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Abstract 

It is standard government procedure to subject all policies, programmes and projects to comprehensive and 

proportionate assessments to promote the public interest and ensure best use of resources to secure national 

objectives. A key assessment criterion for energy efficiency policies is their expected impact on CO2 emissions 

and, accordingly, governments require environmental impact assessments to inform decisions about which 

policies should be supported. As electricity systems decarbonise and progress towards higher penetrations of 

renewable energy, however, system balancing becomes increasingly challenging and, as a result, there is 

increasing value in demand response. The efficiency of low-carbon systems depends not only on policies that 

promote demand reduction, but also those that promote demand response.  

Smart appliances are, from the grid’s perspective, a means to achieve demand response and this paper is 

interested in the question: how much CO2 do smart appliances save, in their capacity as ‘demand response 

technologies’? This paper aims to clarify this topic by reviewing the literature on carbon savings from demand 

response technologies, describing a simple conceptual model that illustrates the importance of accounting for the 

long-run structural impact of demand response, and estimating the CO2 impact for a case-study of domestic 

battery systems in the Irish power system. The results indicate that the carbon impact of demand response 

technologies may be negligible, or even negative, unless structural change in the power system occurs, such as 

changes to the dispatch and decommissioning of generation. This highlights the added value of the role of 

demand aggregators, who act as the necessary intermediary between the small-scale and distributed smart 

appliances and the electricity markets where their beneficial structural impacts can be most effectively enabled.  

Introduction 

Demand-side technology changes for a low-carbon future 

Technology change is required to make energy clean, secure and affordable – the energy trilemma. The domestic 

sector is an area in which the required change is expected to be particularly pronounced. While there is growing 

concern that technology change alone may not be enough to achieve the scale and speed of emissions reduction 

required to keep mean global temperature rise within 2o Celsius, let alone 1.5o, above pre-industrial levels, this 

paper focusses on technology change in the domestic sector and in particular assessment of the effectiveness of 

such technologies for addressing the sustainability aspect of the energy trilemma. 

Energy efficiency technologies and demand reduction 

Regardless of the technology change required for energy supply, reducing overall demand for energy is a critical 

objective. Energy efficiency technologies such as retrofit building insulation or more efficient lighting, are one 

of the primary means of achieving this and they are routinely assessed for their potential to reduce demand, cost 

effectiveness, and unintended behavioural ‘rebound effects’. These assessments can provide the necessary 

evidence to support policy decisions about energy efficiency, make projections of future demand, and develop 
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scenarios. Domestic appliances, for example, are regulated with the aim of improving efficiency through energy 

efficiency standards, and there are well-established systems of energy labelling for basic household appliances 

such as the EU Energy Label that help to inform consumer purchasing.  

Smart appliances and demand response technologies 

If energy efficiency is a means to achieve demand reduction, then arguably smart appliances are a means to 

achieve demand response or load-shifting (Timpe, 2009). The term ‘smart appliances’ can be ambiguous but 

here refers to domestic appliances with automated demand response functionality, usually falling into the 

categories of wet appliances (e.g. dishwashers, washing machines, etc.), heating, ventilation and cooling 

technologies (e.g. heat pumps), cold appliances (e.g. refrigerators), and, in line with UK government energy 

policy and regulation (BEIS, 2016), includes domestic battery storage systems. Electric vehicles do not generally 

fall under the term, though we note that, from the grid perspective, they are similar to battery storage systems.  

Demand response is defined here as a change from normal patterns of electricity demand. It includes all changes 

made or approved by the end-user, whether these are intended to alter the timing of demand, the level of 

instantaneous demand, or overall consumption (Albadi and El-Saadany, 2008). Demand response can be carried 

out either manually or through automation and smart appliances in response to a signal, usually a price, intended 

to benefit both the consumer and the wider electricity system (Darby and McKenna, 2012). For the sake of 

clarity, we use the term ‘demand response technology’ to emphasise our focus on this particular function of 

smart appliances. We note, though, that smart appliances are more likely to be marketed to the public on the 

basis of convenience and control, highlighting a potential divide between end-user and grid perceptions of 

‘smart’.  

Demand response can have many benefits in power systems both in terms of emissions reductions and improving 

economics, including reduction of generation capacity, ancillary services, and more efficient use of network 

assets. It is often mentioned as a way of supporting the integration of renewable energy into power systems, by 

making the demand-side more flexible in response to an increasingly inflexible supply-side. Recently, however, 

there have been a number of publications estimating the environmental impact of domestic battery systems 

which indicate that such demand response technologies may increase emissions (Fares and Webber, 2017; 

McKenna et al., 2013). This paper therefore focusses on this issue and the importance of determining the 

environmental impact of demand response technologies. 

Aims of the paper 

The policy goal for smart appliances as demand response technologies is the same as that for demand reduction 

technologies (energy efficiency): make energy more secure, more sustainable and more affordable. This paper 

focusses on sustainability and aims to address the question: how much could demand response technologies 

reduce CO2 emissions?  

Fundamentally we would like to know how effective different types of demand response technologies are at 

achieving carbon reduction and which merit support. Which have the greatest potential for reducing CO2, and 

how do they compare alongside more traditional demand reduction technologies, that do not achieve load-

shifting? Given their similar purposes, when is it more effective to invest in demand response technologies 

compared to those that are deployed with demand reduction in mind? 

The problem is that while it is reasonably intuitive to measure a reduction in energy and translate that into a 

reduction in emissions, it is much less straightforward to determine the same impact when the energy has not 

been removed from the system but shifted to another moment in time. This paper aims to clarify this area by 

reviewing the literature on carbon savings from domestic demand response technologies, describing a simple 

conceptual model of the impact of demand response, estimating the CO2 impact for a case-study of domestic 

battery systems in the Irish power system, and discussing the broader relevance of the findings. 

Review of the literature assessing carbon saving from demand 

response technologies 

This section reviews a selection of the literature on environmental impact assessments of smart grid 

technologies, including appliances that are smart-enabled, heat pumps and battery systems. The last two are not 

necessarily smart – that is, they may not have two-way communications for remote control – but they are 

included because they are demand response technologies with the potential to be used in smart grids.  There is a 

particular interest in the state-of-the-art in attributing carbon savings to demand response. The findings are 

summarised at the end of the section. 



Smart grids 

Moretti et al. provide a recent systematic review of the environmental and economic benefits of smart grids 

(Moretti et al., 2016). A smart grid is a “technologically advanced network [that] is expected to facilitate the 

integration of renewable generation technologies such as, photovoltaics and wind, and innovative user 

applications (e.g., electric vehicles, heat pumps, distributed storage) into the electric grid, and thus to facilitate a 

transition to a low-carbon energy generation system”. Demand response technologies are seen as a necessary 

part of a smart grid.  

Moretti et al. note that there is no standard method for evaluating the economic and environmental impact of 

smart grids and indicate costs ranging from 0.04 to 804 M€/yr, with costs outweighing benefits on average by 

59 M€/yr. Primary energy savings due to energy efficiency improvements were in the range 0.03 to 0.95 

MJ/kWh, and greenhouse gas reductions in the range 10 to 180 gCO2/kWh. The authors conclude that smart 

grids are energy efficient at the system level and likely to reduce greenhouse gases but may not yield financial 

benefits.  

The estimates of greenhouse gas reductions given above are based on four studies, each with distinctive 

assumptions as to how the reductions might be achieved. Farzeneh et al. attribute savings to more efficient 

technologies, micro-generation, and reducing distribution line voltages (Farzaneh et al., 2014). Görbe et al. 

propose a novel power electronic controller for distributed micro-generators and estimate a 5% reduction in 

electricity distribution losses due to power from distributed generation being used locally (Görbe et al., 2012). 

EPRI’s ‘The Green Grid’ report provides a first-order quantification of the energy and greenhouse gas savings of 

smart grids and has a specific section on energy savings from demand response programmes (EPRI, 2008). The 

authors attribute the majority of greenhouse gas savings to consumers reducing energy demand due to improved 

information feedback about their usage, replacing internal combustion engine vehicles with plug-in electric 

vehicles, and greater integration of renewables. Demand response programs are assumed to reduce peak demand 

by 5% and provide less than 1% of the total greenhouse gas savings. The authors note that load-shifting per se 

does not reduce energy demand, may increase demand in practice (e.g. pre-cooling houses), and may increase 

emissions if the supply-mix is more carbon-intensive during the off-peak period than the peak period. Finally, 

Yuan and Hu attribute greenhouse gas savings to the combined effects of end-use energy efficiency 

improvements and  improved efficiency of power plant from a flatter demand profile (Yuan and Hu, 2011). In 

summary, in these studies the environmental benefits of smart grids are generally attributed to demand reduction 

from improved grid and network operations (system efficiency) and improved end-use energy efficiency. The 

impacts of demand response are assessed to a lesser degree, or not at all. 

Darby et al. (2013) offer a framework of conditions, metrics and indicators to assess the potential for carbon 

savings from demand response and demand reduction.  The paper first identifies potential demand-side 

functionalities or actions such as investment in efficiency, peak load-shifting and automated response for 

frequency control. It then selects indicators of regulatory and operational support for these functionalities in six 

contrasting EU countries and uses these indicators in wholesale and ancillary market models, in conjunction with 

data on supply mixes and interconnections, to estimate carbon impacts by the year 2020 under three scenarios: a 

base case in which there is no rollout of smart grid technology; an ‘expected’ scenario in which new 

technologies are introduced but nothing else changes; and a ‘feasible’ scenario that assumes 

legislation/regulation in support of new technologies. Each country has distinctive outcomes, ranging from 4-

13% carbon savings over baseline in the best-case scenario and from 1-6% in the technology-only scenario. For 

all countries modelled, the biggest single driver of emission reductions is the lowering of emissions intensity due 

to increased zero-carbon generation, coupled with more efficient use of fossil fuel generation through a 

combination of load shifting and demand reduction. The second largest driver is ‘reduction in generation 

volume’, due to overall demand reduction. The residential sector emerges as the source of virtually all the 

modelled demand reduction and demand response, as it has the most regulatory support in the form of enabling 

programmes.  

 

This early attempt at modelling carbon impacts from demand response explicitly takes into account static and 

dynamic peak-shifting and shows that both (overall) demand reduction and (time-specific) response have 

considerable potential for carbon savings. It illustrates the value of taking a ‘power systems simulation’ approach 

that incorporates empirical evidence on demand response along with measures of infrastructural and regulatory 

readiness for demand response. It also demonstrates the potential of demand response to achieve structural 

impact, as one effect of demand response within the models is to affect plant commissioning and 

decommissioning as a consequence of altering peak demand and generation dispatch; and the value of a system 

operator being able to dispatch and plan with demand response as a resource. The paper thus points the way 

towards a type of exercise that could support assessments of the carbon impact of smart appliances, to determine 

their effectiveness alongside other technologies and activities/processes. 



Smart homes 

There is a far larger number of ‘prospective’ studies assessing the theoretical impact or technical potential of 

fully-integrated smart homes1 than evaluative studies capable of telling us how such homes perform in practice. 

Evaluation of domestic smart equipment for demand response is largely restricted to programmes that involve 

shifting substantial cooling and heating loads in response to pricing signals e.g. (Faruqui and Sergici, 2011) – 

that is the programme rather than the technology itself is evaluated, and only a few end-uses are involved.  There 

are now a few evaluations of smart thermostats, mostly with ambivalent findings at best for end-use and system 

efficiency e.g. (Yang and Newman, 2013). Examples of prospective studies of comprehensively smart homes 

(with integrated appliances, sensors and controls), are Rashidi and Cook (2009), with an emphasis on technical 

aspects of home automation and machine learning, and Balta-Ozkan et al. (2013), taking a more systems-based 

approach and including some consideration of occupant preferences and activities. 

One recent evaluative and two recent prospective studies of smart homes are worth mentioning here because of 

their divergence from the usual optimistic narratives about their environmental impacts. Nyborg and Røpke 

(2013) offer a thoughtful qualitative analysis of how people respond to smart home technology, drawing 

attention to the need to pay attention to the co-evolution of systems and practices and potential for increased 

service expectations and, by implication, increased environmental impact. Louis et al. (2015) investigate the 

environmental impacts of smart home automation and quantify the life-cycle impact of the ‘home energy 

management system’ (HEMS) which consists of the communication devices, sensors, management devices, 

smart meter and computing devices that can enable smart appliances to provide automated demand response 

functionality as well as information feedback to the householders. Their model of a highly-instrumented smart 

home indicated that smart plugs (around 20 of them) consumed almost 3700 kWh smart meters nearly 880 kWh 

over an assumed life-cycle of five years. There were also some notable environmental impacts from the 

materials used in the equipment and their disposal or recycling. The net effect was that, although the smart meter 

‘paid for itself’ in terms of carbon emissions in under a year, ‘the full system does not pay itself back in terms of 

reduced CO2 emissions’ (p885) and the authors concluded that home automation might not be an 

environmentally sensible investment, primarily due to the impact of the smart plugs. In a follow-up study (Louis 

et al., 2016), the same authors extended the work to simulate smart homes under a range of operating 

assumptions and algorithms and found that the impact of highly automated options resulted in an increase in 

overall energy demand, with corresponding increases in costs and emissions. Load-shifting was considered in the 

study and was found to have a benefit in terms of flattening demand profiles. The authors noted the need for 

assessment methods that account for the temporal variations in CO2 emissions of grid electricity. 

Smart appliances 

Some appliances and end-uses lend themselves more easily than others to demand response: for a review of 

options, see Darby and McKenna (2012), who note that water heating and wet appliances can account for a high 

proportion of shiftable load at peak times. Electric space heating, as a major end-use, also lends itself to demand 

response, whether via the well-established storage heater or through smart-enabled heat pumps. There is also 

scope for fast frequency response from these end-uses and from cold appliances. While cookers may involve 

significant thermal loads, they are likely to have little potential for demand response for social reasons, while 

any other smart household appliances are likely to be smart for reasons of comfort, security or monitoring rather 

than for demand response purposes.  

The question of scale is important when considering the relatively small loads in a typical household. As noted 

later, the ability to aggregate appliance loads and to realise benefits from aggregation is likely to influence 

householders’ ability and willingness to take part in demand response; manual adjustments to their appliances in 

response to system conditions are not always feasible or desirable.  

Heat pumps 

Heat pumps are a technology that is of particular interest due to the potential impact of large-scale electrification 

of domestic heating on peak demand and its potential as a flexible load for demand response. Hawkes developed 

methodologies for estimating short-run and long-run marginal emissions factors for national electricity systems, 

and used these to estimate the CO2 impact of adding heat pumps to the UK power system (Hawkes, 2014, 2010). 

The short-run marginal emissions factor refers to the change in CO2 emissions associated with a change in 

electricity demand caused by an intervention (e.g. a smart appliance) where there is little structural change in the 

                                                           
1 Taking this as a definition: ‘A smart home is a residence equipped with a high-tech network, linking sensors 

and domestic devices, appliances, and features that can be remotely monitored, accessed or controlled, and 

provide services that respond to the needs of its inhabitants.’ (Balta-Ozkan et al., 2013). 



national electricity system caused by the intervention i.e. in current or near-future conditions of supply and 

demand. The long-run marginal emissions factor is the same but takes into account structural changes caused by 

the intervention e.g. if the uptake of smart appliances had the effect of causing a change in what generation gets 

built or decommissioned. Hawkes found that the marginal emissions factors for new heat pumps were 

0.67 kgCO2/kWh in the short run and 0.26-0.53 kgCO2/kWh by 2025 in the UK, reducing towards zero by 2035 

as the power system is assumed to decarbonise. This example shows how heat pumps, as a relatively efficient 

form of electric heating, can already supply heating at relatively low carbon cost. The studies did not however 

consider the impact of demand response, and we note that if heat pumps could be used for demand response and 

controlled automatically in such a way as to avoid times of high demand relative to supply further gains could be 

made. These studies emphasise the importance of appropriate methods for accounting for interventions, such as 

demand response, that occur on the margin, and that therefore require estimates of marginal emissions factors, as 

well as the importance of accounting for both short-run and long-run effects of interventions.  

Patteeuw et al. consider the CO2-abatement cost of heat pumps with load-shifting in a variety of domestic 

building cases in Belgium in comparison to the alternative of fitting a modern gas boiler (Patteeuw et al., 2015). 

An integrated approach is taken, combining a bottom-up building stock model with a simulated electricity 

generation system. The study found a wide variation in abatement costs depending on building-type and heating 

system set-up, with results in the range 249-981 €/tCO2 for detached buildings built between 1971-1990. A high 

renewables scenario was assumed and load-shifting was found to reduce emissions, in this case by avoiding 

curtailment of renewable energy at times of abundant supply 

Battery systems 

Domestic battery systems are generating interest due to rapidly falling costs and their ability to allow consumers 

to shift demand easily. They are popularly coupled with roof-top solar panels to maximise self-consumption. 

Hammond and Hazeldine conducted a ‘cradle-to-gate’ life cycle assessment of advanced rechargeable batteries, 

including technical assessment for different applications, though not considering load-shifting, and found total 

emissions of 5.4 kgCO2/kWh installed capacity for lithium-based batteries, 32.4 kgCO2/kWh for ZEBRA 

batteries, and 88.8 kgCO2/kWh for Ni-Cd (Hammond and Hazeldine, 2015). McKenna et al. (2013) assessed the 

economic and environmental impact of adding lead-acid batteries to dwellings with domestic PV systems in the 

UK and considered the effect of load-shifting on short-run marginal emissions. They found the environmental 

impact to be negative for all cases due to the batteries’ round-trip losses and the fact that grid marginal emissions 

were not sufficiently different between times of charging and discharging to compensate for this. The impact of a 

typical battery system on the greenhouse gas emissions from an average UK household was found to be 

equivalent to that from increasing the household’s energy consumption by 21%.  

More generally, the carbon impact of electricity storage has been modelled in a number of studies that consider 

its effect on short-run marginal emissions, including studies of its use in support of load-shifting and where there 

is large-scale participation of storage in markets e.g. through aggregation of distributed resources. Mills and 

McGill assess the greenhouse gas impact of electric vehicle charging in Australia (Mills and MacGill, 2015), 

Carson and Novan assess the impact of electricity storage in the Texas power system (Carson and Novan, 2013), 

McKenna et al. assess the impact of storage in the Irish power system (McKenna et al., 2016), and Fares and 

Webber investigate the impact of using energy storage to capture solar energy for later use within the home 

within the Texas power system (Fares and Webber, 2017). All studies found that storage could have negative 

environmental impacts in the short-run and emphasised a possible tension between operating storage for private 

benefits e.g. increasing operator profits or householder financial gains due to arbitrage in the wholesale 

electricity market, and social benefits including reduced greenhouse gas emissions and greater network stability. 

The exception was when i) the modellers assumed that storage was used to avoid the curtailment of renewable 

generation, as in this specific case renewable energy operates on the margin and storage can then achieve 

considerable reductions in emissions compared with a counterfactual use of, say, gas turbines, and ii) if the 

storage enabled the installation of the solar PV system i.e. solar plus storage is better than no solar at all. 

However, none of these studies investigated the long-run impact of storage, in which storage is expected to play 

a key role in enabling structural change e.g. to achieve greater integration of renewable energy. A great deal of 

uncertainty surrounds the viability of different types of battery, the supply conditions in which they may have to 

operate, and the behavioural consequences of widespread adoption in the domestic sector.  

Summary: towards an appropriate assessment methodology 

In summary, a review of selected literature on the emissions impact of smart technologies has revealed that  

 Reported savings are often associated with improvements in energy efficiency and the potential impact of 

demand response is often not considered in assessments. 



 Studies that take a life-cycle approach indicate that gains in appliance end-use efficiency may be reduced or 

offset altogether by emissions incurred elsewhere e.g. additional energy usage of associated sensors.  

 Studies that do assess demand response indicate a range of possible impacts depending on the method and 

assumptions used. Studies based on estimates of short-run emissions factors indicate that demand response 

can have a negligible effect in certain power systems, or may even increase emissions e.g. due to efficiency 

losses in domestic battery systems.  

 The extent to which demand response can avoid curtailment of renewable generation is an important factor 

determining its environmental impact. 

 There is a need for impact assessments based on estimates of long-run marginal emissions factors, which 

take into account the potential beneficial impact that load-shifting could have on overall system structure. 

Having set out this need for impact assessment of demand response, which could make a strong contribution to 

emissions reduction, the following section describes a simple conceptual model for carrying out such assessment 

based on data from a national power system, illustrating the significance of method and assumptions.  

Simple conceptual model for a demand response marginal emissions 

factor 

The previous section indicated the importance of assessments that account for the long-run impact of demand 

response within national electricity systems. This section presents a simple model to illustrate some of the 

concepts involved and the types of impacts that an appropriate assessment methodology should account for. This 

will be based on a simple, hypothetical, and idealised power system and is not supposed to represent a particular 

real system. The following section will build on some of these concepts to provide an indicative impact case 

study of adding battery systems to the Irish power system based on real data. 

The aim of the section is to calculate the demand response marginal emissions factor (DR-MEF). Conceptually, 

the DR-MEF is the change in emissions associated with a change in electricity demand due to a demand 

response intervention. We define the DR-MEF as: 

DR-MEF =  
(∑ (𝐸𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)𝑛

ℎ=1 )

(
∑ |𝐷𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 𝐷𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒|𝑛

ℎ=1

2
)

 

The variables E and D stand for emissions and electricity demand respectively. The DR-MEF is estimated for a 

demand response ‘scenario’ and measured with respect to the hypothetical counterfactual ‘baseline’, indicated by 

subscripts. The sums are at a time resolution sufficient to account for the differential effect of the demand 

response intervention, here hourly (h). The denominator is defined as the sum of the absolute changes in (hourly) 

electricity demand, as the relative change in demand associated with a (zero-sum) shift in demand is zero, and 

likewise the sum is divided by 2 to avoid double counting the (two) effects of shifting the same unit of electricity 

i.e. a reduction of demand at one time period and an increase of demand in another time period. 

As changes to demand do not affect all generators equally but only those that operate on the margin, the model 

needs to account for the marginal impact of the demand response intervention. We use a simplified merit-order 

curve shown in Figure 1. This shows the different types of plant that operate on the margin depending on the 

level of system demand. The merit-order is largely based on the emissions intensity of the plant: nuclear is 

highest in merit and runs as baseload, while oil is last as it is most polluting. This reflects a general finding in 

power systems that the average emissions factor is lower than the marginal emissions factor (Hawkes, 2010; 

Siler-Evans et al., 2012). This merit-order is a simplifying assumption about merit-order for the purposes of 

illustrating concepts relevant to the evaluation of the carbon reduction potential of demand response. It reflects a 

situation where merit-order is aligned with carbon-order which, in practice, would be reliant on the carbon-order 

also reflecting the cost of generation. This would be unrealistic in the absence of a carbon tax or mechanism such 

as the EU Emissions Trading Scheme. Renewable energy is not included in this simple conceptual example as 

the focus is on how demand response affects generators operating on the margin, and renewable energy such as 

solar and wind do not operate on the margin, except in the case where they are being curtailed. The case-study in 

the following section will consider the case where the impact of the demand response is to reduce curtailment. 

 



 

Figure 1 – simplified merit-order curve used in the model. CCGT: closed cycle gas turbine, OCGT: open cycle 

gas turbine. 

 

Figure 2 – system demand profiles and dispatched generation for baseline and demand response scenarios. 

CCGT: closed cycle gas turbine, OCGT: open cycle gas turbine. 



The merit-order is used to dispatch plant to meet the system demand profile, as shown in Figure 2. A simplified 

‘blocky’ demand profile is used, dividing the demand profile into peak, shoulder and off-peak periods. It is 

assumed that the demand profile is static for the whole year considered and that changes occur instantly from 

one year to the next. We account for planned structural changes to the power system. Over the ten-year time 

horizon considered here (years 1 to 10), the baseline scenario sees a change from year 6 onward, when some oil 

generation gets replaced with open-cycle gas turbines (OCGT), due to efforts to decarbonise the system e.g. as 

might be the result of a mechanism such as the EU Emissions Trading Scheme. This results in the marginal 

emissions factors at certain levels of peak demand being lower than they are during certain levels of ‘shoulder’ 

demand, as OCGTs are less polluting than coal (Figure 1). It is not unusual for this to occur in real power 

systems such as UK and USA (Hawkes, 2010; Siler-Evans et al., 2012). 

The demand response scenario consists of a change in the demand profile compared to the baseline from year 3 

onwards. The baseline peak demand is 5.8 GW which reduces to 5.5 GW from year 3 in the demand response 

scenario. All of this demand is shifted to the off-peak period which goes from 2 GW in the baseline to 2.25 GW 

from year 3 in the demand response scenario. The difference in change in power between the two periods is 

because the peak period is shorter in duration (5 hours), than the off-peak period (6 hours). 

The results of the simple model’s estimates of the demand response marginal emissions factor (DR-MEF) are 

shown in Figure 3 and Table 1. The demand response intervention is introduced in year 3 and we account for its 

short-run marginal impact. In years 3 through 5 the impact is to reduce generation and emissions from oil which 

operates on the margin during the peak, and increase generation and emissions from gas which operates on the 

margin during the off-peak. This ‘gas for oil’ substitution results in a DR-MEF of -0.65 kgCO2 per kWh. To be 

clear, this means that each kWh of electricity load-shifted in time and that substitutes oil generation for CCGT 

results in a reduction in emissions of 0.65 kgCO2.  This estimate is based on CO2 content by generation fuel type 

at point of demand found in (Hawkes, 2010). Over a year, each kWh shifted in this way reduces emissions by 

236 kgCO2, hence the units: kgCO2/kWh/yr. 

In years 6 and 7 the impact is reduced as, due to planned structural changes to the system, the marginal 

emissions factor during the peak reduced (Figure 1). The effect of the demand response is to substitute OCGT 

for CCGT, resulting in a relatively small DR-MEF of -0.064 kgCO2/kWh and annual impact (-23.4 

kgCO2/kWh/yr). This illustrates the case where the impact of demand response can be negligible in power 

systems that have relatively small time of day differences in marginal emissions factor. Indeed, when this is the 

case and if the load-shift is achieved at the expense of energy losses, as for example with batteries, then the 

impact may be negative (McKenna et al., 2016). 

Finally, we account for the long-run impact of the demand response intervention. The long-run impact accounts 

for structural change that is precipitated by the intervention (Hawkes, 2014), and so which is in addition to 

structural change that was already ongoing e.g. the replacement of oil with OCGT. In the simple model, the 

result of the increase in baseload demand prompts the decision in year 8 to decommission 300 MW of coal plant 

to be replaced by a new 300 MW CCGT plant. The DR-MEF is higher than the straightforward ‘coal for CCGT’ 

swap for each unit of energy shifted because the demand response intervention can also claim the credit for the 

additional carbon savings associated with the new gas plant running at other time periods and displacing coal 

then too. The DR-MEF for years 8 through 10 is -1.9 kgCO2/kWh and annual carbon savings are 

695 kgCO2/kWh/yr. This illustrates that long-run impacts of demand response can be positive and large 

compared to short-run impacts.  

This section described a simple model to help illustrate some of the important concepts that should be considered 

when assessing demand response technologies. In particular, the assessment method should be of sufficient 

resolution to account for the temporal impact of the demand response intervention and account for a) how the 

power system responds to marginal changes (at high resolution) now, b) how that might evolve in the future 

given expected structural changes in response to external factors (e.g. decarbonisation efforts), and c) including 

long-run structural changes precipitated by the demand response intervention itself. To be clear, changes occur 

to generation anyway, and while not attributable to demand response, should be accounted for. This is not the 

full story, however, and accounting for structural changes that are attributable to the impact of the DR is also 

needed i.e. that would not have happened if DR had not taken place – this is the long run impact. 

Real power systems are clearly much more complicated than the simplified example described here, and power 

systems simulations are therefore a necessary tool in assessments, as in (Darby et al., 2013). In particular, we 

have not considered i) renewable energy and how demand response interventions might affect periods of 

curtailment, ii) energy storage e.g. the operation of existing storage units such as pumped hydro plant, iii) 

realistic i.e. diversified impacts of distributed demand response interventions, and iv) constraints on generators 

such as ramp-rates, part-loading, network constraints and reinforcement, unplanned downtime, or ancillary 



services. Finally, we note that the above deals with the ‘in-use’ phase of a demand response technology, and a 

full life-cycle assessment also requires accounting for the impact of ‘cradle-to-gate’ and disposal phases. 

 

Figure 3 – theoretical estimates of the demand response marginal emissions factor for the simple model. 

Table 1 – results of the simple model. 

Demand response scenario Demand response marginal emissions 

factor (kgCO2/kWh) 

Annual emissions impact of load-shift 

(kgCO2/kWh/yr) 

1. CCGT for oil -0.65 -236 

2. CCGT for OCGT -0.064 -23.4 

3. New CCGT plant built, replaces coal -1.9 -695 

Table 2 – results for the case-study of a domestic battery system (90% efficient) in the Irish power system 

Demand response scenario Demand response marginal emissions 

factor (kgCO2/kWh) 

Annual emissions impact of load-shift 

(kgCO2/kWh/yr) 

1. Peak shaving and trough filling  0.07   25.4  

2. Avoiding wind curtailment  -0.49  -179.3  

3. New CCGT plant built, replaces 

average grid-mix 

-2.6  -955.2  

Case-study: domestic battery systems in the Irish power system 

The previous section described a simple model to illustrate some of the important concepts that are useful to 

account for within a comprehensive assessment of the carbon impact of demand response technologies. A full 

assessment that accounts for all these points is out of the scope of this paper, however this section provides an 

indicative assessment for a real-world case-study: domestic battery systems in the Irish power system. The 

results are shown above in Table 2 alongside Table 1 for ease of comparison, and are briefly explained below 

along with the method.  

Rows 1 and 2 provide estimates of the short-run DR-MEF based on various assumptions about battery operating 

strategies. These are equivalent to Table 1 rows 1 and 2 of the simple model results: they assume a substitution 

of marginal generation at one time period for marginal generation at another time period. The difference is that 

they are now based on empirical data, in particular previous work by estimating the environmental impact of 

storage systems in the Irish power system based on estimates of the short-run marginal emissions factor from 

several years of historic data of individual generator output (McKenna et al., 2016). The battery system is 

assumed to have a round-trip efficiency of 90%. 

Row 1 provides the case for when the battery is charged during the peak and discharged during the off-peak or 

‘trough’ period, a commonly assumed operating scenario for storage. The DR-MEF is positive, though small 

(0.07 kgCO2/kWh), meaning the effect of this demand response action would be to increase emissions. This is 

because the Irish power system has similar marginal emissions factors during peak and off-peak times and the 



benefit of shifting from peak to off-peak is outweighed by losses in the battery system. It is similar to the simple 

model’s case of substituting OCGT for CCGT: the impact is negligible, and indeed negative once round-trip 

losses are factored in. 

Row 2 assumes that the operation of the storage changes the dispatch of generators and thus which generators 

are operating on the margin. The Irish power system has a particular issue to do with wind curtailment – where 

there is too much wind power and not enough demand and wind turbines need to be switched off (McKenna et 

al., 2015) – and row 2 shows the results for when the storage is charged to avoid wind curtailment and 

discharged to avoid the average marginal generation. In this scenario, wind power is the marginal generation 

because otherwise the wind power would be curtailed, and the effect of the battery charging is to reduce this. It is 

assumed that the storage can charge 100% with wind power. It is important to point out that otherwise wind 

power would not act on the margin, as it is not dispatched to meet changes in demand, and storage would not be 

‘charged with wind power’, even if it operated in a ‘wind following’ pattern. The results show that the DR-MEF 

for this scenario is -0.49 kgCO2/kWh and that operating storage in this way reduces emissions by 

179.3 kgCO2/kWh/yr.  

Finally, row 3 estimates the long-run DR-MEF based on the assumption that the marginal impact of each kWh 

load-shifted from peak to off-peak resulted in one kW of additional new build CCGT assumed to operate at the 

same carbon intensity as the most carbon efficient gas generator on the Irish power system, the Tynagh 

Generator at 0.389 kgCO2/kWh and operating at an equivalent capacity factor (0.69), which displaces electricity 

at the average marginal emissions factor (0.547 kgCO2/kWh). The DR-MEF for this scenario is -2.6 kgCO2/kWh 

with emissions savings of 955.2 kgCO2/kWh/yr. 

Given the simplicity of the method, these results should be viewed as indicative only. Nonetheless, they show 

that, based on historic data, the impact of demand response technologies in the Irish power system could be 

negligible, or even negative, unless the technology can be dispatched in such a way as to affect the generators 

that operate on the margin (e.g. avoiding wind curtailment, or replacing oil generation with CCGT) or unless it 

has a long-run structural impact e.g. enabling the decommissioning of old polluting plant to be replaced by new 

cleaner forms of generation. When these structural effects do occur, the impact can be positive and demand 

response technologies can achieve considerable reductions in emissions. This conclusions should be true for 

power systems with similar marginal emissions factor characteristics i.e. marginal emissions during off-peak that 

are similar or higher than they are during the peak, such as USA and UK (Hawkes, 2010; Siler-Evans et al., 

2012). 

Discussion  

Importance of enabling structural change 

The first point to note is that the results highlight the importance of enabling demand response technologies to 

achieve structural change such as affecting the dispatch of generation, but particularly the decommissioning of 

old polluting plant. Demand response technologies that do not achieve this kind of impact can have negligible, or 

even negative, impact on emissions, depending on the characteristics of the marginal emissions factors of the 

power system in question. A critical factor is where demand response specifically enables more renewable 

energy e.g. through reducing curtailment, or enabling installations that wouldn’t have otherwise been built. It is 

important to enable beneficial structural change for example through cap-and-trade policies such as the EU 

Emissions Trading Scheme (Betz and Schmidt, 2016) It is arguable that a critical part of enabling this change is 

allowing demand response technologies to participate in power system markets for ancillary services, wholesale 

electricity, and particularly the capacity market as presumably this is where they can have the most impact on 

decommissioning peaking plant, which tends to be most polluting.  

A role for demand aggregators 

The value of demand response technologies participating in power system markets points towards a clear role for 

demand aggregators. Smart appliances and the like are too small to participate in current markets, yet demand 

aggregators can serve as the necessary intermediary between these small distributed resources and the markets 

where their impact can have most benefit. The results show the potential difference in impact of demand 

response technologies that achieve structural impact compared to those that do not and, assuming this is correct, 

there is an argument that smart appliances should be enabled for demand aggregation as standard, as they would 

be adding considerable value in the form of lowering overall carbon emissions. This could involve the 

specification of minimum functionalities for smart appliances, depending on type, such that they can be 

effectively integrated into demand aggregator services and subsequent power system markets. 



Regulation of appliances for demand response 

More broadly this leads to the subject of the regulation of smart appliances. The recent call for evidence from the 

UK Government and energy regulator Ofgem on smart flexible energy systems2 demonstrates how governments 

have open questions regarding the extent to which smart appliances should be regulated. Following the Treasury 

Green Book’s principle3 that policies should be subjected to comprehensive but proportionate assessment, we 

would argue that, assuming the preliminary results shown here reflect a general finding, smart appliances should 

be subjected to a level of assessment at least as thorough as is the case for energy efficiency technologies. 

Currently, however, smart appliances are not assessed in a comparable manner and there are still many questions 

outstanding regarding which technologies best serve national interests. We would call for further work in this 

area, particularly regarding a standardised framework for assessing demand response interventions. This is a 

clear area in which a unified European framework would be of value, including standards for smart appliance 

labelling and minimum levels of functionality.  

Finally, we note that here we have focussed on the sustainability aspect of smart appliances, but clearly they also 

have important impacts in terms of energy security and affordability, and we have not included any cost-benefit 

estimates which would be necessary to determine cost-effectiveness. It is important to assess smart appliances 

against all of these criteria to provide the best understanding of their role in achieving a sustainable, secure, and 

affordable energy future.  

Conclusions 

The efficiency of low-carbon systems depends not only on policies that promote demand reduction, but also 

those that promote demand response. To inform policy decisions about smart appliances this paper addresses the 

question: how much could domestic demand response technologies reduce CO2? 

A review of selected literature on the emissions impact of smart technologies revealed that savings are often 

associated with improvements in energy efficiency, though gains in efficiency may be reduced or offset 

altogether by emissions incurred elsewhere e.g. through energy-use of additional sensors, or increased service 

expectations. 

The potential impact of demand response is often not considered. Studies that do assess demand response 

indicate a range of possible impacts depending on the method and assumptions used. Studies based on short-run 

estimates indicate that demand response can have a negligible effect in certain power systems, and may even 

increase emissions e.g. due to efficiency losses in domestic battery systems.  

By contrast, where long-run structural impacts are accounted for, then demand response can achieve 

considerable reductions in carbon emissions. Beneficial impacts include changing the dispatch of generation, 

reducing renewable generation curtailment, but particularly the decommissioning of peaking generation and 

replacement with (less polluting) base-load generation.  

Given the value of achieving structural change, the findings highlight the beneficial role of the demand 

aggregator, who acts as the necessary intermediary between distributed small-scale resources of smart appliances 

and the electricity markets where their beneficial structural impacts can be most effectively enabled. More 

broadly, the paper indicates the need for greater assessment and regulation of smart appliances to maximise their 

potential benefits to society.   
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