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Introduction
This article has its origins in the discourse of poor performance and failure in school mathematics 
in South Africa and other developing countries. That said, not all learners in South Africa are 
failing mathematics but the vast majority are not coping (Spaull, 2013). Attempts to seek and 
gather evidence of improved learner performance are often thwarted by a lack of longitudinal 
data or instruments that are not sufficiently sensitive to detect change at lower performance 
levels. Furthermore, in developing countries where these problems are most acute, there is seldom 
adequate funding to develop more appropriate and sensitive measures.

In our project we seek to shift the discourse from ‘learners can’t do’ to ‘what learners can do is …’. 
This requires sensitive diagnostic instruments that enable us to measure change over time, even 
when learners’ performance is poor. However, there are no adequate local diagnostic instruments 
available for this purpose. Consequently, we drew on a selection of algebra items from the 
Concepts in Secondary Maths and Science (CSMS) tests (Hart & Johnson, 1983) and tracked the 
performance of a group of 250 learners on these items across their Grade 9, 10 and 11 years of 
schooling. This has enabled us to investigate the kinds of algebraic errors learners make and how 
these change over time.

Our findings show that many learners in Grade 11 still have difficulty with aspects of basic 
algebra. This reinforces the comments made on the performance of Grade 12 learners on the 
National Senior Certificate Paper 1 each year. For example, in 2012 the examiners commented:

Many of the errors made in answering this paper have their origins in poor understanding of the basics 
and foundational competencies taught in the earlier grades. For example, algebraic manipulation, 
factorisation, solution of equations and inequalities. (Department of Basic Education, 2012, p. 12)

In this article we draw on quantitative and qualitative data to illuminate the kinds of errors that 
learners make in relation to basic algebra. Thus we go beyond merely noting that learners make 
errors to provide insights into what errors are being made and the extent to which these decrease or 
persist over time. In addition, we provide evidence of the kinds of rational descriptions that learners 
provide of their thinking as they work on algebraic tasks. We pay particular attention to errors of 
conjoining, difficulties with negatives and brackets and learners’ tendency to evaluate expressions 
rather than leaving them in the required open form.

It is well known that learner performance in mathematics in South Africa is poor. However, 
less is known about what learners actually do and the extent to which this changes as they 
move through secondary school mathematics. In this study a cohort of 250 learners was 
tracked from Grade 9 to Grade 11 to investigate changes in their performance on a diagnostic 
algebra test drawn from the well-known Concepts in Secondary Maths and Science (CSMS) 
tests. Although the CSMS tests were initially developed for Year 8 and Year 9 learners in the 
UK, a Rasch analysis on the Grade 11 results showed that the test performed adequately for 
older learners in SA. Error analysis revealed that learners make a wide variety of errors even 
on simple algebra items. Typical errors include conjoining, difficulties with negatives and 
brackets and a tendency to evaluate expressions rather than leaving them in the required open 
form. There is substantial evidence of curriculum impact in learners’ responses such as the 
inappropriate application of the addition law of exponents and the distributive law. Although 
such errors dissipate in the higher grades, this happens later than expected. While many 
learner responses do not appear to be sensible initially, interview data reveals that there is 
frequently an underlying logic related to mathematics that has been previously learned.
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Our analysis also shows evidence of curriculum impact, that 
is, how learners apply new procedures and laws they have 
been taught, but in inappropriate ways. Typically, this 
changes over time as learners become more familiar with the 
new procedures and when they should be applied but the 
cycle continues as they learn further procedures and then 
apply these inappropriately. This finding gave rise to more 
substantial concerns regarding the use of the CSMS items 
outside the UK and with older learners. Based on a simple 
Rasch analysis of the Grade 11 data we show that the items 
performed sufficiently well for the purposes of this study 
although the nature of the errors is clearly impacted by 
learners’ exposure to more mathematics as they move from 
Grade 9 to Grade 11.

Literature review and theoretical 
perspectives
Internationally, there has been much interest in learners’ 
errors in mathematics for the past 30 years. The early work 
drew strongly on constructivist perspectives (e.g. Ben-Zeev, 
1998; Borasi, 1994; Olivier, 1989; Radatz, 1979), others adopted 
a socio-cultural perspective (e.g. Ryan & Williams, 2007) 
and more recent work comes from a discursive approach 
(e.g. Brodie & Berger, 2010).

In South Africa, there has been a resurgence in the focus on 
learner errors and error analysis in mathematics in recent 
years (Brodie, 2014; Brodie & Berger, 2010; Herholdt & Sapire, 
2014; Makonye & Luneta, 2014; Shalem, Sapire, & Sorto, 
2014). This is not surprising given the poor performance in 
mathematics in SA and the associated focus on mathematics 
professional development. The work continues to reflect a 
range of theoretical perspectives to describe and explain 
errors.

We work from a sociocultural perspective but draw on some 
aspects of discursive approaches (Sfard, 2008). In agreement 
with all the work referred to above, we consider learners’ 
errors to be rational attempts to make sense of mathematics. 
We acknowledge that, for the most part, errors are systematic, 
persistent and resistant to ‘fixing’ through instruction.

Research on the transition from arithmetic to algebra has 
been ongoing since the 1970s (e.g. Collis, 1978) and much 
has been learned about learners’ difficulties in making the 
transition. Following the CSMS study, the Increasing 
Competence and Confidence in Algebra and Multiplicative 
Structures (ICCAMS) study used the CSMS algebra items 
to investigate changes in learners’ understanding of algebra 
30 years later. It was found that more learners were achieving 
low marks, fewer were scoring very high marks and there 
was little change in the kinds of errors learners made 
(Hodgen, Brown, Coe & Küchemann, 2012).

Linked to the CSMS study, Küchemann (1981) identified six 
ways in which learners interpret letters; these ideas have 
influenced much of the work that has followed. One 
interpretation is that letters are abbreviations for the names 
of objects. Asquith, Stephens, Knuth, and Alibali (2007) have 

shown that this error tends to disappear by the 10th grade in 
the United States. Many have reported the persistent 
tendency for learners to think that a letter stands for a single, 
specific number (Asquith et al., 2007; Booth, 1984; Collis, 
1975). Christou and Vosniadou (2012) have shown that 10th 
grade learners in Greece tend to substitute natural numbers 
in algebraic expressions even when they recognise that letters 
can stand for any number. There is also a great deal of 
evidence which shows that prior knowledge of arithmetic 
has a negative impact on the learning of algebra. This is 
typically manifest in errors relating to ‘lack of closure’ where 
learners do not accept expressions such as a + 2 as final 
answers. (e.g. Booth, 1984; Christou & Vosniadou, 2012; 
Collis, 1978; MacGregor & Stacey, 1997).

Despite all that has been learned, algebra remains a substantial 
obstacle for many learners of secondary mathematics 
internationally as borne out in the performance of SA learners 
on the CSMS items 45 years after they were first developed.

The design and content of the Concepts in 
Secondary Maths and Science algebra test
The algebra items used in this study were first developed and 
administered to a nationally representative sample of English 
learners in the 1970s as part of the CSMS study. The design of 
the items was strongly informed by Piagetian ideas that were 
dominant at the time and were intentionally designed to be 
recognisably connected to the UK mathematics curriculum 
of the time, but required learners to: use methods ‘which 
were not obviously ‘rules’ (Hart & Johnson, 1983, p. 2), avoid 
‘excessive computation’ (p. 22) and make use of simple 
numbers in non-routine problems.

The CSMS algebra test focuses on generalised arithmetic, the 
use of symbols to denote numbers and letters as variables 
(Collis, 1975; Küchemann, 1981). Consider the following 
item: ‘If e + f = 8, e + f + g = …’. This was designed to test 
whether learners would accept the ‘lack of closure’ (Collis, 
1975) of the expression 8 + g, that is, to see it as an entity in its 
own right (Sfard, 1991). Without this, learners tend to see the 
expression as an instruction to do something and give 
numerical responses (such as 9 or 12) or the ‘compressed’ 
response 8g.

Research design and methodology
Over the period 2010 to 2014 our project worked in 10 schools 
in the Johannesburg area in South Africa. Six of the schools 
are in so-called townships where there are only basic 
resources for teaching and learning. The other four schools 
are low-fee schools located in suburban areas. Here too 
resources are limited although these schools are typically 
better equipped than those in the townships. In all schools, 
English is the language of instruction but almost no learners 
speak English as their main language.

Initial selection of sample
We set out to track a cohort of learners from Grade 9 to 
Grade 11 (approximately 15 to 17 years old) across all project 
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schools, regardless of whether they progressed to the next 
grade at the end of the year and regardless of whether they 
chose Mathematics or Mathematical Literacy1 in Grade 10 or 
Grade 11. In 2011 we selected a sample of approximately 1500 
Grade 9 learners with the sole criterion being that their 
mathematics teachers in that year had been participating in 
the professional development activities offered by the project. 
While we anticipated some attrition over the three-year 
period, the attrition rate was far greater than expected and in 
2013 we ended up with a tracked cohort of only 250 learners. 
There are many reasons for this attrition, including learners 
moving schools, teachers not administering the test to 
learners who had failed or who were taking Mathematical 
Literacy and the withdrawal of one school from the project.

The limitations of this sample are that it became a small, 
opportunistic, non-random sample with a smaller proportion 
of weaker learners than the intended sample. Nevertheless, it 
provides a unique snapshot of learners’ performance in 
algebra across the transition from Grade 9 to Grade 11.

The test instruments and coding
The test instruments did not consist only of CSMS items. 
We designed three tests, one for each grade, containing 
curriculum-related algebra and functions items and a 
selection of CSMS algebra items which were common to all 
three tests. We focus here only on the CSMS items, which 
have been validated in the UK in both studies. In selecting 
the items, we chose only those clusters of items that had been 
‘levelled’ in the CSMS hierarchy (see Hart, 1981, for more 
details). However, we excluded some of the more difficult 
items, partly because of the length of the test and partly 
because we anticipated that very few learners would cope 
with them. The order of the items differed from the UK test.

In 2010 the CSMS items were piloted with Grade 8 and Grade 
10 learners in schools similar to the project schools. The 
results of this pilot indicated that the items and the associated 
coding scheme were appropriate in the SA context. The three 
full tests were then piloted in project schools with different 
cohorts prior to administering to the tracked cohort.

The tests were administered in October each year (i.e. near 
the end of the school year). In 2011 and 2012 they were 
administered by project team members. In 2013 they were 
administered by team members in some schools and by 
teachers in other schools. We deliberately wanted to include 
teachers in the research process but, with hindsight, this was 
not wise because some teachers did not follow the directions 
given regarding who was to write the test, which ultimately 
impacted on the size of the tracked cohort.

The test codes were adapted from the CSMS codes. In the 
main, we used the most prevalent CSMS codes and then 

1.In South Africa, all students are required to take mathematics for all 12 years of 
schooling. Typically they will choose between Mathematics or Mathematical 
Literacy at the end of Grade 9. Many learners change from Mathematics to 
Mathematical Literacy in Grade 10 or Grade 11 if they are not coping with 
Mathematics. 

added additional codes to capture the wide range of 
responses that would otherwise have merely been coded as 
‘other’. Coding was carried out by trained research assistants 
and moderated by senior members of the project team.

Interview data
In 2012 and 2013, following the analysis of pilot data and 
the test scripts, several small studies were conducted by 
postgraduate students (Honours level) who were supervised 
by senior members of the project team. These studies 
involved an analysis of scripts and one-on-one task-based 
interviews where each postgraduate student interviewed 
learners from project schools on questions similar to selected 
test items in order to investigate learners’ thinking in relation 
to introductory algebra. We draw on these studies to illustrate 
our claims about learners’ thinking and strategies in relation 
to their errors. We explicitly acknowledge the postgraduate 
students as authors of the work reported here. However we 
have re-transcribed and re-analysed all interview extracts 
that are included in this article.

Ethical issues
Ethical clearance was obtained from the university 
(2010ECE60C) and from the Gauteng Department of 
Education for this research. Informed consent was obtained 
from schools, parents and learners for both the tests and the 
interviews. Names of learners and schools have been kept 
confidential and we have not reported separately on 
particular schools. Pseudonyms have been used in all learner 
transcripts. Permission was obtained from the postgraduate 
students to use their data as part of the wider project research.

Reliability and validity
As noted above, the validity of the items for the SA context 
was confirmed through piloting. The reliability of the coding 
was increased through a moderation process: all learner 
interviews were re-transcribed and they were then re-analysed 
by two of the authors to confirm the initial interpretation.

Since the CSMS items had been developed for Year 8 and 
Year 9 learners in the UK, it was necessary to validate it for 
older learners in SA. We therefore conducted a simple Rasch 
analysis, using Winsteps (Version 3.73)2, to assess the validity 
of the scale for older learners. We chose the Grade 11 data 
since these learners had performed better on the test, thus 
enabling better discrimination of items at the higher and 
lower ranges of difficulty.

We used three fit statistics to judge the quality of the selected 
CSMS items as an instrument for measuring learners’ 
understanding of algebra in the SA context: infit mean square 
(MNSQ), outfit MNSQ and item-scale correlation. Since the 
test is a low stakes diagnostic test, we took a relatively liberal 
approach and so values of infit and outfit MNSQs higher than 

2.Following Linacre (2015), this analysis was re-performed after the data was cleaned 
to recode the most unexpected responses as missing. 
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2.0 or lower than 0.5 were regarded as a cause for possible 
concern (Linacre, 2002). For the item-scale correlation, 
the discrimination index should ideally be above 0.4. A 
discrimination index below 0.2 is regarded as low and items 
with such a score may be candidates for deletion (Wu & 
Adams, 2007). There were four items with problematic fit 
statistics: Q2, Q5.1, Q9.1 and Q10.1. However, none of these 
questions is considered to be a threat to the scale.

Learners’ performance on the 
Concepts in Secondary Maths and 
Science items
A summary of learners’ performance on the items across the 
three years is provided in Table 1. The figures indicate the 
item facility (i.e. the percentage of learners who answered 
each question correctly). This is followed by a brief discussion 
of the results.

The general performance of the learners over the three years 
is low but this was not unexpected. There is a general increase 
from Grade 9 to Grade 11, although there are six items where 
performance dipped from Grade 9 to Grade 10 and two items 

where performance dropped from Grade 10 to Grade 11. 
Several of these are discussed in later sections. The four items 
that Grade 11 learners found most difficult were Q2, Q8.4, 
Q10.4 and Q11. More than 16% did not attempt the latter 
three items in Grade 11. By contrast fewer than 1% of learners 
omitted Q2 in Grade 11 although only 1% answered it 
correctly.

It is surprising that Q1.5, Q1.6 and Q1.9 were among the most 
difficult items for learners at Grade 11 level since these look 
similar to questions found in Grade 8 and Grade 9 textbooks 
in SA. Reflecting on Question 1 as a whole, it is noticeable 
that the performance on questions with brackets or negatives 
is well below the other items for all three years. For example 
Q1.3 and Q1.5 are very similar except for the operation in 
the bracket. Yet the performance on these two items is 
considerably different, particularly in Grade 9 and Grade 10. 
Other errors include inappropriate application of the addition 
law of exponents and the distributive law. These errors are 
discussed in more detail in the next section. The poor 
performance on Q1.2 appears to be related to learners’ 
expectation that they should do something with the unlike 
terms to produce an answer.

TABLE 1: Percentage of correct responses to each item per grade.
Item Percentage of correct responses

Grade 9 Grade 10 Grade 11

1.1 Simplify 2a + 5a 86 73 86

1.2 Simplify 2a + 5b 34 37 46

1.3 Simplify (a + b) + a 25 21 35

1.4 Simplify (2a + 5b) + a 44 43 52

1.5 Simplify (a − b) + b 6 11 30

1.6 Simplify 3a − (b + a) 8 14 30

1.7 Simplify a + 4 + a − 4 31 42 59

1.8 Simplify 3a − b − a 34 43 56

1.9 Simplify (a + b) + (a−b) 7 12 30

2 Which is larger, 2n or n + 2? Explain. 0 1 1

3.1 Add 4 to 8 82 74 78

3.2 Add 4 to n + 5 36 46 61

3.3 Add 4 to 3n 26 37 56

4.1 Multiply 8 by 4 70 70 77

4.2 Multiply n + 5 by 4 9 22 34

4.3 Multiply 3n by 4 64 64 66

5.1 If a + b = 43, a + b + 2 = ? 82 85 87

5.2 If n − 246 = 761, n − 247 = ? 30 40 46

5.3 If e + f = 43, e + f + g = ? 15 21 41

6.1 Determine a, if a + 5 = 8 78 85 86

6.2 Determine b, if b + 2 = 2b 8 14 30

7.1 If u = v + 3, v = 1, u = ? 50 60 71

7.2 If m = 3n + 1, n = 4, m = ? 32 52 66

8.1 Area of rectangle 3 × 4 52 59 61

8.2 Area of rectangle 6 × 10 52 58 61

8.3 Area of rectangle n × m 62 70 67

8.4 Area of rectangle 5 × (e + 2) 2 5 11

9.1 Perimeter, if sides 9 + 1 + 10 + 2 95 92 89

10.1 Perimeter, if sides e + e + e 81 86 88

10.2 Perimeter, if sides h + h + h + h + t 56 64 75

10.3 Perimeter, if sides u + u + 5 + 5 + 6 56 50 64

10.4 Perimeter, if n sides of length 2 12 18 23

11 Cakes cost c rand and buns cost b rand each. If I buy 4 cakes 
and 3 buns, what does 4c + 3b stand for?

20 22 28
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The slight drop in performance on Q3.1 from Grade 9 to 
Grade 11 is surprising, as is the small size of the gain on Q4.1, 
Q8.1 and Q8.2. One possible explanation is that asking simple 
arithmetic questions in the context of an algebra test confuses 
learners. Alternatively, given that the first part of our test 
consisted of curriculum-level questions, some learners might 
have expected that these questions were more complex than 
intended.

With regard to Question 5, there is a noticeable contrast 
in performance between Q5.2 and Q5.3 in Grade 9 and 
Grade 10, although this was expected. It is also worth 
noting that responses to Q5.2 were unstable with many 
learners moving from a correct response in one year to an 
incorrect response the following year. For example, in 
Grade 9, 80 learners gave the correct answer but of these 
44% got it incorrect in Grade 10. Similarly in Grade 10, 
100 learners gave the correct answer but of these, 30% got 
it incorrect in Grade 11. It may be that this item is more 
error-prone than initially appreciated. If one merely 
glances at the question it is quite easy to focus on the 
increase on the left side and assume the same on the right 
side whereas it requires paying more careful attention to 
the relationships to recognise that such reasoning is faulty.

Question 6 and Question 7 involved substitution. Learners 
had particular difficulty with Q6.2. Given the prevalence of 
premature closure in their responses across the test, it is 
possible that many learners could not make sense of the 
equation b + 2 = 2b since for them b + 2 can be written as 2b 
and so they did not see the statement as one of mathematical 
equivalence in the way that was intended.

Question 9 and Question 10 required algebraic expressions 
for the perimeter of polygons. While performance improved 
systematically on Q10.2, performance on Q10.3 dropped in 
Grade 10 and was still poorer than Q10.2 in Grade 11. The 
higher number of errors is likely due to the combination of 
letters and numbers in Q10.3 with 23% of Grade 11 learners 
making conjoining errors and hence expressing the perimeter 
as 18u.

Question 11 was the only CSMS item selected that focused 
explicitly on letter as object. Not surprisingly many learners 
treated the letters as objects with at least 35% of learners each 
year stating that 4c + 3b stands for 4 cakes and 3 buns.

Common learner errors
While learners’ poor performance is reason for concern, an 
analysis of their errors provides insight into their reasoning 

and shows evidence of rational albeit incorrect strategies. 
These insights enable us to focus on what learners can do 
rather than on what they can’t do. In this section we focus on 
key errors and illustrate these with examples from Questions 
1, 3, 4 and 5. We also include interview data from the 
postgraduate students’ research projects.

The most common errors involve conjoining and premature 
closure, negatives and subtraction, multiplication and indices, 
the equality relationship and evaluating letters rather than 
accepting an open expression as a final answer. We also provide 
evidence that learners change their strategies depending on 
particular details of a question.

Errors involving conjoining and premature closure
Errors involving conjoining or premature closure occur in the 
responses to many items as shown in Table 2. While the 
actual number of conjoining errors decreases by Grade 11, it 
still constitutes a large proportion of the errors on several 
questions.

In Q1.2 it could be argued that the nature of the question 
prompts learners to do something and so a reasonable 
response is to conjoin 2a and 5b. The interview data provides 
insight into how learners produce conjoined answers. 
Mashazi (2012) asked Lizwe in Grade 9 to ‘add 5 to 3x’ and to 
‘multiply 3x + 1 by 5’:

Lizwe:  They said add 5 to 3x so I said 5 plus 3 equal to 8 
then after that I took the x and put it next to 8 to get 
8x. (p. 20)

Lizwe:  They say multiply 3x + 1 by 5 so I first took the three 
and one and I added it because 3 plus 1 is 4 then I 
put the x and times by 5 and got 20x (p. 23)

When asked to ‘multiply t + 2 by 3’ Shenaaz, also Grade 9, 
adopted the same strategy (Govender, 2012):

Shenaaz:  Then [question] 2.2 was t + 2. So I said, 2 times 3. 
And isn’t 2 times 3 which is 6. So then after I put the 
6 and then I put the t.

Govender: Okay, how did you get the 6?
Shenaaz:  Okay, I said 2 times 3 which is 6. Then I brought 

down the t. Cos you can’t multiply the t by 
something else. It’s gotta come after you know.

The learners ‘simplify’ the binomial by attending first to the 
numbers, then appending the letter and then multiplying by 
the constant. Their use of language shows explicitly that 
when they conjoin unlike terms, they ignore the letter and 
then append it as one writes units in a measurement problem. 
Both learners use ‘put’ to explain how the letter comes to be 

TABLE 2: Percentage of responses showing conjoining error.
Item Typical errors % of all responses

Grade 9 Grade 10 Grade 11

1.2 Simplify 2a + 5b 7ab 53 50 42

1.4 Simplify 2a + 5b + a 7ab, 8ab 25 18 14

3.2 Add 4 to n + 5 9n 11 12 7

3.3 Add 4 to 3n 7n 25 32 17

5.3 If e + f = 8
e + f + g = ?

8g 17 11 10
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placed next to the number and Shenaaz also says ‘I brought 
down the t’ illustrating that the letter is attended to last.

The error of attending first to numbers is persistent in terms 
of the proportion of errors, as illustrated in Table 3. The 
numbers in the questions are either added or multiplied. In 
some cases the letter is conjoined (e.g. 7n) while in others it is 
not (e.g. n + 9).

In the sections that follow we continue to point out errors 
involving conjoining although they are no longer in the 
foreground. It is worth noting at this point that when learners 
conjoin, their talk typically reflects an operational view of the 
expression they are dealing with. This is evidenced in treating 
subtraction as ‘take away’ and in counting the numbers of 
things they are working with, for example the numbers of b’s 
in an expression.

Errors involving subtraction and negatives
Learners’ errors in simplifying algebraic expressions suggest 
they may not be paying attention to signs and operations. 
This is more visible when the question involves subtraction 
and negatives and it appears that learners are focusing 
mainly on letters and numbers. For example in Q1.5 more 
than 10% of Grade 9 and Grade 10 learners gave answers of 
a ± 2b and one of the most common errors in Q1.6 was 4a − b. 
Such responses come from collecting terms and ignoring the 
syntax of the expression.

Kalidheen (2012) provides evidence of Grade 11 learners 
who continue to struggle with algebraic syntax involving 
negatives. For example, she asked Simon to respond to 
the following question: subtract 2b from 8, 2b − b, 2b − a and 
2b − 2a.

Simon:  It’s going to be 8 minus 2b and the answer is going 
to be 8 minus 2b. The answer will still be 8 mam … 
cos… er here we have 8. We have numbers only and 
not letters and this side on the right we have two b’s 
so there is no way we can take it out from 8 while 
there’s no b’s.

Kalidheen:  So you’ve got subtract 2b from 8 and your answer is 
8. Right?

Simon: Still 8.
Kalidheen: So you left out the 2b. Why?
Simon:  Cos, the 2b mam … cos … it is what, it is what, it 

had to be subtracted from 8 and we couldn’t.
Kalidheen:  Ok, so what happens if I make this 2b minus b (i.e. 

2b − b)? What will happen then?
Simon :  2b minus b? No mam it’s, two b’s minus one b so it’s 

gonna be b.
…
Kalidheen:  And then, if I had … ok let’s say I change this to 2b 

minus a.

Simon:  2b minus a? Mam you couldn’t … it can’t be … it 
can’t be done cos there’s no, there’s no a’s here, it’s 
only b’s.

Kalidheen:  Ok, so, what would happen here? What will the 
answer be?

Simon: No mam, it will be left like this (i.e. 2b − a).

Simon provides the correct answers when both terms contain 
letters. However, when only one term contains a letter, he 
eliminates the term because it cannot be subtracted from 8 
‘while there’s no b’s’. Yet he does not eliminate the term in a 
when dealing with 2b − a. He is one of many learners who 
uses a different strategy depending on whether both terms 
contain letters. His responses also show that he is working 
with a partitioning structure of subtraction, that is, as 
‘take away’ (Haylock, 2006). Such a view of subtraction is 
inadequate for algebra but it goes some way to explaining 
why learners might claim incorrectly that 8 − 2b = 8 but also 
claim correctly that 2b − a cannot be done ‘cos there’s no a’s 
here [to take away]’.

In contrast, other interviews show evidence of learners 
paying explicit attention to signs and operations yet over-
generalising methods from equation solving when working 
with expressions (e.g. Gumpo, 2011; Mashazi, 2012). Mashazi 
(2012, p. 21) asked Themba (Grade 9) to explain his solution 
to: ‘Simplify 3x + 2 + x’:

Themba:  They said simplify. The first thing that I did, I 
grouped the like terms then I got the answer.

Mashazi: How did you group your like terms?
Themba:  They said 3x + 2 + x then I said eh, when x comes 

between 3x and 2 it changes the sign to negative x, 
then I said 3x − x + 2, then I got the answer for 3x − x 
which is 2x and I left the 2 there, then I said 2x + 2 
which gave me 4x.

Mashazi:  Let us go back to where you added the like terms. 
You said when x moves closer to 3x, it changes the 
sign. Why?

Themba:  Because that is how mam taught me that when x eh, 
when the equation moves to the other side it 
changes the sign.

Mashazi: Oh! When it is an equation. Is this an equation?
Themba: Yes, ma’am.
Mashazi: Why do you say it is an equation?
Themba: Because, ma’am, it has the variables.

Themba is confident in his selection and use of a strategy, 
albeit an inappropriate one. He changes the sign if a term 
moves to another position in the expression and his 
justification reveals some confusion between an equation 
and an expression. It also reflects inappropriate criteria 
for defining an equation and incorrect description of the 
objects he is working with, such a referring to a term as an 
equation.

TABLE 3: Percentage of errors showing focus on numbers.
Item Typical errors % of all errors

Grade 9 Grade 10 Grade 11

3.2 Add 4 to n + 5 9n, 9 32 38 34

3.3 Add 4 to 3n 7n, 7, 7 + n 47 59 49

4.2 Multiply n + 5 by 4 n + 20, 20, 20n, n + 9, 9 46 59 54
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Errors related to multiplication and indices
There is much evidence of learners applying the distributive 
law and the addition law of exponents inappropriately across 
various items in Question 1, particularly in Grade 10. Such 
errors account for the dip in the percentage of correct 
responses in Q1.1 and Q1.3 in Grade 10. By Grade 11 these 
errors were less frequent and this partially explains the 
substantial increase in the percentage of correct responses in 
items involving brackets.

Errors involving the addition law for exponents, that is, 
am.an = am+n, are best illustrated by Q1.1, Q1.4 and Q1.5 as 
shown in Table 4. In Q1.1, 7a2 is by far the most common error 
each year. The increase in the number of learners making this 
error in Grade 10 may suggest that learners’ knowledge of 
algebraic simplification is unstable. However, the increase in 
Grade 10 may also suggest that learners expected a more 
complex question given that the first part of the test contained 
more difficult curriculum items.

Many learners treated the presence of brackets as a signal to 
multiply, not paying attention to the operations adjacent to 
the brackets. Consequently there is much evidence of the 
incorrect application of the distributive law in questions 
involving brackets. This is clearly illustrated in Q1.5 and Q1.6 
as shown in Table 5. The percentage of learners giving these 
responses grows substantially from Grade 9 to Grade 10 and 
then drops off in Grade 11.

Of all the CSMS test items, Question 1 was most similar in 
form to SA curriculum items in algebra. Consequently, 
learners saw opportunity to use the algebraic laws and 
procedures they had been taught and this may account for 
the inappropriate use of such curriculum knowledge. 
Exponential laws are introduced informally in Grade 9, then 
formalised for integer exponents in Grade 10 and extended 
for rational exponents in Grade 11. The increased attention 
given to the laws in Grade 10 may explain the spike in this 
error. The drop in Grade 11 may reflect that this knowledge is 
now more stable. The trend in Q1.4 and Q1.5 is similar.

The distributive law is first introduced in Grade 8 and 
reinforced in Grade 9 for more complex algebraic expressions. 
It is therefore surprising that the misapplication of the law 
appears more frequently in Grade 10 and not in Grade 9 as was 

the case with the exponential law. The reduction in errors 
involving the distributive law suggests that learners are more 
familiar with the correct application of the law in Grade 11.

In Q1.9 there is evidence of both the addition law of 
exponents and some attempt at the distributive law. It 
appears that that many learners treated the question as the 
product of binomials: (a + b)(a−b) The substantial increase in 
these errors from Grade 9 to Grade 10 is further evidence 
of curriculum effects since the factorising and expansion 
related to the difference of two squares is given more 
attention in Grade 10.

Errors related to evaluation of letters
When learners are not yet able to deal with a lack of closure 
in algebraic expressions, a common strategy is to evaluate 
the letters (Küchemann, 1981). Item Q5.3 was deliberately 
designed to test whether learners would accept the lack 
of closure inherent in the expression 8 + g. As expected, 
many learners evaluated the letters with errors involving 
evaluating, accounting for 51% of all responses in Grade 9. 
This dropped to 31% in Grade 11. However, of all the errors 
committed in Grade 11, evaluating of letters constituted 52%. 
There were two common strategies for evaluating:

•	 Equal splits: splitting the known quantity equally 
depending on the number of letters on the left and then 
giving the new letter the same value as the others, for 
example e = f = 4 so g also has a value of 4 and hence 
e + f + g = 12.

•	 Assigning a value of 1: the new letter is given a value of 1, 
presumably because its value is unknown and hence 
can be any value, so the simplest value is chosen, giving 
e + f + g = 8 + 1 = 9.

Both strategies are reported in other studies that have made 
use of the CSMS items (MacGregor & Stacey, 1997; Oldenburg, 
Hodgen & Küchemann, 2013). We consider the equal splits 
strategy to be a more sophisticated strategy because it 
indicates that learners are looking for patterns in the 
relationship rather than merely adding one. Equal splits is 
the most common strategy constituting 29%, 31% and 33% of 
the errors each year respectively. It is also a persistent strategy 
across the three years. For example, of the 62 Grade 10 
learners who used equal splits, 47% had also used it in 

TABLE 5: Percentage of incorrect responses involving distributive law.
Item Typical responses % responses

Grade 9 Grade 10 Grade 11

1.5 Simplify (a − b) + b ab − b2 3 15 12

1.6 Simplify 3a − (b + a) ±3a2 ±3ab 3 15 9

1.9 Simplify (a + b) + (a − b) a2 ± b2 10 26 21

TABLE 4: Percentage of incorrect responses involving exponential laws.
Item Typical responses % of all responses

Grade 9 Grade 10 Grade 11

1.1 Simplify 2a + 5a 7a2 10 17 7

1.4 Simplify 2a + 5b + a 7a2b, 8a2b, 2a2 + 5b 10 18 15

1.5 Simplify (a − b) + b a − b2, ab2 8 17 13
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Grade 9 and 37% continued to use it in Grade 11. Another 
noticeable trend was the move from the add 1 strategy to the 
equal splits strategy. For example, in Grade 9, 46 learners 
used add 1. Of these, 35% used the same strategy in Grade 10 
but 27% changed to equal splits. In Grade 10, 46 used add 1. 
Of these, 24% moved to equal splits and 26% gave the correct 
answer in Grade 11. Other less common strategies included 
assigning consecutive whole numbers, which typically 
occurred when the constant was odd (Du Plessis, 2012), and 
solving for e.

In the interview extracts we gain insight into learners’ 
reasoning about Q5.3 or similar items from the Honours 
projects. Thabo, a Grade 9 learner interviewed by Brown 
(2012, p. 95), argues confidently for an answer of 12 to 
‘if e + f = 8, then e + f + g = …’:

Thabo:  If you can take a look at e plus f equals to 8, it 
actually tells us that this e is 4 and this f is 4. That’s 
why they got 8. And right here we’ll say e plus f 
plus g equals to, ah, then one must say 4 plus 4 plus 
4 is, 4 plus 4 plus 4, I think I’ll, I will actually say 4 
times 3 which is 12. That’s why I got this 12.

Thabo says ‘it actually tell us’ indicating that he perceives 
the value of e and f to be given, and is not considering any 
other values for the letters. By contrast Lindo (Grade 11), in 
Madosi (2012, p. 25), is very clear that she guessed her answer 
to ‘if a + b = 6, then a + b + c = …’:

Madosi: So how did you get 3?
Lindo:  I just guessed the 3. I just thought this 6, they are 

two variables, meaning I add two numbers to get 6.
Madosi: Ok.
Lindo:  3 plus 3, and here also I said 3 because there are 

3 numbers, I also used the same number that I 
thought they used here.

In both cases learners ‘know’ that they need to obtain values 
for the letters and both make use of an equal splits strategy. 
Thabo assumes the values are implied in the question and 
recognises that he can multiply to obtain the sum. Lindo 
guesses a value of 3 but in another section of the interview 
acknowledges that she could have chosen different values.

Another strategy, which was more common among Grade 11 
learners, involved treating the expression as an equation and 
solving for the unknown. This is illustrated in Du Plessis 
(2012), where Bokang solves for e in ‘if c + d = 6 then 
c + d + e = …’ (see Figure 1):

Bokang:  I thought, I thought eh here neh, since c well, eh, 
c plus d is 6, I thought we were looking for e only. 
Then if we are looking for e only, then which means 
here was 3 and here was 3. Then you add this and 
this and you get 6. Then when you go to the other 
side then e is minus 6.

Bokang interprets the question to mean that he needs to find 
the value of e. He assigns equal splits to c and d and then 
treats the expression as an equation, assuming zero on the 
right side and then transposing the 6. His comment ‘I thought 

we were looking for e only’ suggests he views this item as an 
equation to be solved and there is only one unknown. While 
he still evaluates the letter, his approach is more sophisticated 
than merely assigning equal splits or adding one.

Choosing strategies based on particular features of the item
There is evidence across several interview items that learners 
change their strategies depending on the specifics of the 
question. For example, Du Plessis (2012) shows that learners 
used different strategies in responding to a variation of Q5.3 
depending on the choice of letters (consecutive versus non-
consecutive) and constants (odd or even). Earlier we provided 
evidence of how Simon reasoned differently when subtracting 
a constant compared with subtracting a term involving a 
letter. In the example below Musa (Grade 11) reasons 
differently depending on the operation and the coefficients 
(Kalidheen, 2012, p. 48):

Musa:  The first question says simplify where possible. The 
equation is 2a plus 3b plus c (2a + 3b + c). In this 
case you would have to add…, you would have to 
add all of them together but we have 2a plus 3b 
plus c so add the like terms together which is 2a 
plus 3b which will give us 5ab plus this c, ja , plus … 
ja, ja, so the final answer will be 5ab plus c.

…
Kalidheen: Which ones are the like terms?
Musa:  2a plus 3b. They are like terms in, because a and b 

have terms in front of them and c does not.
Kalidheen: When you say term, what do you mean?
Musa: I mean the number.

When dealing with subtraction, Musa reasons differently. 
He is given 2b − a and says the answer is b (Kalidheen, 2012, 
p. 48):

Musa:  2b minus a, 2b minus, ok, 2b minus a, which it stands 
for 1 right? So if a stands for 1, so just, you would be 

FIGURE 1: Bokang’s response to ‘if c + d = 6, then c + d + e = …’
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left with b. Yes, you would be left with b because, a 
because a in maths, if we use it as an x, x stands for 
actually one, so if we actually took out the a-factor 
which is in this case, er the one, so it means you 
must take out the one from the 2b.

Musa’s strategy for adding terms is to identify like terms 
although he does so based on an incorrect definition. When 
subtracting, he makes no mention of like terms. Instead 
he assigns 1 to a and then focuses on the numbers to ‘take 
out one from the 2b’. Here again we see a view of subtraction 
as take away. The different strategies for addition and 
subtraction suggest that he does not see similarities between 
items that add algebraic terms and those that subtract them.

Discussion
The quantitative and qualitative analyses provide 
complementary insights into learners’ errors in basic algebra. 
From the quantitative evidence we see that conjoining errors 
become less frequent by Grade 11 but they are still persistent. 
Another persistent error is the focus on numbers and the lack 
of attention to operations. Learners’ talk confirms that they 
are separating numbers from letters when dealing with 
expressions.

Errors related to the learning of new procedures appear 
to depend on when the new procedures are taught. For 
example the inappropriate application of the distributive 
law increased in Grade 10 but dropped off by Grade 11. 
Although we cannot be certain, it appears that by Grade 11 
learners are familiar with when the distributive law can be 
applied which suggests they may be paying more attention 
to the operations and not simply to the presence of brackets.

Learners’ performance on items involving subtraction and 
negatives improved substantially from Grade 10 to Grade 11 
but was still below performance on items without brackets 
and negatives. Further research needs to focus on learners’ 
reasoning when dealing with subtraction and negatives 
both in number work and algebra. The interviews show 
evidence of learners talking of subtraction as ‘take away’, 
even when dealing with algebraic terms. This restricted view 
of subtraction may be a consequence of limited exposure to 
other subtraction structures such as reduction, comparison 
and inverse-of-addition (Haylock, 2006) in number work. 
Thus, despite evidence that arithmetic is an obstacle to 
learning algebra, there is need for placing greater attention 
on relationships between numeric quantities particularly in 
numeric subtraction scenarios.

There is widespread evidence in the tests and interviews of 
learners evaluating letters rather than accepting expressions 
such as 8 + g as a final answer. The most common evaluation 
strategy was equal splits and it was persistent up to Grade 11. 
This suggests that learners assume the letters must have 
values which may be a curriculum effect of the emphasis on 
equation solving. We have shown instances were learners are 
certain that the letter has a particular fixed value and other 

instances where learners recognise that the letter could take 
on several different values. These are both steps towards the 
notion of letter as variable but learners need to develop this 
more sophisticated interpretation of letters earlier in order to 
cope with algebra and function.

The interview data provides evidence of learners incorrectly 
naming mathematical objects, for example referring to like 
terms as those with coefficients other than one, regardless of 
the letter. In other work emanating from the project we have 
argued for paying greater attention to the words learners use 
to name or refer to the mathematical symbols, expressions, 
graphs and for more opportunities for learners to talk 
mathematics (Adler & Ronda, 2015; Adler & Venkat, 2014).

One of the most alarming observations each year was the 
high percentage of errors that were coded ‘other’, meaning 
that there was insufficient trend to add a particular code 
for the error. Although the diversity of such errors reduced 
by Grade 11, the apparent idiosyncrasy of the errors remains 
a cause for concern. However, the interviews across all 
postgraduate projects confirmed that learners are frequently 
able to justify their strategies and answers with some 
rational connection to the mathematics they have learned. 
This highlights the need to gain deeper insight into learners’ 
reasoning as they work with basic algebra and hence for 
teachers to provide more opportunity for learners to explain 
their strategies verbally.

Conclusions and implications
In this article we have taken a first step in identifying and 
describing the algebraic errors that learners make as they 
move from Grade 9 to Grade 11. We have also provided some 
evidence of their reasoning in relation to these errors. This 
enables us to see what learners can and do do as they progress 
to higher grades, thus going beyond the general calls from 
Grade 12 examiners for greater attention on the ‘basics’ of 
algebra. Since this research provides insights into learners’ 
algebraic errors and their related thinking, it also provides a 
starting point to address the errors though attention to the 
underlying erroneous thinking rather than attempting to ‘fix’ 
the errors through reteaching.

Explanations for learners’ errors depend on theoretical 
orientations but there is agreement across perspectives that 
learners need to move from operational to structural ways of 
thinking about the symbols and their relationships. This will 
require deliberate instruction with tasks that push learners 
towards a structural view. Furthermore, increased attention 
to learners’ ways of speaking about algebra will provide 
greater insight into their thinking. There is no ‘quick fix’ to 
deal with learners’ errors in algebra, particularly when one 
sees how some errors persist deep into senior secondary 
mathematics. However, the insights provided by the research 
reported here give some indication of useful starting points 
such as specific attention to the meaning of brackets and a 
stronger focus on negatives and different views of subtraction.
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