we briefly discuss below some of those cases.

1. Classical scalar homogenization. In this simplest case, n = 1, ρ11(y) ≡ 1, and a
(1)
1j1q(y) is a

uniformly bounded symmetric positive definite matrix i.e. a
(1)
1j1q(y)ζjζq ≥ ν|ζ|2 for all ζ ∈ Rd and for

a.e. y ∈ Q; a
(0)
1j1q(y) ≡ 0. Then, from (3.5), V is the one-dimensional space of constant functions on

Q and (4.2) follows from the Poincaré inequality in H1
#(Q): ‖v − 〈v〉‖L2

#(Q) ≤ C ‖∇yv‖L2
#(Q) for all

v ∈ H1
#(Q), where 〈v〉 :=

∫
Q
v is the mean of v. Hence (4.2) immediately follows by taking v1 = 〈v〉 ∈ V .

Notice that the nonegativity and uniform strong ellipticity conditions (2.6) and (2.7) are also trivially
held.

2. Double porosity-type models. This corresponds, in the simplest case (see e.g. [2]), to n = 1 and

a
(1)
1j1q(y) = δjqχ1(y), a

(0)
1j1q(y) = δjqχ0(y), where δij is Kroneker symbol, χ1(y) = 1− χ0(y), and χ0(y) is

characteristic function of an open inclusion Q0, Q0 ⊂ Q with regular enough boundary and connected
complement Q1 := Q\Q0. (Hence χ1 is characteristic function of a periodically connected matrix Q1.)
According to (3.5), v ∈ V ⊂ H1

#(Q) must be constant on Q1 and arbitrary otherwise, i.e. for any v ∈ V ,

v = c + ṽ where c ∈ Rd and ṽ ∈ H1
0 (Q0) extended to Q1 by zero. The key assumption (4.2) then

directly follows from an extension lemma (see e.g. [34], Lemma 3.2) implying (in particular) that given
v ∈ H1

#(Q) there exists v2 ∈ H1
0 (Q0) such that ‖∇(v − v2)‖L2

#(Q) ≤ C ‖∇v‖L2
#(Q1). Then, by choosing

v1 = v2 + 〈v − v2〉 ∈ V , (4.2) follows from the Poincaré inequality and the above extension result. Note
that the conditions (2.6) and (2.7) are again trivially held.

One can see that the assumption (4.2) is in fact satisfied for rather general “multi-component”
high-contrast configurations, cf. e.g. [2, 10], of the double porosity type. For example, for d ≥ 3, let

a
(1)
1j1q(y) = δjq

∑M
m=1 χm(y), where χm, m = 1, 2, ...,M , are characteristic functions of disjoint “stiff”

phases Qm each of which is periodically connected and has Lipschitz boundary. In the remaining “soft”

phase Q0 = Q\ ∪Mm=1 Qm, let a
(0)
1j1q(y) = δjqχ0(y). Then V consists of all v ∈ H1

#(Q) whose values on

Qm are some constants cm ∈ R. Given v ∈ H1
#(Q), a function v1 satisfying (4.2) can be constructed as

follows. Set cm = 〈v〉m := |Qm|−1
∫
Qm

v(y)dy (i.e. cm is the mean of v over Qm), and let v̂(y) = v(y)−∑M
m=1 cmχm(y). Let ṽ = Sv̂ where S is an H1-extension from the ‘combined’ stiff phase Qs := ∪Mm=1Qm

to H1
#(Q) i.e. Sw(y) = w(y) for y ∈ Qs and ‖Sw‖H1

#(Q) ≤ C‖w‖H1
#(Qs)

2. We then set v1(y) = v(y)− ṽ.

It is readily checked that v1(y) = cm on Qm, 1 ≤ m ≤M , and so v1 ∈ V . Further

‖v − v1‖H1
#(Q) = ‖Sv̂‖H1

#(Q) ≤ C ‖v̂‖H1
#(Qs)

≤

2The extension theorems, see e.g. [33, 39], are normally formulated for Euclidean domains rather than for a periodic
torus as needed here. However the result of e.g. Theorem 5 of §VI.3 of Stein [39] can be used to deduce the desired
statement. For example, consider an extension from Qs ⊂ Rd which is regarded as an infinite (periodic) set. Then it
satisfies all the conditions from the above theorem of Stein. Take an infinitely periodic w ∈ H1

#(Qs) ⊂ H1
loc(Rd) and

multiply it by a smooth cut-off function χR(y) such that χR = 1 for |y| ≤ R, χR = 0 for |y| ≥ R + 1 and |∇χR(y)| ≤ C.
Apply the Stein’s theorem to χRw, denote the relevant extension by w̃R(y) and consider its (normalized) ‘periodization’
wR(y) := |BR|−1

∑
k∈Zd w̃R(y + k). One readily checks that ‖wR − w‖H1(Qs)

→ 0 as R → ∞, and then by continuity

of the Stein’s extension that wR has a limit Sw in H1
#(Q) with ‖Sw‖H1

#
(Q) ≤ C‖w‖H1

#
(Qs)

and so can be taken as the

desired extension.
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C

M∑
m=1

‖v(y)− cm‖H1
#(Qm) ≤ C‖a

(1)(y)∇yv‖2,

which gives (4.2). (In the last step we have applied the Poincaré inequality for each Qm, noticing that
〈v − cm〉m = 0.)

Similar extension arguments apply to the cases of ‘isolated’ stiff components, e.g. when Q1 is an
inclusion, Q1 ⊂ Q, Q0 = Q\Q1.

3. Classical homogenization for linear elasticity. Let n = d = 3, a
(0)
ijpq(y) ≡ 0, and

a
(1)
ijpq(y) = λ(y)δijδpq + µ(y) (δipδjq + δiqδjp) , (4.4)

with Lamé coefficients λ, µ ∈ L∞# (Q) such that µ(y) ≥ µ0 > 0 and λ(y) + 2µ(y)/3 ≥ κ0 > 0.

Then a(1)(y)∇yv ≡ 0 implies that v is a rigid body displacement (translation and/ or rotation), and
since the periodicity condition excludes rotations V as defined by (3.5) can only contain translations i.e.
constant vector functions. Then one can see that (4.2) holds with v1 = 〈v〉 due to the periodic Korn
inequality. Condition (2.6) is known to hold and is equivalent to non-negativity of elastic energy density.
Finally (2.7) follows by e.g. bounding the integrand on its left hand side from below by replacing a(1)(y)
with its ‘homogeneous’ analog where λ(y) and µ(y) in (4.4) are replaced by, respectively, λ0 = κ0−2µ0/3
and µ0. The resulting integral still satisfies (2.7), which can be shown e.g. via applying Fourier transform
and Plancherel’s theorem.

We emphasize that the present approach does not cover all the cases of strong ellipticity for linear
elasticity. For example, for constant λ and µ, λ(y) = λ0 and µ(y) = µ0, the condition ensuring (in
the absence of a(0)) (2.7) is known to be µ0 ≥ ν and λ0 + 2µ0 ≥ ν, ν > 0. So for µ0 > 0 and
−2µ0 < λ0 < −2µ0/3, the condition (2.6) would not hold. Remark that under certain scenarios the
‘strict strong ellipticity’ in linear elasticity can be lost through homogenization, cf. e.g. [35].

4. Elasticity, soft inclusions, cf [5]. Let n = d = 3, and given an inclusion Q0 as in Exam-
ple 2 above, a(1)(y) be as in (4.4) but additionally multiplied by χ1(y), the characteristic function
of connected matrix Q1 = Q\Q0. Let a(0)(y) be also as in (4.4) multiplied in turn by χ0(y) =
1 − χ1(y). (So the model is a linear elastic version of the above double porosity one.) Then V ={
v ∈

(
H1

#(Q)
)3

: v = c+ ṽ, c ∈ R3, ṽ ∈
(
H1

0 (Q0)
)3}

, and (4.2) can be achieved e.g. by combining the

above periodic Korn inequality with an extension lemma. (One way for achieving such an extension is
essentially as in the second half of Example 2, i.e. by setting v1 = v−S(v−〈v〉1) where 〈v〉1 is the mean

of v over the matrix Q1 and S is an H1
#-bounded extension from Q1 to

(
H1

#(Q)
)3

.) Similarly to the

previous example, conditions (2.6) and (2.7) are checked to be readily satisfied.
Similarly to Example 2, one can show that (4.2) holds also for multi-component elastic matrices with

connected stiff components.
5. Elasticity with O(ε2) shear modulus in inclusions [23]. In this case a(1)(y) is as in (4.4) except

µ(y) is additionally multiplied by χ1(y), and a(0)(y) is in turn as in (4.4) multiplied by χ0(y). (So the
inclusions is stiff in compression but soft in shear.) Then, assuming Q0 ∈ Q and ∂Q0 regular enough,

V =
{
v ∈

(
H1

#(Q)
)3

: v = c+ ṽ, c ∈ R3, ṽ ∈
(
H1

0 (Q0)
)3

; div v = 0 in Q
}
.

Then, as shown in [23], the key assumption (4.2) follows from a ‘modification lemma’ (a version of a
lemma on existence of vector fields with prescribed divergence, see e.g. [36]): given a vector filed in

H1
#(Q), there exists v2 ∈

(
H1

0 (Q0)
)3

such that div v2 = 0 in Q, and

‖∇(v − v2)‖(L2
#(Q))

3 ≤ C
(
‖∇v‖(L2(Q1))3×3 + ‖div v‖L2(Q0)

)
.

6. Elasticity with stiff fibers. In this case some stiff components can allow certain periodic rotations, cf
[20]. In the simplest case of a single stiff cylindrical fiber, the equations have the same form as in Example
4, but Q1 is a cylinder, i.e. Q1 = Q̂1× [0, 1), where the two-dimensional connected cross-section Q̂1 with

smooth boundary is such that Q̂1 ⊂ (0, 1)2. Then V =

{
v ∈

(
H1

#(Q)
)3

: v = c+ α y × e3 inQ1

}
, where

c ∈ R3, α ∈ R, and × denotes the standard vector cross-product. Here c+ α y × e3 represent admissible
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(i.e. consistent with the Q-periodicity condition) rigid body motions of Q1, i.e arbitrary translations and
a rotation about the cylinder’s axis parallel to the unit vector e3 in the y3-direction. In order to verify

(4.2), for a given v ∈
(
H1

#(Q)
)3

define ṽ ∈
(
H1

#(Q1)
)3

by ṽ = v− c̃− α̃ y× e3, where c̃ ∈ R3 and α̃ ∈ R
are such that ∫

Q1

ṽ dy = 0 and

∫
Q1

ṽ · (y × e3) dy = 0 ,

i.e. ṽ has zero average translations and rotations. (It is straightforward to see that such, unique, c̃ and

α̃ do exist.) Then one can choose v1 in (4.2) as follows: v1(y) = v(y)− (Sṽ)(y) where S :
(
H1

#(Q1)
)3

→(
H1

#(Q)
)3

is any H1-bounded extension. Indeed v1 ∈ V , and

‖v − v1‖(H1
#(Q))

3 = ‖Sṽ‖(H1
#(Q))

3 ≤ C‖ṽ‖(H1
#(Q1))

3 .

It remains to employ the following version of Korn’s inequality

C‖w‖2
(H1

#(Q1))
3 ≤

∫
Q1

a(1)∇w · ∇w dx +

∣∣∣∣∫
Q1

w̃ dy

∣∣∣∣2 +

∣∣∣∣∫
Q1

w̃ · (y ∧ e3) dy

∣∣∣∣2 , ∀w ∈ (H1
#(Q1)

)3
.

The latter in turn follows from the standard Korn’s inequality in H1(Q1) and usual arguments about
equivalent norms in Banach spaces, see e.g. equivalence lemma in [37].

Similar arguments apply to the cases of presence of several stiff fibers parallel to different axes and/
or of isolated stiff ‘grains’ (with unconstrained rotations for the latter), cf. [20].

7. Photonic crystal fibers with a ‘near-critical’ propagation. As shown in [24], for a photonic crystal
fiber type waveguide structure and the wave propagation with an eiβx3-dependence in the Maxwell’s
equations along the fibers, for an ‘almost critical’ propagation constants β the problem can be reduced
to that of the form (2.2)–(2.3) with n = d = 2, ρ(y) = χ1(y)ρ1 + χ0(y)ρ0 with certain constant positive
diagonal 2×2 matrices ρ0 and ρ1, and with a degenerate quadratic form due to a(1)(y) as follows:

a(1)(y)∇v · ∇v = χ1(y)
(
|v1,1 + v2,2|2 + |v1,2 − v2,1|2

)
,

with χ1(y) being characteristic function of (two-dimensional) connected matrix Q1, χ0(y) = 1 − χ1(y),

similarly to the previous examples. Then V =

{
v ∈

(
H1

#(Q)
)2

: v1,1 + v2,2 = v1,2 − v2,1 = 0 in Q1

}
i.e. v is required to satisfy Cauchy-Riemann type conditions in Q1.

The key assumption (4.2) then states that there exists v1 ∈ V such that

‖v − v1‖(H1
#(Q))

2 ≤ C
(
‖v1,1 + v2,2‖L2(Q1) + ‖v1,2 − v2,1‖L2(Q1)

)
.

The latter inequality is proved in [24].
8. Three-dimensional Maxwell equations with high contrast in electric permittivity ( cf. [25] and [26]).

When the electric permittivity is of order ε−2 in an inclusion and of order one in a (simply connected)
matrix Q1, the problem can be reduced to the following case:

V =
{
v ∈

(
H1

#(Q)
)3

: div v = 0 in Q; curl v = 0 in Q1

}
.

Then the key assumption (4.2) can be reduced to the following: given v ∈
(
H1

#(Q)
)3

there exists v1 ∈ V
such that

‖∇(v − v1)‖(L2
#(Q))

3 ≤ C
(
‖curl v‖(L2(Q1))3 + ‖div v‖L2(Q)

)
. (4.5)

See [25] where (4.5) was essentially proved for some related details, as well as recent work [26] on a
related topic.

9. A-quasiconvexity constant rank assumption, cf. [32]. If a(1)(y) ≡ a(1) is a constant tensor, i.e. it
does not depend on y at all (which formally still keeps it in the general class of periodic functions), then

for v ∈
(
H1

#(Q)
)n

the first order linear differential operator with constant coefficients Av := a(1)∇v may
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be viewed as a ‘differential constraint’ and its null space V :=
{
v ∈

(
H1

#(Q)
)n

: Av = 0
}

determines the

set of oscillating (periodic) vector fields subject to this differential constraint. Then, applying Fourier
transform in Q-periodic y, it is not hard to see that (4.2) is valid if and only if the n × n matrix Ã(ξ),

Ãip(ξ) := a
(1)
ijpqξjξq has a constant rank for all ξ ∈ Sd−1 where Sd−1 is the unit sphere in Rd. This is

similar to constant rank condition in [32], which in turn implies a similar key decomposition property
in the A-quasiconvexity theory ensuring lower semi-continuity for appropriate variational functionals
subject to differential constraint Av := a(1)∇v = 0.

The above list of examples could be continued. As a trivial example, it includes the case of a(1)(y) ≡ 0

(with a(0)(y) hence uniformly strongly elliptic in the sense of (2.7)). Then obviously V =
(
H1

#(Q)
)n

,

with the key assumption (4.2) trivially held with v1 = v.
As an example when (4.2) is not satisfied, we mention the case of highly anisotropic fibers studied

in [14]: let n = 1, d = 3, and a
(1)
1j1q(y) = δjqχ1(y) + δj3δq3χ0(y), where χ0 is the characteristic function

of a cylinder Q0 = Q̂0 × [0, 1), Q̂0 ⊂ (0, 1)2. Then for v ∈ V , v(y) = c + ṽ(ỹ), where c ∈ R, ṽ ∈
H1

0 (Q̂0), ỹ := (y1, y2). One can then see by, for example, fixing v0(ỹ) ∈ H1
0 (Q̂0), setting vn(y) :=

v0(ỹ) sin(ny1) cos(2πy3) and then increasing n that (4.2) could not possibly be satisfied. For similar
reasons, (4.2) does not appear to be satisfied in the two examples with elastic high anisotropy in §5 of [19].
Notice that [14] nevertheless establishes a version of the two-scale resolvent convergence by employing
additional ideas due to two-scale convergence with respect to measures, cf. [2] which is likely to be
applicable also to the examples in [19], as well as that in other examples involving “partial degeneracy”
the key assumption does hold, e.g. [23, 24].

4.2 Properties under the key assumption (4.2)

The condition (4.2) implies a number of important properties as we demonstrate below. First it allows
to formulate an appropriate well-posed version of the unit cell corrector problem. We state a related fact
in some generality as follows.

Consider the following degenerate boundary value problem on the periodicity cell Q:

−divy

(
a(1)(y)∇yv

)
= F, v ∈

(
H1

#(Q)
)n
, (4.6)

where F ∈
(
H−1

# (Q)
)n

is given (i.e. F by definition is a linear continuous functional on
(
H1

#(Q)
)n

).

For arbitrary G ∈
(
H−1

# (Q)
)n

and w ∈
(
H1

#(Q)
)n

we denote by 〈G,w〉 the duality action of G on w.

The problem (4.6) is then equivalently formulated in a weak form as follows: find v ∈
(
H1

#(Q)
)n

such

that ∫
Q

a(1)(y)∇yv(y) · ∇yw dy = 〈F , w 〉, ∀ w ∈
(
H1

#(Q)
)n
. (4.7)

Theorem 4.2. Under the assumption (4.2),

(i) The problem (4.6), equivalently (4.7), is solvable in
(
H1

#(Q)
)n

if and only if

〈F , w 〉 = 0, ∀w ∈ V. (4.8)

When (4.8) does hold, the problem (4.6) or (4.7) is uniquely solvable in V ⊥.
(ii) For any solution v and any v1 ∈ V , v+ v1 is also a solution. Conversely, any two solutions can only
differ for v1 ∈ V .

Proof. (i) Let v be a solution of (4.7) and let w ∈ V . Then, using the symmetry of a(1) and (3.5),

〈F , w〉 =

∫
Q

a(1)(y)∇yv(y) · ∇yw dy =

∫
Q

∇yv(y) · a(1)(y)∇yw dy = 0 (4.9)

yielding (4.8). Conversely, let (4.8) hold and seek v ∈
(
H1

#(Q)
)n

solving (4.7). By (4.9), the identity

(4.7) is automatically held for all w in V , therefore it is sufficient to verify it for all w ∈ V ⊥. Seek v also
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in V ⊥. Show that then, in the Hilbert space H := V ⊥ with the
(
H1

#(Q)
)n

-inherited norm ‖ · ‖H , the

problem (4.7) satisfies the conditions of the Lax-Milgram lemma (see e.g. [33]). Namely, first the bilinear
form

B[v, w] :=

∫
Q

a(1)(y)∇yv(y) · ∇yw dy

is immediately shown via (2.4) to be bounded in H, i.e. with some C > 0,∣∣∣∣B[ v , w ]

∣∣∣∣ ≤ C ‖v‖H ‖w‖H , ∀v, w ∈ H.

Show now that the form B is coercive, i.e. for some ν > 0,

B[v, v] ≥ ν ‖v‖2H , ∀v ∈ V ⊥.

We have

B[v, v] :=

∫
Q

a(1)(y)∇yv(y) · ∇yv dy =

∥∥∥∥(a(1)(y)
)1/2

∇yv
∥∥∥∥2

2

≥

C
∥∥∥ a(1)(y)∇yv

∥∥∥2

2
≥ ν ‖v‖2H ,

with some ν > 0. In the last two inequalities we have used, respectively, (2.4) and (4.3).
Therefore, by the Lax-Milgram lemma, there exists a unique solution to the problem

v ∈ V ⊥ : B[v, w] = 〈F , w 〉, ∀w ∈ V ⊥,

and hence to (4.7).
(ii) If v solves (4.7) and v1 ∈ V then a(1)(y)∇yv1(y) = 0 and hence v + v1 also solves (4.7).
Assuming further v(1) and v(2) both solve (4.7), set v = v(1) − v(2) solving hence (4.7) with F = 0,

and then set w = v. As a result,

0 =

∫
Q

a(1)(y)∇yv(y) · ∇yv dy =

∥∥∥∥(a(1)(y)
)1/2

∇yv
∥∥∥∥2

2

,

implying
(
a(1)

)1/2∇yv = 0 and hence a(1)∇yv = 0, i.e. v ∈ V .

Recalling definition (3.7) of the dual space W , the next important property is a generalization of the
Weyl’s decomposition, cf. e.g. [34, 36], for degenerate a(1) satisfying (4.2).

Theorem 4.3. Let a(1) satisfy (4.2), and let η ∈
(
L2

#(Q)
)n×d

. Suppose η is orthogonal in
(
L2

#(Q)
)n×d

to W , i.e.

( η , ψ )2 :=

∫
Q

ηij(y)ψij(y)dy = 0, ∀ψ ∈ W. (4.10)

Then there exists u1 ∈
(
H1

#(Q)
)n

such that

η(y) =
(
a(1)(y)

)1/2

∇yu1(y). (4.11)

Such a u1 is determined uniquely up to an arbitrary function from V , in particular is unique in V ⊥.

Proof. Let η satisfying (4.10) be given, and seek u1 such that (4.11) holds. For w ∈
(
H1

#(Q)
)n

, multiply

(4.11) by
(
a(1)(y)

)1/2∇w(y) and integrate over Q. As a result,∫
Q

a(1)(y)∇yu1 · ∇w dy =

∫
Q

(
a(1)(y)

)1/2

η(y) · ∇w dy =: 〈F,w〉. (4.12)
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Check that the above defined F ∈
(
H−1

# (Q)
)n

satisfies the condition (4.8). Indeed,

〈F , w 〉 =

∫
Q

η(y) ·
(
a(1)(y)

)1/2

∇w(y) dy, (4.13)

and so if w ∈ V it follows that a(1)(y)∇w(y) = 0 for a.e. y, and hence (for a.e. y),
(
a(1)(y)

)1/2∇w(y) = 0.

(Since for any ξ ∈ Rn×d,
(
a(1)(y)

)1/2
ξ = 0 if and only if a(1)(y)ξ = 0 by the symmetry (2.5) of non-

negative a(1).) This implies that the expressions in (4.13) vanish, and hence 〈F , w 〉 = 0, i.e. (4.8)
holds.

Then, by Theorem 4.2, there exists a unique u1 ∈ V ⊥ such that (4.12) holds. Verify that such a u1

satisfies (4.11). We have∥∥∥∥ η(y) −
(
a(1)(y)

)1/2

∇yu1(y)

∥∥∥∥2

2

=

(
η(y) , η(y) −

(
a(1)(y)

)1/2

∇yu1(y)

)
2

−((
a(1)(y)

)1/2

∇yu1(y) , η(y) −
(
a(1)(y)

)1/2

∇yu1(y)

)
2

=: S1 − S2. (4.14)

Now, it follows from (4.12) that ψ(y) := η(y) −
(
a(1)(y)

)1/2∇yu1(y) ∈ W (see (3.7) ), and hence, by
the assumption (4.10) of the theorem, S1 = 0. On the other hand,

S2 :=

∫
Q

(
a(1)(y)

)1/2

∇yu1(y) · ψ(y) dy =

∫
Q

∇yu1(y) ·
(
a(1)(y)

)1/2

ψ(y) dy = 0

by (4.12). Hence (4.14) yields
∥∥∥ η(y) −

(
a(1)(y)

)1/2∇yu1(y)
∥∥∥

2
= 0 implying (4.11).

The above construction also ensures that u1 is determined uniquely up to any function from V , in
particular is unique in V ⊥.

Remark 2. If n = 1 and a
(1)
1j1q ≡ δjq, Theorem 4.3 recovers a classical Weyl’s decomposition for vector

fields in
(
L2

#(Q)
)d

into the sum of a divergence-fee and of a potential fields: any vector field w ∈(
L2

#(Q)
)d

is uniquely decomposed into the orthogonal sum w = ψ + η, where ψ ∈ W and η ∈ W⊥.

Now, according to (3.6) with n = 1 and a
(1)
1j1q ≡ δjq, divyψ = 0 i.e. ψ is divergence-free, and by the

theorem η = ∇yu1 for some u1 i.e. η is a potential field.

The above listed properties, in particular those in Theorems 4.2 and 4.3, allow to pass to the limit
in equation (2.1), equivalently in its weak form (2.8), as we execute in the next section.

5 The two-scale limit problem.

We establish first an important property connecting, under the condition (4.2), the generalized two-scale
limit flux ξ0(x, y) to the two-scale limit field u0(x, y), see (3.8)–(3.10).

We introduce the following set of “product” test functions in L2(Ω;W ). Let Ψ(x, y) = g(x)ψ(y),
where g ∈ C∞c (Ω) and ψ ∈ W , see (3.6)-(3.7). Here C∞c (Ω) consists of restrictions to Ω of all the
scalar functions in Ω from C∞0 (Rd), i.e. of infinitely differentiable functions with a compact support in
the whole of Rd. We note that the linear span of such test functions Ψ is dense in L2(Ω;W ): e.g. an

arbitrary Ψ(x, y) ∈ L2(Ω;W ) ⊂
(
L2(Ω×Q)

)n×d
is approximated in

(
L2(Ω×Q)

)n×d
by linear span of

gm(x)ψ̃m(y) with gm(x) ∈ C∞0 (Ω) ⊂ C∞c (Ω) and ψ̃m(y) ∈ C∞# (Q), and then setting ψm(y) = PW ψ̃m(y)

with PW denoting orthogonal projection on W in
(
L2

#(Q)
)n×d

.

The following important lemma holds.

Lemma 5.1. Let u0(x, y) and ξ0(x, y) be as in Lemma 3.2, and let condition (4.2) hold. Then the
following integral identity holds:

∀Ψ(x, y) = g(x)ψ(y), g ∈ C∞c (Ω), ψ ∈W,
∫

Ω

∫
Q

ξ0(x, y) · Ψ(x, y) dx dy, =
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−
∫

Ω

∫
Q

u0(x, y) · divx

((
a(1)(y)

)1/2

Ψ(x, y)

)
dx dy. (5.1)

Remark 3. Notice that, importantly, in (5.1) Ψ is not in C∞0 (Ω) in x and so may adopt non-zero values
on the boundary ∂Ω of Ω. In this respect, (5.1) encodes in some sense ‘boundary conditions’ for u0(x, y),
x ∈ ∂Ω, which may remain inherited for degenerate a(1) in the limit ε → 0 from the zero Dirichlet
boundary conditions for uε ∈

(
H1

0 (Ω)
)n

in (2.1).

Proof. Let Ψ(x, y) = g(x)ψ(y), where g ∈ C∞c (Ω), ψ ∈W , and W is defined by (3.7). Then, by (3.10),

lim
ε→0

∫
Ω

(
a(1)

(x
ε

))1/2

∇uε(x) · Ψ
(
x,
x

ε

)
dx =

∫
Ω

∫
Q

ξ0(x, y) · Ψ(x, y) dx dy. (5.2)

On the other hand, ∫
Ω

(
a(1)

(x
ε

))1/2

∇uε(x) · Ψ
(
x,
x

ε

)
dx =∫

Ω

∇
(
g(x)uε(x)

)
·
(
a(1)

(x
ε

))1/2

ψ
(x
ε

)
dx−

∫
Ω

uε(x) ·
(

divx

((
a(1)(y)

)1/2

Ψ(x, y)

))∣∣∣∣
y=x/ε

dx. (5.3)

We notice first that, for any fixed ε > 0, the first term on the right hand side is zero. This follows e.g.
from extending g(x)uε(x) by zero outside Ω and then applying partition of unity arguments and using
(3.7). Hence (5.3) gives∫

Ω

(
a(1)

(x
ε

))1/2

∇uε(x) ·Ψ
(
x,
x

ε

)
dx = −

∫
Ω

uε(x) ·
(

divx

((
a(1)(y)

)1/2

Ψ(x, y)

))∣∣∣∣
y=x/ε

dx, (5.4)

and passing to the limit as ε→ 0 and using (3.8) then yields

lim
ε→0

∫
Ω

(
a(1)

(x
ε

))1/2

∇uε(x) · Ψ
(
x,
x

ε

)
dx =

−
∫

Ω

∫
Q

u0(x, y) · divx

((
a(1)(y)

)1/2

Ψ(x, y)

)
dx dy. (5.5)

Comparing (5.2) and (5.5) results in identity (5.1).

The identity (5.1) encodes the relation between the generalized limit flux ξ0(x, y) and the limit field
u0(x, y). Motivated by (5.1), we introduce the following linear subspace U of Hilbert space L2(Ω;V ):

U :=

{
u(x, y) ∈ L2 (Ω; V )

∣∣∣∣∣∃ ξ(x, y) ∈ L2(Ω;W ) such that,

∀Ψ(x, y) = g(x)ψ(y), g ∈ C∞c (Ω), ψ ∈W,
∫

Ω

∫
Q

ξ(x, y) · Ψ(x, y) dx dy =

−
∫

Ω

∫
Q

u(x, y) · divx

((
a(1)(y)

)1/2

Ψ(x, y)

)
dxdy

}
. (5.6)

Obviously, by Lemma 5.1, u0(x, y) ∈ U . We will see that U forms a domain for the sesquilinear form for
the two-scale limit operator, and so can be viewed as a two-scale generalization of H1

0 (Ω) in the classical
homogenization.

For any u(x, y) ∈ U , the associated ξ(x, y) in (5.6) is found uniquely due to the density of (linear span
of) Ψ(x, y) = g(x)ψ(y) in L2(Ω;W ). Let T denote the corresponding linear operator, T : U → L2(Ω;W ),
Tu := ξ. Denote by PW the orthogonal projector on W with respect to the standard L2 inner product
(4.10). Then, bearing in mind the definition of T and formally for a moment integrating by parts in
(5.6), it can be symbolically written as

ξ(x, y) = Tu(x, y) =: PW

[(
a(1)(y)

)1/2

∇xu(x, y)

]
∈ L2(Ω; W ). (5.7)
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We emphasize that the writing in (5.7) is in general formal: for u ∈ U ,
(
a(1)(y)

)1/2∇xu(x, y) is not

generally in
(
L2(Ω×Q)

)n×d
= L2

(
Ω;
(
L2(Q)

)n×d)
.

Introduce now another set of ‘product’ test functions in U , smooth in x: φ0(x, y) = η(x)v(y) so
that η ∈ C∞0 (Ω) and v ∈ V , see (3.5). It is easy to see that φ0(x, y) ∈ U , and the corresponding
Tφ0 ∈ L2(Ω;W ) is determined, via integration by parts in (5.6), by (5.7) now in the pointwise sense in
x. Further, the following “corrector” property holds:

Proposition 5.2. Let φ0(x, y) = η(x)v(y), where η ∈ C∞0 (Ω) and v ∈ V . Then φ0 ∈ U , and there exists
a unique “corrector” φ1(x, y) ∈ L2

(
Ω;V ⊥

)
such that

Tφ0(x, y) = PW

[(
a(1)(y)

)1/2

∇xφ0(x, y)

]
=
(
a(1)(y)

)1/2
[
∇xφ0(x, y) + ∇yφ1(x, y)

]
. (5.8)

Here, for all x ∈ Ω, φ1(x, y) ∈ V ⊥ is a unique solution of the corrector problem

divy

(
a(1)(y)

[
∇xφ0(x, y) + ∇yφ1(x, y)

])
= 0, (5.9)

equivalently, ∫
Q

a(1)(y)

[
∇xφ0(x, y) + ∇yφ1(y)

]
· ∇yψ(y)dy = 0, ∀ψ ∈

(
H1

#(Q)
)n
. (5.10)

Proof. Let φ0(x, y) = η(x)v(y), η ∈ C∞0 (Ω) and v ∈ V . For every fixed x ∈ Ω, consider the problem
(5.10). It follows from Theorem 4.2 with 〈F,w〉 = −

∫
Q
a(1)(y)∇xφ0(x, y) · ∇yw(y)dy that (4.8) holds

and hence (5.9) has a unique solution φ1(x, ·) ∈ V ⊥. Denoting

ξ(x, y) :=
(
a(1)(y)

)1/2

[∇xφ0(x, y) + ∇yφ1(x, y) ] , (5.11)

we notice that ξ(x, ·) ∈ W , ∀x, by (5.10), cf. (3.6)–(3.7), and noticing the smooth dependence on x,
ξ(x, y) ∈ L2(Ω;W ). Then the identity in (5.6) for u = φ0 follows from integration by parts in x, (5.11),
the fact that Ψ(x, ·) ∈W , and (3.6)-(3.7).

This implies φ0 ∈ U , and Tφ0 = ξ, yielding (5.8).

One can now pass to the limit in the weak form (2.8) of the original equation as follows. Let

fε
2
⇀ f0(x, y) ∈ L2

(
Ω;
(
L2(Q)

)n)
. We take as a test function in (2.8) φ(x) = φε(x) = φ0

(
x, xε

)
, where

φ0(x, y) = η(x)v(y), η ∈ C∞0 (Ω) and v ∈ V . The use of (3.8)–(3.10), (5.1), (5.7), and (5.8) results in the
following limit form for (2.8):∫

Ω

∫
Q

{
Tu0(x, y) · Tφ0(x, y) +

a(0)(y)∇yu0(x, y) · ∇yφ0(x, y) + λ ρ(y)u0(x, y) · φ0(x, y)

}
dy dx =∫

Ω

∫
Q
ρ(y)f0(x, y) · φ0(x, y) dy dx, ∀φ0(x, y) = η(x)v(y), η ∈ C∞0 (Ω), v ∈ V.

(5.12)

Integral identity (5.12) can be viewed as a weak form for the limit problem for u0(x, y) ∈ U . To
argue that this is a well-posed problem we first introduce the following sesquilinear quadratic form on
U :

Q(u,w) :=

∫
Ω

∫
Q

{
Tu(x, y) · Tw(x, y) +

a(0)(y)∇yu(x, y) · ∇yw(x, y) + ρ(y)u(x, y) · w(x, y)

}
dy dx.

(5.13)

The form Q defines an inner product on U .
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Lemma 5.3. Form Q is closed on U . Hence U is a Hilbert space with inner product

〈u, w〉U := Q(u, w). (5.14)

Proof. Let uj , j = 1, 2, ..., be a Cauchy sequence in U , i.e. ‖uj − uk‖U → 0 as j, k →∞, where

‖u ‖2U := Q(u, u). (5.15)

Let ξj := Tuj . Then, according to (5.13), (2.2), (2.4) and (2.7)3, ‖uj − uk‖L2(Ω;V ) → 0 and ‖ξj −
ξk‖L2(Ω;W ) → 0. Since both L2(Ω;V ) and L2(Ω;W ) are complete, there exist ũ ∈ L2(Ω;V ) and ξ̃ ∈
L2(Ω;W ) such that, respectively, uj → ũ in L2(Ω;V ) and ξj → ξ̃ in L2(Ω;W ). Taking then arbitrary
Ψ(x, y) = g(x)ψ(y), g ∈ C∞c (Ω), ψ ∈ W , one passes to the limit as j → ∞ in both the left hand side
and the right hand side of (5.6) (held with ξ and u replaces by ξj and uj , respectively, by the definition

of uj ∈ U and of ξj = Tuj). Hence (5.6) also holds for ξ̃ and ũ, and therefore ũ ∈ U , ξ̃ = T ũ, and
‖uj − ũ‖U → 0, which completes the proof.

We ultimately need to show that the linear span of the set of test functions φ0 adopted in (5.12) is
dense in U with respect to the norm (5.15). With this aim, we first introduce a wider set of ‘smooth
compactly supported in x’ trial fields φ0(x, y) ∈ U for which (5.12) still holds.

Definition 1. Consider all φ(x, y) ∈ L2
c(Ω;V ) of functions from L2(Ω;V ) with a compact (in x) support

suppxφ in Ω. Let a scalar function ζ ∈ C∞0
(
Rd
)

be such that diam(supp ζ) < dist(suppxφ, ∂Ω), and
consider an “x-smoothed” function

φ0(x, y) =

∫
Rd
ζ(x− x′)φ(x′, y)dx′ (5.16)

(which is still in L2(Ω;V ) and has a compact support in x). We denote by C̃∞0 (Ω;V ) the linear span of
all such functions φ0(x, y).

Lemma 5.4. (i) All φ0 ∈ C̃∞0 (Ω;V ) belong to U , with

Tφ0(x, y) =

∫
Rd
T (ζ(x− x′)φ(x′, y)) dx′. (5.17)

(ii) The identity (5.12) holds for the extended set of trial fields φ0 ∈ C̃∞0 (Ω;V ).

Proof. (i) Let φ0 ∈ C̃∞0 (Ω;V ) be associated with φ(x, y) ∈ L2
c(Ω;V ) via (5.16). Then, regarding x′ ∈ Ω

as a parameter, for almost every x′ ∈ Ω, φ0(x, y;x′) = ζ(x − x′)φ(x′, y) is of the product form as in
Proposition 5.2: φ0(x, y;x′) = η(x)v(y) where for x′ ∈ suppxφ, η(x) = ζ(x−x′) and v(y) = φ(x′, y), and
η ≡ v ≡ 0 otherwise. Hence, by Proposition 5.2, (5.6) holds for a.e. x′ with u(x, y) = φ0(x, y;x′) and
some ξ(x, y;x′) = T (ζ(x− x′)φ(x′, y)). Integration of (5.6) with respect to the parameter x′ then yields
φ0 ∈ U , with Tφ0(x, y) given by (5.17).

(ii) Similarly, (5.12) holds for almost every x′ ∈ Ω with φ0(x, y) = φ0(x, y;x′) and Tφ0(x, y) =
ξ(x, y;x′) constructed above. Hence, integrating (5.12) in x′, the result follows.

The following key property will be proved for star-shaped bounded domains Ω, although it can
similarly be shown to be valid for rather general domains (see Remark 4 below).

Definition 2. We call a domain Ω strictly star-shaped (with respect to the origin x = 0 ∈ Ω) if, for all
small δ > 0, dist ((1− δ)Ω, ∂Ω) > 0.

Theorem 5.5. Let Ω be a strictly star-shaped bounded domain. Then U is the closure of C̃∞0 (Ω;V ) in
the norm ‖ · ‖U , see (5.15).

3Notice that assumption (2.7) implies similar inequality in
(
H1

#(Q)
)n

with the integral over Rd replaced by integral

over Q, u · u(y) added to the integrand on the left, and the norm on the right replaced by the H1
#(Q)-norm, with some

constant C > 0. This can be seen by e.g. multiplying an infinitely periodic u ∈
(
H1

#(Q)
)n

by a smooth cut-off function

χR(y) such that χR = 1 for |y| ≤ R, χR = 0 for |y| > R+ 1 and |∇χR(y)| ≤ C, and taking R large enough.
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Proof. 1. Let Ω be a bounded domain, strictly star-shaped with respect to origin O. Fix u(x, y) ∈ U , let
ξ(x, y) = Tu(x, y) ∈ L2(Ω;W ), and regard both u and ξ as functions on the whole Rd in x by extending
them outside Ω by zero. We aim at constructing a sequence uδ ∈ C̃∞0 (Ω;V ) such that uδ → u in U as
δ → 0.

To this end, for any small δ > 0, let Ωδ := (1 − δ)Ω and denote d(δ) := dist (Ωδ, ∂Ω) > 0. Let
ûδ(x, y) := u(x/(1 − δ), y). Obviously, ûδ ∈ L2(Ω, V ) and the support of ûδ is contained in Ωδ ⊂ Ω.
Select ε(δ) = d(δ)/2 > 0 and let ζε(x) be a standard mollifying function: ζε(x) = ε−dζ(x/ε), where
ζ(z) ∈ C∞0 (Rd), ζ(−z) = ζ(z), supp ζ(z) ⊂ B(0, 1) and

∫
Rd ζ(z)dz = 1. Consider the x-smoothed

function

uδ(x, y) := ζε ∗ ûδ(x, y) :=

∫
Rd
ζε(x− x′)ûδ(x′, y)dx′.

Obviously, by the construction and Lemma 5.4, uδ(x, y) ∈ C̃∞0 (Ω;V ) ⊂ U .
We argue that uδ → u in U as δ → 0. According to (5.15), (5.13) and (5.7) it suffices to show that

uδ → u in L2(Ω;V ) and Tuδ → Tu in L2(Ω;W ).
The former assertion immediately follows from the fact that ûδ → u in L2(Ω;V ), cf. e.g. [33], and

from ‖uδ − ûδ‖L2(Ω;V ) → 0 (trivially established via e.g. changing variables x̂ = x/(1− δ), noticing that

ε→ 0 as δ → 0 and using the properties of the mollifications, cf. e.g. [33]).
2. To prove that Tuδ → Tu, choose Ψ(x, y) = η(x)ψ(y), with η ∈ C∞c (Ω) and ψ ∈ W , cf. (5.6).

Then, for the right hand side of (5.6) with u replaced by uδ ∈ U ,

I(δ) := −
∫

Ω

∫
Q

uδ(x, y) · divx

((
a(1)(y)

)1/2

Ψ(x, y)

)
dy dx =

−
∫

Ω

∫
Q

[∫
Ωδ

ζε(x− x′)ûδ(x′, y)dx′
]
· divx

((
a(1)(y)

)1/2

Ψ(x, y)

)
dy dx =

−
∫

Ωδ

∫
Q

ûδ(x
′, y) · Iε(x′, y) dydx′, (5.18)

where

Iε(x
′, y) :=

∫
Ω

ζε(x− x′)divx

((
a(1)(y)

)1/2

Ψ(x, y)

)
dx,

having interchanged above the orders of integration. Notice that for x′ ∈ Ωδ the integrand in Iε(x
′, y)

is smooth and compactly supported in Ω in x. Hence, via integration by parts and straightforward
manipulation,

Iε(x
′, y) = divx′

((
a(1)(y)

)1/2

Ψ̂δ(x
′, y)

)
, (5.19)

where

Ψ̂δ(x
′, y) := (ζε ∗Ψ) (x′, y) :=

∫
Ω

ζε(x
′′
− x′)Ψ(x

′′
, y)dx

′′
= η̂δ(x

′)ψ(y), (5.20)

with η̂δ = ζε ∗ η ∈ C∞c (Ω). Changing in (5.18)–(5.19) the integration variable (x = x′/(1 − δ)), and
introducing Ψδ(x, y) := (1−δ)d−1Ψ̂δ ((1− δ)x, y) = ηδ(x)ψ(y), ηδ(x) := (1−δ)d−1η̂δ((1−δ)x) ∈ C∞c (Ω),
results in

I(δ) = −
∫

Ω

∫
Q

u(x, y) · divx

((
a(1)(y)

)1/2

Ψδ(x, y)

)
dy dx,

which reproduces the right hand side of (5.6) for Ψ replaced by Ψδ. Hence, applying (5.6) to u ∈ U and
Ψδ = ηδ(x)ψ(y) (recalling ηδ ∈ C∞c (Ω) and ψ ∈W ), results in

I(δ) =

∫
Ω

∫
Q

ξ(x, y) · Ψδ(x, y) dy dx =

∫
Ω

∫
Q

ξδ(x, y) · Ψ(x, y) dy dx, (5.21)

where, via (5.20), and a further change of integration variables,

ξδ(x, y) := (1− δ)−1

∫
Ωδ

ζε(x− x′)ξ (x′/(1− δ), y) dx′. (5.22)

By the uniqueness of ξ in (5.6) for u replaced by uδ ∈ U , (5.21) yields Tuδ = ξδ. It is now straightforward
to check for ξδ, as given by (5.22), that ξδ → ξ = Tu in L2(Ω;W ) as δ → 0. Therefore Tuδ → Tu in
L2(Ω;W ) as δ → 0, which completes the proof.
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Remark 4. Since all the arguments in the above proof have been local in x, using a suitable partition
of unity in x the proof can be extended to e.g. any domains which can be presented locally as either
strictly star-shaped domains or (locally) epigraphs of arbitrary continuous functions.

Indeed, given u(x, y) ∈ U with associated ξ(x, y) = Tu(x, y) ∈ L2(Ω;W ) and χ(x) ∈ C∞0 (Rd), one can

see that χ(x)u(x, y) ∈ U with associated T (χ(x)u(x, y)) = χ(x)ξ(x, y)+PW

[(
a(1)(y)

)1/2
u(x, y)⊗∇χ(x)

]
,

as found from (5.6) by integration by parts.
This observation allows employing the partition of unity. For local epigraphs of continuous functions,

xd > f(x1, .., xd−1), the above proof modifies in an obvious way by replacing the (1− δ)-contractions of
the star-shaped domain by simple δ-translations in the positive xd-direction. The proof in the case of
Ω = Rd can be done similarly to the above with ûδ replaced by multiplying u by a suitable family of
cut-off functions, which can be combined with the above partition of unity arguments for extending the
result to arbitrary bounded or unbounded domains with locally strictly star-shaped or ‘local-epigraph’
boundaries. The routine details are omitted.

Lemma 5.4(ii) and Theorem 5.5 imply that the identity (5.12), which can be rewritten via (5.13)
as Q(u0, φ0) + (λ − 1)(u0, φ0)H = (f0, φ0)H , where H := L2

(
Ω;
(
L2
ρ(Q)

)n)
is Hilbert space with inner

product

(u1, u2)H =

∫
Ω×Q

ρ(y)u1(x, y) · u2(x, y) dxdy, (5.23)

holds for all φ0 ∈ U . Further, the proof of Lemma 5.3 implies that, for any λ > 0, the sesquilinear form
determined by the left hand side of (5.12) is bounded and coercive in the Hilbert space U , on which
the right hand side of (5.12) specifies a linear continuous functional on U . This implies by the Lax-
Milgram lemma that, for any f0 ∈ H (5.12) has a unique solution u0(x, y) ∈ U . The latter uniqueness
in turn implies that the solutions uε(x) of the original problem (2.8) weakly two-scale converge to
u0(x, y), without the need for extracting a subsequence. These are key technical results of this work,
with numerous implications, so we summarize that below as following theorem:

Theorem 5.6. Let the assumptions (2.2)–(2.7), as well as the key assumption (4.2), hold. Then, for Ω

from any of the above described classes, for any λ > 0 and for any fε
2
⇀ f0(x, y) ∈ L2

(
Ω;
(
L2(Q)

)n)
, the

unique solutions uε of (2.8) weakly two-scale converge to u0(x, y) ∈ U , uε(x)
2
⇀ u0(x, y), which uniquely

satisfies the integral identity (5.12) for all φ0 ∈ U . The associated generalized fluxes
(
a(1)(x/ε)

)1/2∇uε(x)
weakly two-scale converge to ξ0(x, y) = Tu0(x, y) as defined by (5.1).

As we show below, this will further imply the weak and strong (pseudo-)resolvent convergences of the
operators, with further implications for convergence of related semigroups and associated time-dependent
Cauchy problems, and for certain spectral convergence.

6 The two-scale limit operator and the resolvent convergence

6.1 The limit operator

The above construction defines, in a standard way, a self-adjoint two-scale limit operator A0 in Hilbert
space H0 defined as the closure of U in the Hilbert space H = L2

(
Ω;
(
L2
ρ(Q)

)n)
. Indeed, due to Lemma

5.3, the non-negative symmetric sesquilinear form Q(u,w) given on U×U by (5.13) is closed and densely
defined in H0. Hence it defines a self-adjoint operator A0 in H0 with a dense domain D(A0) ⊂ U :

D(A0) = {u(x, y) ∈ U : ∃ (unique)w =: A0u ∈ H0 such thatβ(u, v) = (w, v)H , ∀v ∈ U} , (6.1)

where, cf. (5.13),

β(u, v) :=

∫
Ω

∫
Q

{
Tu(x, y) · Tv(x, y) + a(0)(y)∇yu(x, y) · ∇yv(x, y)

}
dx dy. (6.2)

This fully determines A0 in the general case under the key assumption (4.2) and Ω as in Remark
4. The above general description of the limit operator A0 may need to be specialized to be made more
explicit for particular examples: see e.g. [21, 23–25] where such a specialization was performed for some
of the examples in Section 4.1.
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Loosely, e.g. assuming sufficient regularity of u(x, y) as well as of a(1)(y), a(0)(y) and ρ(y) or in
an appropriate distribution sense, A0u may be interpreted as follows. As, cf. (6.1), for u ∈ D(A0),
A0u ∈ H0 with (A0u, v)H = β(u, v) for all v ∈ U , from (5.23) and (6.2),∫

Ω

∫
Q

A0u(x, y) · ρ(y)v(x, y) dx dy =

=

∫
Ω

∫
Q

{
Tu(x, y) · Tv(x, y) + a(0)(y)∇yu(x, y) · ∇yv(x, y)

}
dx dy.

Therefore, formally integrating by parts,

(A0u)(x, y) = P
[
T ∗Tu − ρ−1(y)divy

(
a(0)(y)∇yu

) ]
,

where T ∗ : L2(Ω;W ) → H0 is the adjoint of T and P is the orthogonal projector from H to H0 (with
respect to the inner product (5.23)). Further, for regular enough functions, T can be represented via
(5.8), and from (5.6),

(T ∗Ψ)(x, y) = −P
[
ρ−1(y)divx

((
a(1)(y)

)1/2

Ψ(x, y)

)
dxdy

]
.

As a result, we arrive at the following (formal) representation for the two-scale limit operator A0:

(A0u)(x, y) = −P
[
ρ−1(y)divx

((
a(1)(y)

)1/2

PW

[(
a(1)(y)

)1/2

∇xu(x, y)

])
+

ρ−1(y)divy

(
a(0)(y)∇yu

)]
.

Here PW is the standard L2-orthogonal projector on the space W of admissible micro-fluxes, see (3.6),
which can be constructed, cf (5.8), via solving the ‘generalized’ corrector problem:

divy

(
a(1)(y) [∇xu(x, y) +∇yu1(x, y)]

)
= 0.

6.2 The weak two-scale resolvent convergence

Recall that for uε solving the original problem (2.8), equivalently (2.1), it can be written as uε =

(Aε + λI)
−1
fε, see (2.9), where Aε is non-negative self-adjoint operator in Hilbert space Hε =

(
L2(Ω)

)n
equipped with inner product (u, v)Hε :=

∫
Ω
u(x)·ρε(x)v(x)dx. Further, the limit weak formulation (5.12)

is equivalently recast via (6.2) and (5.23) as

β(u0, φ0) + λ(u0, φ0)H = (f0, φ0)H , for all φ0 ∈ U,

for a given f0 ∈ H. This immediately implies, cf. (6.1), that for the unique solution u0 of (5.12),
u0 ∈ D(A0) and A0u0 + λu0 = Pf0 where P is the above introduced orthogonal projector from H on
H0. Therefore, u0 = (A0 + λI)−1Pf0 and so Theorem 5.6 can be immediately re-stated as follows.

Corollary 6.1. Under the assumptions (2.2)–(2.7) and (4.2) and for any Ω as in Remark 4, let fε
2
⇀

f0(x, y) ∈ H = L2
(
Ω;
(
L2(Q)

)n)
. Then, for all λ > 0,

uε = (Aε + λI)
−1
fε

2
⇀ (A0 + λI)

−1
Pf0, as ε→ 0. (6.3)

The associated generalized fluxes
(
a(1)(x/ε)

)1/2∇uε(x) weakly two-scale converge to ξ0(x, y) = Tu0(x, y)
as defined by (5.1).

The corollary can be interpreted as a weak two-scale (pseudo-)resolvent convergence, see e.g. [2,4,30]:
the resolvents acting on weakly two-scale convergent sequences weakly two-scale converge to the resolvent
of the limit operator acting in the orthogonal projection of f0 on H0.

The latter has further important implications as discussed in the next section.
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7 Implications of the weak resolvent convergence

Corollary 6.1 has a number of implications, valid under some abstract assumptions, see [4, 30] which
include our general case. We state some of these implications below, providing some brief comments.
We notice first that taking the weak and strong two-scale convergences defined in (2.10) and (2.11)
as abstract weak and strong convergences of elements of Hε to elements of H, is easily checked to be
consistent with the Definition 1.1 and assumption (1.1) of [30].

In the rest of this section we assume that (2.2)–(2.7) and (4.2) hold, as well as that Ω is as in Remark
4.

1. Strong two-scale (pseudo-)resolvent convergence. It can be easily checked directly using (2.11)
and the self-adjointness of (Aε + λI)−1 and (A0 + λI)−1 in Hε and H0 respectively cf. [2], and was
also proved in generality in e.g. [30] Lemmas 2.4 and 2.5, that Corollary 6.1 implies analogous strong
two-scale (pseudo-)resolvent convergence. This has further important implications and we state this as
the following theorem.

Theorem 7.1. If fε(x)
2→ f0(x, y) ∈ H = L2

(
Ω;
(
L2(Q)

)n)
, then, for all λ > 0,

uε = (Aε + λI)
−1
fε

2→ (A0 + λI)
−1
Pf0, as ε→ 0. (7.1)

The associated generalized fluxes ξε(x) =
(
a(1)(x/ε)

)1/2∇uε(x) also strongly two-scale converge to
ξ0(x, y) = Tu0(x, y) as defined by (5.1).

Notice that, additionally to [30], the above theorem also includes the strong two-scale convergence
of the generalized fluxes. Trying to be concise here, the latter can be inferred by first setting in
(2.8) φ = uε and recalling that its both sides converge, as ε → 0, to (5.12) with φ0 replaced by u0.
Then we notice that the last terms on the left and the right hand sides of (2.8) converge to those

of (5.12) since uε(x)
2→ u0(x, y) ∈ H0. Further, for non-negative (cf (2.7)) variational functional

Iε(u) :=
∫

Ω
ε2
(
a(0) (x/ε) + a(1) (x/ε)

)
∇u(x) · ∇u(x)dx, u ∈

(
H1

0 (Ω)
)n

, a two-scale weak lower semicon-

tinuity property holds: if uε(x)
2
⇀ u0(x, y) ∈ L2

(
Ω;
(
H1

#(Q)
)n)

=: V0 then lim infε→0 Iε(u
ε) ≥ I0(u0),

where I0(u0) :=
∫

Ω×Q
(
a(0) (y) + a(1) (y)

)
∇yu0(x, y) · ∇yu0(x, y)dxdy. The latter can be shown by, for

example, adjusting the argument of Zhikov in §2.3 (iii) of [2] to 0 ≤ Iε(uε(x)−Φk(x, x/ε)) with Φk(x, y)
a linear combination of φi(x)bi(y), and then choosing Φk(x, y)→ u0(x, y) in V0 (e.g. choosing as Φk the
truncated Fourier series of u0(x, y) in Q-periodic y). Together with (2.13) for the first terms in (2.8)

and (5.12), which are respectively ‖ξε(x)‖22 and ‖Tu0(x, y)‖22 (since ξε
2
⇀ Tu0(x, y) and hence by (2.12)

a priori lim infε→0 ‖ξε(x)‖22 ≥ ‖Tu0(x, y)‖22), this implies ξε
2→ Tu0(x, y) as claimed. Notice that the

argument also implies that in fact limε→0 Iε(u
ε) = I0(u0), resulting in turn in ε∇uε 2→ ∇yu0(x, y), cf.

(3.9).

2. Partial convergence of spectra. Let SpAε and SpA0 be the spectra of the self-adjoint operators Aε
and A0, respectively. Then, as discussed e.g. in [2] and shown in abstract generality in [30] Theorem
8.1, the strong two-scale resolvent convergence of the above Theorem 7.1 automatically implies a “part”
of the Hausdorff convergence of the spectra, namely

Corollary 7.2. For any µ0 ∈ SpA0 there exist µε ∈ SpAε such that µε → µ0.

Therefore any point on the spectrum of the limit operator A0 for small enough ε is approximated by
points in the spectrum of Aε.

The “converse” part of the Hausdorff convergence, i.e. that µε → µ0, µε ∈ SpAε implies µ0 ∈ SpA0

does not generally hold, see e.g. [24]4. It does hold however in a number of important examples, see
e.g. [2,3,5,18,23], which has then to be proved by separate means and sometimes allows to establish the
existence of band gaps in the spectrum of Aε for small enough ε.

3. Strong convergence of spectral projectors. As again discussed in e.g. [2], and then shown in
an abstract generality in [30] Theorem 8.4, the strong two-scale resolvent convergence of Theorem 7.1

4As clarified e.g. in [21, 24], for Ω = Rd this corresponds to non-vanishing contributions to the limit Floquet-Bloch
spectrum as ε → 0 from the quasi-periodicity parameter (quasi-momentum) θ 6= 0, for which the present two-scale
description restricted to periodic functions (θ = 0) appears insufficient.
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implies also the convergence of spectral projectors. Denote Eε(λ) and E0(λ) the spectral projectors of
the non-negative self-adjoint operators Aε and A0 respectively, i.e. for their spectral decompositions:

Aε =

∫ ∞
0

λ dEε(λ), A0 =

∫ ∞
0

λ dE0(λ). (7.2)

Then

Corollary 7.3. If λ is not an eigenvalue of A0, then Eε(λ)fε(x) 2→ E0(λ)f0(x, y) as long as fε(x) 2→
f0(x, y) ∈ H0.

4. Convergence of semigroups and convergence of Cauchy problems for time-dependent initial value
problems. As again discussed in [2] and then shown in abstract generality in [4] and in [30], the strong
(equivalently weak) two scale (pseudo-)resolvent convergence akin to that in the above Theorem 7.1
implies appropriate two-scale convergence of associated semigroups as well as of related evolution Cauchy
problems with time-independent coefficients. The reader is referred to [30] for an abstract account of
some scenarios for such convergences, most of which can be specialized to our case. We state below a
couple of particular results from [30], as adapted and extended to our problem.

The non-negative self-adjoint operators Aε and A0 in the respective Hilbert spacesHε andH0 generate
strongly continuous contraction semigroups, denoted (Sε(t))t≥0 = e−tAε and (S0(t))t≥0 = e−tA0 .

The following theorem results from e.g. specializing Theorem 1.4 of [30], which is in turn a modifi-
cation of Trotter-Kato theorem for variable Banach spaces cf. [4], to our setting.

Theorem 7.4. (i) The strongly continuous contraction semigroups Sε(t) associated with Aε strongly two-
scale converge pointwise in t to the semigroup S0(t) associated with A0, i.e. if fε(x) 2→ f0(x, y) ∈ H0

then for all t ≥ 0,
e−Aεtfε(x) 2→ e−A0tf0(x, y).

(ii) Hence, given T > 0, for parabolic Cauchy problem

ρε(x)
∂uε

∂t
− div (aε(x)∇uε) = 0, uε(x, 0) = fε(x) ∈

(
L2(Ω)

)n
, (7.3)

if fε(x) 2→ f0(x, y) ∈ H0, then for the (unique) solution uε, uε(x, t) 2→ u0(x, y, t) for all t ≥ 0. Here
u0(x, y, t) is the (unique) solution of two-scale limit Cauchy problem:

∂u0

∂t
+ A0u0 = 0, u0(x, y, 0) = f0(x, y). (7.4)

Solutions of both Cauchy problems (7.3) and (7.4) can be a priori understood as strong solutions. For
example, seek uε ∈ C([0, T ];Hε) and u0 ∈ C([0, T ];H0) respectively, with the above initial conditions
and such that for all t > 0, uε ∈ D(Aε) and u0 ∈ D(A0) and have strong derivatives in t with values
in Hε and H0, and duε

dt + Aεu
ε = 0 and du0

dt + A0u0 = 0 for all t > 0. Then uε(t) = e−tAεfε and
u0(t) = e−tA0f0 are readily checked to be solutions, and the uniqueness follows in a standard way from
the non-negativity of Aε and A0.

Notice that uε and u0 can also be viewed as appropriate (unique) weak solutions of (7.3) and
(7.4). For example, cf. e.g. [38], seek uε(x, t) ∈ L2

(
0, T ;

(
H1

0 (Ω)
)n) ∩ C ([0, T ];

(
L2(Ω)

)n)
with ∂u

∂t ∈
L2
(
0, T ;H−1(Ω)

)
, such that

〈∂uε/∂t, v〉+ βε(u
ε, v) = 0 (7.5)

for each v ∈
(
H1

0 (Ω)
)n

and a.e. 0 ≤ t ≤ T , where βε(u, v) :=
∫

Ω
aε(x)∇u · ∇v dx, with initial condition

u(x, 0) = fε(x). Then uε(x) = e−tAεfε is readily seen to be the unique solution.
This would allow a further refinement of Theorem 7.4 to include (strong two-scale) convergence of

the generalized fluxes ξε(x, t) :=
(
a(1)(x/ε)

)1/2∇uε(x, t). This can be shown by first noticing that by
setting in (7.5) u = v = uε and recalling the L2-boundedness of fε implies that ξε(x) is uniformly

bounded in L2(0, T ;Hε), and hence (cf e.g. [30] Lemma 4.4), up to a subsequence, ξε(x, t)
2
⇀ ξ0(x, y, t)

in L2(0, T ;H). Selecting then in (2.8) the test functions v first as in the proof of Lemma 3.2 we infer that
ξ0 ∈ L2

(
0, T ;L2(Ω;W )

)
, and then as in the proof of Lemma 5.1 we conclude that ξ0(x, y, t) = Tu0(x, y, t).

Finally, we can show that in fact ξε(x, t)
2→ ξ0(x, y, t) following similar argument after Theorem 7.1.
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So, as Theorem 7.4 implies, for the above generalization of a double porosity-type parabolic Cauchy
problem (cf e.g. [2,9]), the limit problem (7.4) can be derived under most general assumptions (2.2)–(2.7)
and (4.2).

We emphasize that the condition that the two-scale limit of the Cauchy data f0(x, y) is in the
subspace H0 of H =

(
L2(Ω×Q)

)n
but not in the whole of H is important for Theorem 7.4 to hold. If

this condition is not met, the convergence to u0 = e−tA0Pf0 (i.e. with f0 replaced by its projection Pf0

on H0) would generally hold only in a weak sense and only ‘on the average’ with respect to t, cf [30]
Theorem 1.6 and [4] Theorem 2.

Finally, following again [30], we provide a scenario ensuring convergence of associated hyperbolic semi-
groups, with implications for two-scale homogenization of high-contrast hyperbolic problems. Consider
the hyperbolic Cauchy problem

ρε(x)
∂2uε

∂t2
− div (aε(x)∇uε) = 0, uε(x, 0) = fε(x),

∂uε

∂t
(x, 0) = gε(x), (7.6)

with initial data fε ∈
(
H1

0 (Ω)
)n

and gε ∈
(
L2(Ω)

)n
. For every ε > 0 and T > 0, the Cauchy problem

(7.6) is well-posed, cf e.g. [38], for uε(x, t) ∈ C
(
[0, T ];

(
H1

0 (Ω)
)n)

with ∂u
∂t ∈ C

(
[0, T ];

(
L2(Ω)

)n)
and

∂2u
∂t2 ∈ L

2
(
0, T ;

(
H−1(Ω)

)n)
, such that

〈∂2uε/∂t2, v〉+ βε(u
ε, v) = 0 (7.7)

for each v ∈
(
H1

0 (Ω)
)n

and a.e. 0 ≤ t ≤ T . It is then routinely checked, referring to the spectral
representation (7.2) for Aε, that the unique solution of (7.6) is

uε(x, t) = cos
(
A1/2
ε t

)
fε +

sin
(
A

1/2
ε t

)
A

1/2
ε

gε. (7.8)

The Cauchy problem (7.6) can be interpreted in terms of a contraction semigroup on
(
H1

0 (Ω)
)n ×(

L2(Ω)
)n

, cf. e.g. [33] §7.4.3 b. Then, according to Theorem 5.2 of [30], a version of the Trotter-Kato
theorem holds ensuring a weak two-scale convergence of related hyperbolic semigroups. Complementary
or alternatively, one could exploit the self-adjointness and the non-negativeness of Aε and A0, cf (7.6)
and (7.8) and reduce the problem to that of a ‘Stone’s unitary group’.

Adapting e.g. Theorem 5.3 of [30] to our case, we state the following theorem.

Theorem 7.5. Let fε
2
⇀ f0(x, y) ∈ U , gε

2
⇀ g0(x, y) ∈ H, and let

lim sup
ε→0

∫
Ω

aε(x)∇fε · ∇fε(x) dx < ∞. (7.9)

Then for each T > 0, for the solution uε(x, t) to the Cauchy problem (7.6), uε(x, t)
2
⇀ u0(x, y, t),(

a(1)(x/ε)
)1/2∇uε(x, t) 2

⇀ Tu0(x, y, t), ∂uε

∂t (x, t)
2
⇀ ∂u0

∂t (x, y, t) in L2(0, T ;Hε)
5 where u0 is the unique

solution of two-scale Cauchy problem in H0:

∂2u0

∂t2
+ A0u0 = 0, u0(x, y, 0) = f0(x, y),

∂u0

∂t
(x, y, 0) = Pg0(x, y). (7.10)

The limit Cauchy problem (7.10) is well-posed, cf [38], for u0(x, t) ∈ C ([0, T ];U) with ∂u
∂t ∈ C ([0, T ];H0)

and ∂2u
∂t2 ∈ L

2 (0, T ;U∗), (where U∗ denotes the dual space to U), such that

〈∂2u0/∂t
2, v〉+ β(u0, v) = 0 (7.11)

5According to Definition 4.3 of [30], for a bounded sequence vε ∈ L2(0, T ;Hε) we say that vε(x, t)
2
⇀ v(x, y, t) ∈

L2(0, T ;H) if for any zε(x)
2→ z(x, y) and any ϕ(t) ∈ L2(0, T ),∫ T

0
(vε(x, t), zε(x))Hε ϕ(t)dt →

∫ T

0
(v(x, y, t), z(x, y, t))H ϕ(t)dt.
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for each v ∈ U and a.e. 0 ≤ t ≤ T .
Then, according to the spectral representation (7.2) for A0, the unique solution of (7.10) is readily

seen to be

u0(x, t) = cos
(
A

1/2
0 t

)
f0 +

sin
(
A

1/2
0 t

)
A

1/2
0

Pg0. (7.12)

Note that, compared to the abstract Theorem 5.3 of [30], we have again stated here a further re-
finement specific to at least our general class of the problems: on the weak two-scale convergence of

the generalized fluxes ξε(x, t) :=
(
a(1)(x/ε)

)1/2∇uε(x, t), which is a natural generalization of the weak
H1-convergence of uε in the classical homogenization. Indeed by (7.9), the L2-boundedness of gε and the
energy conservation for (7.6), ξε(x) is uniformly bounded in L2(0, T ;Hε), and hence the convergence can
be shown to hold via a straightforward modification of the proof of a similar convergence for parabolic
problem as outlined below Theorem 7.4.

One can similarly adopt Theorem 7.2 of [30] to establish a sufficient condition on the initial data
fε(x) and gε(x) for appropriate strong (pointwise in t) convergence of uε(x, t) to u0(x, t).

The above implications may be interpreted as follows. Under generic assumptions on the degeneracy
a(1)(y), notably under the key decomposition assumption (4.2) together with the original assumptions
(2.2)–(2.7), for a wide class of domains Ω (Remark 4) the limit resolvent problem as well as the limit
parabolic and hyperbolic Cauchy problems retain the two-scale pattern of respectively the right hand
side and of the Cauchy data. That is in contrast with the spectral problem (see the discussion follow-
ing Corollary 7.2 above), which may generally retain a quasi-periodic pattern in the limit and which
may hence need to be reflected by appropriately extending the limit operator, unless some additional
conditions are imposed. The latter may deserve a separate investigation, as well as whether the cases
where (4.2) is not satisfied e.g. the examples of high anisotropy in [14,19] can also be treated generally,
possibly by combining the presented ideas with those based on convergence with respect to measures [2].
The latter approach has indeed proved working in [14] where (4.2) is not satisfied. It may also be of
interest to investigate general properties of the limit operator A0 and of associated two-scale coupled
limit problems, and in particular under what conditions the scales could be uncoupled, in one or another
way.
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