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Abstract

Let Λ = Z[G] denote the integral group ring of a finite group G. In the first

part of this thesis we consider the stable syzygies Ωr(Z) over Λ. These are defined to

be the stable classes of the intermediate modules in a free Λ-resolution of the trivial

module Z. If we let p be an odd prime, then the groups of concern to us will be

G1 = D2p which has free period 4, and G2 = Cp ⋊C3 which has free period 6. Along

the way it will also be necessary to consider the syzygies of the cyclic group Cn which

has free period 2, the smallest possible nontrivial periodic resolution.

The key point of note in each of these cases is that the augmentation ideal splits,

thereby allowing us to show the existence of a diagonalised resolution. Moreover,

there exist two strands corresponding to the action of the generators of Cp, and of

either C2 or C3. For each strand we show there exists a group structure within the

stable class generated by part of the first syzygy Ω1(Z), and in which part of the

zeroth syzygy Ω0(Z) is the identity.

In the second part of this thesis we make the jump to infinite groups. By setting

G = Cp⋊Cq where p, q are prime such that q|p−1, we discuss the stably free modules

over Z[G×Fn], where Fn denotes the free group of rank n. As we shall see, the stably

free modules over this group ring are necessarily trivial; that is, they are free.
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Part I

Finite metacyclic groups
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Chapter 1

Overview

1.1 Motivation

We can view this thesis as roughly being divided into two distinct parts: finite and
infinite. Consider first the finite case in which we are concerned with the integral
group rings Z[G] for G a finite fundamental group. Specifically, we look at metacyclic
groups of the form,

G(p, q) = Cp ⋊ Cq =< x, y | xp = yq = 1, yx = θ(x)y >

where p, q are primes such that q|p− 1, and θ ∈ Aut(Cp) has order exactly q. In this
way, Cq acts on Cp via the natural embedding Cq →֒ Aut(Cp). In Chapter 4 we set
q = 2, and in Chapter 5 we set q = 3. In the second part of this thesis we shall extend
the discussion of such metacyclic groups to an infinite setting. We therefore say G
is a metacyclic group of infinite type if G has the form G = G(p, q)× Φ, where Φ is
some free group. In this thesis, we will primarily be concerned with the case Φ = Fn,
the free group of rank n ≥ 1. In particular, the case n = 1 corresponds to the infinite
cyclic group C∞.

The motivation for the above can be seen as both algebraic and topological,
although we shall primarily be interested in the algebraic considerations in this thesis.
Nevertheless, it is beneficial to briefly discuss the topological nature, if only to put the
algebraic treatment into perspective. For a detailed exposition, the reader is directed
to [20].

Algebraically, we are concerned with the explicit calculation of the interaction of
syzygies under the tensor product. For G finite, consider a free resolution over Z[G]
of the trivial module Z,

· · ·
∂n+2

→ Fn+1
∂n+1

→ Fn
∂n→ · · ·

∂2→ F1
∂1→ F0

∂0→ Z → 0

in which each Fi is a finitely generated free module over Z[G]. We then define the
syzygies (Jr)r≥1 to be the intermediate modules Jr = Im(∂r) = Ker(∂r−1). It is
straightforward to see such syzygies are dependent upon the free resolution chosen.
As such, to impose a degree of uniqueness we consider the stable syzygy. Here,
we consider stability to be an equivalence relation given by M ∼ N if and only if
M ⊕ Z[G]m ∼= N ⊕ Z[G]n for some m, n ≥ 0. The rth stable syzygy is then said to
be the stable class Ωr(Z) = [Jr].

2



Chapter 1. Overview 3

A natural question to ask is how syzygies interact upon tensoring with another
syzygy. By an iterative argument (see Section 2.5), Ωr(Z) ⊗Z Ωs(Z) = Ωr+s(Z).
However, this does not tell us much about what is actually going on. Consequently,
one of the primary aims of this thesis will be to explicitly calculate such interactions
for the cases when q = 2, 3.

In order to discuss these interactions we first need an understanding of what these
syzygies actually look like. Unfortunately, such descriptions are not always easy to
come by and, in certain circumstances, the syzygies continue to grow ever larger
making the situation especially difficult. Nevertheless, under favourable conditions it
can be shown that certain stable syzygies have a periodic nature. In such cases we
say that Ωr(Z) = Ωn+r(Z) for some n ≥ 2 which we call the periodic cohomology of
G. Such periods are necessarily even and are reflected in the free resolutions; that is,
if G has cohomological period n then there exists a free resolution of the form

0 → Z → Fn−1 → · · · → F1 → F0 → Z → 0.

Although most cases do not have this periodic nature, there are a number of signif-
icantly important groups that do. For instance, cyclic groups have period 2 (in fact
they are the only such groups to have this [55]), dihedral groups D4n+2 of order 4n+2
have period 4 (see [20]), and metacyclic groups G(p, q) of order pq have period 2q
(see [54]). It should be noted, however, that D4n does not have this periodic nature.
For a classification of all finite soluble groups with finite cohomological period, the
reader is directed to [58]. For the classification of nonsoluble groups, the reader is
directed to [53].

Whereas this periodic nature simplifies the matter greatly, it is still no easy task
to actually describe these syzygies. What is of significant use to us is the (somewhat
surprising) existence of free resolutions of Z that are of diagonal type. These are
resolutions whose free modules Fk all have rank 2 when k ≥ 1, and F0 is free of rank
1. Furthermore, for each k ≥ 2 the differential ∂k has diagonal form

∂k =

(
∂+k 0
0 ∂−k

)
.

Such resolutions were first observed for groups more general than cyclic groups in the
thesis of Strouthos [51]. Here, Strouthos constructed a diagonal resolution for the
dihedral group D6 of order 6. This has since been generalized by Johnson in [24].

Ideally, one would like to generalize this still further for metacyclic groups
G = G(p, q) (see the beginning of this chapter). Set Λ = Z[G(p, q)] and consider the
free resolution given by

0 → Z → F2q−1 → F2q−2 → · · · → F2 → F1 → F0 → Z → 0

in which each Fi is a finitely generated free Λ-module. As a starting point first observe
Ω1(Z) = [IG]. If α ∈ Z[G], then by [α) we mean the right ideal of Z[G] generated by
α; that is, [α) = {αλ | λ ∈ Z[G]}. In a natural way, this can be extended to an ideal
generated by a finite number of elements, [α1, . . . , αr). With this notation, we have
the following decomposition of the augmentation ideal IG of G as a direct sum

IG ∼= ĪC ⊕ [y − 1). (1.1.1)
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Here, ĪC is the Galois module obtained from the action of Cq on the augmentation
ideal IC of Cp. We will in fact see several important modules arise in this way; that
is, as ideals of Z[Cp] that are invariant under θ. To obtain these modules, we first
define a Galois structure on a module M over Z[Cp] to be an additive automorphism
Θ : M → M such that Θq = IdM and Θ(m · x) = Θ(m) · θ(x) for all m ∈ M . If M
is finitely generated and free as a Z-module, we define a Galois lattice to be the pair
(M, Θ). This becomes a (right) module over Λ via the action

m · xrys = Θ−s(m · xr).

For a proof of (1.1.1) the reader is directed to [17] or [25].
Of particular importance in the decomposition (1.1.1) is that both ĪC and [y−1)

are indecomposable. This behaviour turns out to be repeated at the minimal level of
each syzygy. This can be used to ‘untwist’ the augmentation ideal to form two short
exact sequences of the form

0 →? → Λ → ĪC → 0 and 0 →?? → Λ → [y − 1) → 0.

Consequently, we can effectively ‘untwist’ a free resolution of Z over Z[G(p, q)] to form
two separate monogenic1 infinite resolutions. As such, we shall often speak of the so-
called y-strand (this could also be thought of as the lower strand) of the resolution.
By this, we mean the exact sequence which is induced up from the standard resolution
of Cq. To be precise, let E be the standard resolution of Z over Z[Cq]

E = (· · ·
Σy

→ Z[Cq]
y−1
→ Z[Cq]

Σy

→ Z[Cq]
y−1
→ Z[Cq]

Σy

→ Z[Cq]
y−1
→ · · · ) (1.1.2)

where Σy =
∑q−1

i=0 y
i. If j : Cq → G(p, q) is the inclusion, then the y-strand of our

resolution is the induced resolution j∗(E),

· · ·
Σy

→ Λ
y−1
→ Λ

Σy

→ Λ
y−1
→ Λ

Σy

→ Λ
y−1
→ Λ

Σy

→ Λ
y−1
→ · · · (1.1.3)

By contrast, the x-strand (or, alternatively, the upper strand) causes a significant
amount of bother. A first step was outlined by Remez in [41] (see also [25]) using an
explicit form of Rosen’s theorem [43]. Here, we set ζp = exp(2πi/p) and describe Λ
as a fibre product

Λ −−−→ Tq(A, π)y
y

Z[Cq] −−−→ Fp[Cq]

(1.1.4)

where A = Z[ζp]
θ is the subring of Z[ζp] fixed by θ, and π = (ζp − 1)q. We define the

following quasi-triangular subring of Mq(A) to be

Tq(A, π) = {X = (xrs)1≤r, s≤q ∈Mq(A) | xrs ∈ (π) if r > s}.

1It may be useful to note that monogenic modules are often called cyclic modules.
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Next, denote the ith row of Tq(A, π), considered as a right Λ-module, by R(i)2. We
then have the following decomposition of the quasi-triangulars,

Tq(A, π) ∼= R(1)⊕ · · · ⊕ R(q).

It is quite clear that each R(i) is monogenic by composing the obvious projections
Λ ։ Tq(A, π) and Tq(A, π) ։ R(i) to give p(i) : Λ ։ R(i). Next, we define
K(i) = Ker(p(i)) and note that in [25] Johnson has shown the existence of the
following exact sequence of Λ-modules

0 R(1) Λ Λ P (q − 1) Λ Λ P (1) Λ R(1) 0

K(q) K(q − 1) K(2) K(1)

R(q) R(2)

(1.1.5)
in which P (1), . . . , P (q − 1) are projective modules of rank 1 over Λ, and such that⊕q−1

i=1 P (i)
∼= Λq−1. It is unknown at present whether each P (i) is indeed a free

module. The sequencing conjecture can therefore be stated thus:

Sequencing Conjecture: Each P (i) ∼= Λ for 1 ≤ i ≤ q − 1.

It should be noted that the above conjecture was first formulated in this form in [25].
It is also clear in that paper that if the sequencing conjecture has an affirmative
answer, then we may build a diagonalised free resolution. We will discuss this further
at a later point in the thesis. At present, the sequencing conjecture has been confirmed
for:

(i) G(2n+ 1, 2) (see [24])

(ii) G(7, 3) (see [41])

(iii) G(5, 4) (see [33]).

Furthermore, in [25] Johnson has confirmed the sequencing conjecture for the follow-
ing small values of p and q:

G(7, 6); G(11, 5), G(11, 10); G(13, 3), G(13, 4), G(13, 6); G(17, 4);

G(19, 3), G(19, 6), G(19, 9).

Beyond the obvious algebraic interest, this does have a topological motivation.
Indeed, the third syzygy is of particular importance in the context of low-dimensional
topology; specifically, the R(2) − D(2) problem. We stress that these topological
considerations will have no bearing on the rest of this thesis. Nevertheless, it is
perhaps useful to bear in mind the wider area in which these constructions relate.

In essence, the D(2)-problem asks what conditions are necessary to impose upon a
finite connected cell complex X of geometrical dimension 3 before it can be homotopy

2We will later see that ĪC is isomorphic to R(1).
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equivalent to one of dimension at most 2. Specifically, if X̃ represents the universal
covering of X , and if

H3(X̃, Z) = H3(X, B) = 0

for all coefficient bundles B, then the D(2)-problem asks if it is true that X is homo-
topy equivalent to a finite complex of dimension 2. Of note is that the D(2)-problem
is parametrized by the fundamental group. Thus, each finitely presented group G has
its own D(2)-problem. We then talk of the D(2)-property holding, or failing, for a
specific group G.

It has been shown that for a finitely presented group G, the D(2)-problem is
equivalent to an older problem known as the realization problem, or R(2)-problem.
This was shown by Johnson in [20], subject to mild conditions upon G which were
later shown to be unnecessary by Mannan [30]. To solve the R(2)-problem, one is
tasked with taking exact sequences of the form

0 → J → F2 → F1 → F0 → Z → 0

where each Fi is finitely generated and free over Λ, and where J belongs to Ω3(Z).
Such exact sequences are called algebraic 2-complexes. It is then a question of whether
such exact sequences serve as algebraic models for geometric 2-complexes.

If an affirmative answer to the R(2)-D(2)-problem is to be found, then a number
of things need to be explicitly described. First, we need to understand the stable
module Ω3(Z). Secondly, let Alg2(Z[G]) denote the set of homotopy equivalence
classes of algebraic 2-complexes over IdZ[G]. We then need to understand Alg2(Z[G])
and the fibres π2 : Alg2(Z[G]) → Ω3(Z). Finally, for each algebraic 2-complex A∗
over Z[G], we would need to construct a finite presentation of G such that A∗ has
a geometric realization. With the above in mind, there is a clear benefit of having
a diagonal resolution, and an understanding of how the syzygies interact. This is
perhaps further demonstrated by considering the difficulties encountered when we do
not have a diagonal resolution. An example of this can be found in [19].

Now, when Johnson provided an affirmative answer to the sequencing conjecture
for G = D4n+2, he used the finite cohomological period of such dihedral groups. As
G = D4n does not have a finite cohomological period, Johnson’s argument does not
extend to these groups. Nevertheless, some progress has been made in this direction.
In [35] O’Shea has shown that Z[D4n] having the torsion free cancellation property is
a sufficient condition for it to have the D(2)-property. Calculations of Swan [57] and
Endo and Miyata [14] therefore show an affirmative answer exists for Z[D4p] when p
is prime such that 2 ≤ p ≤ 31, or when p = 47, 179, 19379.

Moving beyond dihedral groups, Remez [41] has shown the D(2) property holds
for the group G(7, 3). Some progress was also made toward the general case G(p, q).
By demonstrating the straightness (see Section 2.7) of Ω3(Z), Remez thereby reduced
the realization problem to one of discussing fullness of the Swan map. We then
have just a single homotopy type for a group of the form G(p, q). However, such a
discussion is by no means straightforward and at present there is no known way to
show this.

Related to the discussion of syzygies, we come to the second major construction
of concern to this thesis: stably free modules. We say a module S is stably free if it
is stably isomorphic to the zero module, i.e. S ∼ 0. Such modules can be seen as
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relatively well-behaved projective modules. As such, it is a natural question to ask
what these modules actually look like, at least so far as to whether or not they are free.
This question has its genesis in the now famous Serre’s conjecture of 1955 [45], [28]
(although as it happens, Serre suggested the problem as an open one, making no
claim that he believed or disbelieved in a positive solution). Serre’s problem was
directed towards finitely generated projective modules over a polynomial ring in n
variables over a field k. Topologically, the question can be posed as asking if every
vector bundle over the affine n-space An

k is a trivial bundle, reflecting the idea that
an affine n-space should behave like a ‘contractible’ space in topology.

The question spurred on a wave of research, notably by Bass [1], Quillen [40],
Suslin [52] and Seshadri [46]. Of note is a theorem of Hilbert-Serre [44] in which it
was shown that the projective modules in question are necessarily stably free. Despite
such research, it would require twenty years before a full and affirmative solution was
finally presented by Quillen and Suslin (see [40] and [52]). In an interesting turn of
history, the solution by Quillen and Suslin was discovered independently in the same
month of the same year (January 1976) and using different means.

Our interest in stably free modules can therefore be seen as a continuation of
these discussions. Nevertheless, the topological motivation should not be overlooked,
for at present there is no known fundamental group G that satisfies the D(2) property
and which admits non-trivial stably free modules over its integral group ring.

The discussion, then, becomes one of which rings have only trivial stably free
modules, i.e. free. In this, we are aided by a property known as the Eichler condition.
Groups have this property when their real Wedderburn decomposition admits no
simple Hamiltonian H factors. By a theorem of Swan and Jacobinski (see [11]) we
know Z[G] admits no nontrivial stably free module if G is a finite group satisfying the
Eichler condition. However, this condition is not a necessary condition, as shown by
the calculations of Swan in [56]. Here, Swan showed that the generalized quaternions
Q(4n) of order 4n admit no nontrivial stably free modules over their integral group
ring if and only if n ≤ 5, yet Q(4n) is easily shown to fail the Eichler condition. As
it happens, whenever n > 5, Z[Q(4n)] has at least one nontrivial stably free module.

When we make the transition to infinite groups, the Swan-Jacobinski theorem
can no longer be called upon. As such, progress is now of a far more delicate nature.
Nevertheless, progress has been made by Johnson and others. As a starting point, we
note that Johnson has shown in [21] that k[G× Fn] admits no nontrivial stably free
module whenever G is some finite group and k a field. Returning to Z, Johnson [22]
has generalized a result of Kamali [26] to show Z[Q(8m) × F ] has infinitely many
isomorphically distinct nontrivial stably free modules, where F is some group which
maps surjectively onto Fn. Similarly, O’Shea [35] has shown this result holds for
groups of the form Q(12m)× F .

Beyond quaternion groups, Johnson [22] has shown that both Z[Cp × Fn] and
Z[D2p × Fn] admit no nontrivial stably free modules. Johnson has also shown the
same applies for Z[Cm × C∞] for m ≥ 2. In fact, whenever G is a finitely generated
abelian group, Z[G] admits no nontrivial stably free modules (see [23]). By contrast,
O’Shea [35] has shown this is not the case for Z[Cm × Fn] whenever m is divisible
by p2 for some prime p and n ≥ 2. Indeed, there are infinitely many isomorphically
distinct stably free modules of rank 1. We are similarly met with infinitely many
isomorphically distinct nontrivial stably free modules for Z[(C2×C2)×Fn] (see [22]).
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1.2 Structure of thesis

As already stated, the overall structure of this thesis will consist of two parts. Part
I will be concerned with finite metacyclic groups, and will consist of five chapters
including this one. Part II will concern metacyclic groups of infinite type and contains
two chapters.

In Chapter 2, we introduce the necessary results to discuss the syzygies of D2p

and G(p, 3). We shall, for the most part, omit the proofs and provide references
wherever suitable. Chapter 3 will be concerned with the syzygies of Z[Cn] for n ≥ 2.
Whereas the results of this chapter are certainly known, they do not appear readily
in the literature, and the direct calculations appear to be entirely absent. The results
of this chapter shall be of use in Chapters 4 and 5.

In Chapter 4 we consider the syzygies of Z[D2p] and explicitly calculate the various
interactions under the tensor product. As we shall see, the majority of our calculations
depend only upon n where p = 2n+1. The requirement of p being prime is necessary
only to ensure the indecomposable nature of our modules, and to prevent our syzygies
from becoming ‘too big’. The key point in this chapter is that the syzygies decompose
into indecomposable modules representing the x-strand and the y-strand. To provide
us with a succinct notation, we shall often write Ωxr (Z) for the x-strand of the rth
stable syzygy, i.e. those modules arising from the x-strand (or upper strand) of the
resolution. So, for example, K ⊕ Y is a minimal representative element of Ω0(Z),
in which K is a minimal module representing Ωx0(Z), and Y is a minimal module
representing the y-strand. In fact, as we will see, Y = [Σy) in this case. Moreover,
with K as above, we will show:

Theorem A. For Λ = Z[D2p] (p odd prime), the module K acts as the identity
within the stable class; that is, K ⊗ X ∼= X ⊕ Λa for some a ≥ 0 and where X is a
representative element of the x-strand of Ωr(Z), 0 ≤ r ≤ 3.

For the purposes of this section alone, we shall write Ωr for a representative module
of the x-strand of Ωr(Z) (0 ≤ r ≤ 3) in which Ω0 = K with this notation. The
author stresses that this is purely in the interests of clarity, and shall be abandoned
once we begin to build a more accurate picture of these stable syzygies. We will then
explicitly show the following relations:

Theorem B. For Λ = Z[D2p], p = 2n+1, the following relations hold when tensoring
over Z:

� Ω1 ⊗ Ω1
∼= Ω2 ⊕ Λn−1;

� Ω1 ⊗ Ω2
∼= Ω3 ⊕ Λn;

� Ω1 ⊗ Ω3
∼= Ω0 ⊕ Λn−1.

In particular, the last isomorphism uses the fact that Ω0(Z) = Ω4(Z). Using Theorems
A and B, along with the fact that K is self dual (see [24]), we therefore have:

Theorem C. The x-strand of the syzygies Ωr(Z) of Z[D2p] forms a cyclic group
within the stable class of order 4, generated by Ω1 with identity Ω0.

In Chapter 5, we now consider the syzygies of Z[G(p, 3)], mirroring the techniques
of Chapter 4. As before, we denote the representative element of the x-strand of Ω0(Z)
by K. We then show:
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Theorem D. For Λ = Z[G(p, 3)], the module K acts as the identity within the
stable class; that is, K⊗X ∼= X⊕Λa for some a ≥ 0 and where X is a representative
element of the x-strand of Ωr(Z), 0 ≤ r ≤ 5.

Theorem E. With K as in Theorem D, K ∼ K∗; that is, K is stably self-dual.

We denote the representative modules of the x-strand of Ωr(Z) by Ωr (0 ≤ r ≤ 5)
where Ω0 = K. By setting d = (p− 1)/3 we will explicitly show:

Theorem F. For Λ = Z[G(p, 3)], the following relations hold when tensoring over
Z:

(1): Ω1 ⊗ Ω1
∼= Ω2 ⊕ Λd−1;

(2): Ω1 ⊗ Ω2
∼= Ω3 ⊕ Λ2d;

(3): Ω1 ⊗ Ω3
∼= Ω4 ⊕ Λd−1;

(4): Ω1 ⊗ Ω4
∼= Ω5 ⊕ Λ2d;

(5): Ω1 ⊗ Ω5
∼= Ω0 ⊕ Λd−1.

Again, the last isomorphism uses the fact that Ω0(Z) = Ω6(Z). By putting this all
together we therefore have the following result:

Theorem G. The x-strand of the syzygies Ωr(Z) of Z[G(p, 3)] forms a cyclic group
within the stable class of order 6, generated by Ω1 with identity Ω0.

In the process of showing Theorem F, we shall in fact provide an affirmative
answer for the sequencing conjecture when q = 3. This shall be proven in two parts.

Theorem H. There exist the following three basic sequences:

(i)

0 R(1) Λ Λ R(3) 0;

K(3)

(B(1))

(ii)

0 R(2) Λ Λ R(1) 0;

K(1)

(B(2))

(iii)

0 R(3) Λ Λ R(2) 0.

K(2)

(B(3))

It is then a straight forward splicing argument to prove the sequencing conjecture for
q = 3; that is:
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Theorem I. The sequencing conjecture is true for q = 3 and we have the following
exact sequence

0 R(1) Λ Λ Λ Λ Λ Λ R(1) 0.

K(1)K(2)K(3)

R(2)R(3)

We conclude Part 1 by generalising the results of Theorems D and E to a general
prime q such that q|p− 1; that is, we show:

Theorem J. For Λ = Z[G(p, q)], there is a module K which represents the x-strand
of Ω0(Z). In particular, this acts as the identity within the stable class. In other
words, we have K ⊗ X ∼= X ⊕ Λa for some a ≥ 0 and where X is a representative
element of the x-strand of Ωr(Z), 0 ≤ r ≤ 2q − 1. Furthermore, K ∼ K∗.

Chapter 6 signals the start of Part II. As with Chapter 2, this consists of the
necessary results for Chapter 7. The overall strategy will be to consider fibre squares,
thereby allowing us to construct projective modules over the ring in question by lifting
them from two of the corners. In particular, we show:

Theorem K. There are no nontrivial stably free modules over Z[G(p, q)×Fn], where
n ≥ 1.



Chapter 2

Preamble

Let Λ be an arbitrary ring and denote the units by U(Λ). By a (right) Λ-module we
shall mean an abelian group M such that:

� m · 1 = m for all m ∈M ;

� m(λ1λ2) = (mλ1)λ2 for all m ∈M , λ1, λ2 ∈ Λ;

� (m1 +m2)λ = m1λ+m2λ for all m1, m2 ∈M , λ ∈ Λ;

� m(λ1 + λ2) = mλ1 +mλ2 for all m ∈M , λ1, λ2 ∈ Λ.

A module is said to be free if it has a basis and, in this case, can be thought of as
behaving similar to a vector space. When a module fails to have a basis, it is often
useful to consider the extent to which it fails to have one. We say that a Λ-module
P is projective if there is another Λ-module Q such that P ⊕ Q ∼= F , where F is
some Λ-module which is free of unspecified rank. A projective module can therefore
be seen to be a generalisation of a free module.

Throughout this thesis we denote the ring of n × n matrices over Λ by Mn(Λ),
and the set of m×n matrices over Λ by Mm,n(Λ). Of particular interest is the group
of invertible n× n matrices over Λ, which we denote by GLn(Λ) and call the general
linear group. This will play a larger role in Part II of this thesis.

Recall that if Λ is a commutative ring, and G a (finite) group1, then the group
algebra Λ[G] consists of all formal Λ-valued functions with finite support defined onG.
This naturally forms a Λ-module under pointwise addition and scalar multiplication.
If g ∈ G then we can make particular note of the element of Λ[G] defined by

ĝ(x) =

{
1, if x = g;

0, if x 6= g.

We then have a basis for Λ[G] over Λ given by {ĝ}g∈G thereby allowing us to represent
elements of Λ[G] as finite linear combinations of elements of G with coefficients in Λ;
that is,

α =
∑

g∈G

λgĝ.

1The finiteness condition here purely reflects the fact that Part I of this thesis concerns only finite
metacyclic groups. Nevertheless, many of the results that follow will apply to infinite groups. The
details are left to the reader

11
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Trivially, we note Λ[G] is free over Λ. Moreover, Λ[G] has the structure of a
Λ-algebra, where the product is given by

(α · β)(g) =
∑

h∈G

α(gh−1)β(h).

The multiplicative identity is clearly seen to be 1̂ and hence there is the inclusion
Λ →֒ Λ[G] where λ 7→ λ · 1̂. When there is no confusion, we adopt the notational
shorthand of dropping the hat above ĝ.

For such group rings we define a Λ[G]-lattice to be a Λ[G]-module whose under-
lying Λ-module is finitely generated and projective. As this thesis will be primarily
concerned with Z[G]-modules, we can think of Z[G]-lattices as Z[G]-modules whose
underlying abelian group is finitely generated and free. Note that any ideal in Z[G]
is a Z[G]-lattice.

Now, we define a group representation by a homomorphism ρ : G → GLn(Λ).
Whenever Λ = F is a field, there are a number of results which aid the computations
and more theoretical aspects of the theory. Unfortunately, in the realm of rings, the
theory does contain a certain degree of pathology. For instance, Maschke’s theorem
fails the transition to general rings, and Z is no longer projective as a Z[G] module
unless |G| = 1. Nevertheless, as we shall see in Section 2.2, the integral representation
theory of lattices does have some nice behaviour which we will be able to exploit.

Despite the added complications of integral representation theory, there are suffi-
cient ‘nice’ qualities for us to utilise. The remainder of this section, while still aimed
at finite groups, is also applicable to more general groups. For our purposes, we will
never need anything more troubling than a countable group. With this, we find that
our rings are not ‘too big’ when Λ = Z. To reflect this we say that a ring is weakly
coherent when any submodule of a countably generated module is necessarily count-
ably generated. A straightforward argument shows that any countable ring is weakly
coherent. Clearly Z[G] belongs to this class of rings (provided G is countable).

More useful still is the property of weak finiteness. We say a ring Λ is weakly finite
if, whenever ϕ : Λn → Λn is a surjective Λ-homomorphism, then ϕ is bijective. In [6],
Cohn attributes the result that F[G] is weakly finite for any field F of characteristic
zero to an unpublished result of Kaplansky. This was later proven by Montgomery [32]
and Passman [37]. A theorem of Cohn [9] then shows that any subring of a weakly
finite ring is weakly finite. Hence, the property is shown for Z[G] also. Furthermore,
by results of Cohn (see [6], [7], [8]), this implies that Z[G] also satisfies the invariant
basis number property (IBN); that is, for positive integers m, n:

Z[G]m ∼= Z[G]n =⇒ m = n.

Henceforth, for the remainder of this chapter we shall relabel Λ = Z[G]. It should
be noted, however, that in future chapters it will be beneficial to use Λ to denote the
integral group ring for specific groups; for example G = D4n+2 in Chapter 4. For
now, we shall stick with a general finite group G unless explicitly stated otherwise.
As a final comment on the conventions throughout this thesis, we denote the category
of Z[G]-lattices by F(Z[G]) or simply F(Λ). It is a full subcategory of Λ-modules
and throughout this thesis, we shall always stay within this category unless otherwise
stated.
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2.1 Dual modules

Throughout, we work with right modules unless otherwise stated. A potential draw-
back of this approach, however, is that of dual modules. Recall, we have set Λ = Z[G].
We define the Λ-dual of a Λ-module M to be

M∗ = HomΛ(M, Λ).

In general, for a right Λ-module M , the dual module M∗ is naturally a left module
via the action

• : Λ×HomΛ(M, Λ) → HomΛ(M, Λ)

(λ • f)(x) = λf(x).

To make this into a right module, we require our rings have an additional structure;
namely, a natural involution.

Fortunately for us, group rings offer us just such an involution, thereby allowing
us to convert any dual module into a right module via the canonical involution. Let
τ : Λ → Λ be the aforementioned involution where

τ

(∑

g∈G

agg

)
=

(∑

g∈G

agg

)
=

(∑

g∈G

agg
−1

)
.

Given the canonical involution above, convert the left action • into a right action ∗
by

(f ∗ λ) = λ̄ • f,

where ḡ = g−1.
When working within F(Λ) there is the following relationship between a module

and its double dual. The reader is directed to [20] for a more thorough exposition.

Proposition 2.1.1. For all M ∈ F(Λ), ν : M → M∗∗ is a natural isomorphism of
Λ-modules.

It should be stressed, however, that in general M is not self-dual; that is, it
is not true in general that M ∼= M∗. We shall explore three cases of particular
note with regards to duality and double duality in Section 2.2 when we introduce
representations. Until then, another nice property is that duality is preserved by the
direct sum construction; that is:

Proposition 2.1.2. Let M, N be Λ-modules; then

(M ⊕N)∗ ∼=M∗ ⊕N∗.

A natural property to discuss is the transition between modules over Z[H ] and
over Z[G] where H is some (possibly trivial) subgroup of G. First, recall the Z-dual
of M is the lattice

M⋆ = HomZ(M, Z)

on which G acts by (fg)(m) = f(mg−1). Consider now the following notions of
restriction and extension of scalars. Let i : H ⊂ G be the natural inclusion map
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of the subgroup H into G. We now induce two maps on the category of finitely
generated lattices:

i∗ : F(Z[G]) → F(Z[H ]),

and
i∗ : F(Z[H ]) → F(Z[G]),

where i∗ is given by restricting scalars to Z[H ], and i∗ is given by extending scalars;
that is, i∗(M) =M ⊗Z[H]Z[G]. In the interests of maintaining a concise notation, we
shall often write the above tensor product −⊗Z[H] − over Z[H ] simply as −⊗H −.

Proposition 2.1.3 (E-S Stage 1). If i : {1} →֒ G, then for any L ∈ F(Λ),

HomZ[G](Z[G], L) ∼=Z HomZ(Z, i
∗(L)).

Proof. Let l ∈ L and consider the well defined Λ-homomorphism,

l̂ : Z[G] → L

given by l̂(λ) = lλ. Define the mapping,

♮ : HomZ(Z, i
∗(L)) → HomZ[G](Z[G], L),

where ♮(f) = f̂(1). Evidently, ♮ is a Z-homomorphism.
It therefore remains to show bijectivity. First suppose ♮(f) = ♮(g), i.e. that

f̂(1) = ĝ(1). Consider an element λ =
∑

h∈G λhh ∈ Z[G] so that

∑

h∈G

f(1)λhh =
∑

h∈G

g(1)λhh.

It follows that f(1)λh = g(1)λh for all λh ∈ Z. As i∗(L) is torsion free we therefore
conclude f(1) = g(1) and hence f = g.

Now, take some f̄ ∈ HomZ[G](Z[G], L). This is clearly determined by where it
sends 1. Consequently, this corresponds to some f ∈ HomZ(Z, i

∗(L)); that is, there
exists an f such that ♮(f) = f̄ .

Proposition 2.1.4 (E-S Stage 2). If i : {1} →֒ G, then for any L ∈ F(Λ),

HomZ[G](L, Z[G]) ∼=Z HomZ(i
∗(L), Z).

Proof. Let ǫ : Z[G] → Z denote the augmentation homomorphism where ǫ(g) = 1.
We next induce the following Z-module homomorphism,

ǫ∗ : HomZ[G](L, Z[G]) → HomZ(i
∗(L), Z).

To show that ǫ∗ is an isomorphism, we first consider the following special case:

(I): ǫ∗ is an isomorphism when L = Z[G].

Evidently, HomZ[G](Z[G], Z[G]) ∼= Z[G] which is the free Z-module with basis {g}g∈G.
Since Z[G] is a lattice we have i∗(Z[G]) ∼= Z|G|. Hence, HomZ(i

∗(Z[G]), Z) ∼= Z|G| is
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also a free Z-module with basis {g∗}g∈G where

g∗(h) =

{
1, h = g;

0, h 6= g.

Clearly, ǫ∗(g) = g∗, and thus ǫ∗ is an isomorphism of Z-modules.
Now, as ǫ∗ is additive, (I) clearly generalises to:

(II): ǫ∗ is an isomorphism when L = Z[G]n for n ≥ 1.

Given this, we can now prove that ǫ∗ is an isomorphism for any Z[G]-lattice L.

(III): ǫ∗ is injective for any Z[G]-lattice L.

As L is finitely generated, we take a surjective Z[G]-homomorphism,

π : Z[G]m → L

and extend this to form an exact sequence thus

Z[G]m
π
→ L→ 0 → 0.

We then construct the following commutative diagram with exact rows as follows,

0 −−−→ 0 −−−→ HomZ[G](L, Z[G]) −−−→ HomZ[G](Z[G]
m, Z[G])y∼=

y∼= ǫ∗

y ǫ∗

y∼=
0 −−−→ 0 −−−→ HomZ(i

∗(L), Z) −−−→ HomZ(i
∗(Z[G]m), Z)

The result now follows from the ‘injective Four Lemma’.

(IV): ǫ∗ is surjective for any Z[G]-lattice L.

Take the exact sequence

0 → K
j
→ Z[G]m

π
→ L→ 0

where K = Ker(π) and j is the natural injection. It is well-known that i∗ is an exact
functor (see, for example [22]). So, we have

0 → i∗(K)
i∗(j)
→ i∗(Z[G]m)

i∗(π)
→ i∗(L) → 0

is also an exact sequence. Since L, Z[G]m are lattices, it follows that their restrictions
are simply copies of Z. Consequently, the above exact sequence splits as
Zm·|G| ∼= i∗(K) ⊕ Zl, where l = rkZ(L). Hence, i∗(K) is projective as a Z-module.
Furthermore, it is clear that i∗(K) is also finitely generated. In other words, K is a
Z[G]-lattice.

Next, construct the following commutative diagram with exact rows,
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0 −−−→ HomZ[G](L, Z[G])
π∗

−−−→ HomZ[G](Z[G]
m, Z[G])

j∗

−−−→ HomZ[G](K, Z[G])y∼= ǫL
∗

y ǫ∗

y∼= ǫk
∗

y

0 −−−→ HomZ(i
∗(L), Z)

π∗

−−−→ HomZ(i
∗(Z[G]m), Z)

j∗

−−−→ HomZ(i
∗(K), Z)

As ǫK∗ is injective by (III), it follows that ǫL∗ is surjective by the ‘surjective Four
Lemma’.

In fact, the above isomorphisms are merely special cases of what one may tenta-
tively call the ‘Eckmann-Shapiro’ relations.

Proposition 2.1.5 (Eckmann-Shapiro). Let i : H →֒ G be the natural inclusion map
of a subgroup H into G. If M is a Z[H ]-lattice, and N is a Z[G]-lattice, then there
exist the following isomorphisms:

� HomZ[G](i∗(M), N) ∼= HomZ[H](M, i∗(N));

� HomZ[G](N, i∗(M)) ∼= HomZ[H](i
∗(N), M).

Strictly speaking, the original statement by Eckmann and Shapiro concerns the
corresponding isomorphisms in cohomology in which the above is simply the case
n = 0:

ExtnZ[G](i∗(M), N) ∼= ExtnZ[H](M, i∗(N)); (2.1.6)

ExtnZ[G](N, i∗(M)) ∼= ExtnZ[H](i
∗(N), M). (2.1.7)

Nevertheless, we shall refer to the isomorphisms of Proposition 2.1.5 as the Eckmann-
Shapiro relations throughout. In the interests of succinctness, we shall refrain from
providing a proof for Proposition 2.1.5. It suffices to say that the first isomorphism2

is the well-known result that the extension of scalars functor is a left adjoint of the
restriction of scalars. The second isomorphism is not true in general, and the reader
is directed to [22] (see appendix B) for a proof.

A related result is sometimes referred to as the ‘projection formula for Frobenius
reciprocity’ in the literature, see [5]. As we have engulfed the more classical Frobenius
Reciprocity under the umbrella of the Eckmann-Shapiro relations, we shall henceforth
refer to the following simply as ‘Frobenius Reciprocity’.

Proposition 2.1.8 (Frobenius Reciprocity). Let i : H ⊂ G be the inclusion map of
the subgroup H into a finite group G. IfM is a Z[H ]-module, and N is a Z[G]-module,
then there exists an isomorphism

ϕ : i∗(M)⊗Z N
≃

−→ i∗(M ⊗Z i
∗(N))

Corollary 2.1.9. Let M be a Λ-lattice of rank rkZ(M) = m; then (Λ)r⊗M ∼= (Λ)rm.

2This is sometimes referred to as Frobenius Reciprocity in the literature.
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Proof. Take the trivial subgroup {1} and the natural inclusion i : {1} ⊂ G. Then
i∗(Z) = Λ and it follows from Frobenius reciprocity that,

(Λ)r ⊗Z M = i∗(Z
r)⊗M

∼= i∗(Z
r ⊗ i∗(M))

= i∗(Z
r ⊗ Zm)

= i∗(Z
rm)

= (Λ)rm.

Finally, we consider a result concerning the extension of scalars of the trivial
module Z and self-duality. If i : H →֒ G is the natural inclusion of a subgroup H
into the finite group G, then we induce the extension of scalars functor as before. We
therefore have the following result which will be of use in Chapter 4.

Proposition 2.1.10. With i∗ as defined above, the extension of the trivial Z[H ]-
module is self-dual; that is, i∗(Z)

∗ ∼= i∗(Z).

Proof. If we think of Z as the trivial Z[H ]-module, then i∗(Z) = Z ⊗H Λ and we
clearly have the following action of g ∈ G:

(α⊗ gi) · g = α⊗ gi · g

= α⊗ h · gj

= α · h⊗ gj

= α⊗ gj

where h ∈ H and gj ∈ G\H . Hence we may form a set {g1, . . . , gk} of coset repre-
sentatives of G\H such that {1⊗ g1, . . . , 1⊗ gk} forms a Z-basis for i∗(Z).

Now, let g ∈ G and observe that gj · g ∈ Hgσg(j) where gσg(j) ∈ {g1, . . . , gk}. We
intend to show the σg is in fact a permutation; that is, we have (1⊗ gj)g = 1⊗ gσg(j)
for all 1 ≤ j ≤ k.

It is clearly sufficient to show injectivity of σg. So, suppose gj1g, gj2g ∈ Hgi for
some 1 ≤ i ≤ k. Thus, for some h, h′ ∈ H , hgj1g = h′gj2g from which it follows that
hgj1 = h′gj2. In other words, we are in the same coset and so gj1 = gj2, as required.

Thus far we have shown σg is a permutation on {1, . . . , k} and therefore we have
a permutation matrix ρi∗(Z)(g

−1) in which

(ρi∗(Z)(g
−1))ij =

{
1, j = σg(i);

0, j 6= σg(i).

Finally, since gg−1 = 1 it is straightforward to see that (σg)
−1 = σg−1 . Consequently,

(ρi∗(Z)(g))ij =

{
1, j = σg−1(i);

0, j 6= σg−1(i)
= (ρi∗(Z)(g

−1))ji.

Thus, ρi∗(Z)(g
−1) = ρi∗(Z)(g)

T , as required.
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2.2 Integral representation theory

Let G be a group. An n-dimensional Z-representation is a pair (M, ρ) where M
is a free Z-module of rank n, and ρ : G → GLn(Z) is a group homomorphism. If
(N, σ) is another Z-representation, then Ψ : (M, ρ) → (N, σ) is a (G, Z)-morphism
when Ψ : M → N is a Z-linear map such that for all g ∈ G, m ∈ M we have
Ψ(ρ(g)(m)) = σ(g)(Ψ(m)).

Now, for g ∈ G denote by ĝ the element of Z[G] where

ĝ(x) =

{
1, if x = g;

0, if x 6= g.

The set {ĝ}g∈G forms a Z-basis for Z[G]. We can associate with (M, ρ) a right
Z[G]-module M(ρ) whose underlying abelian group is M , and on which Z[G] acts by

m •

(∑

g∈G

λgĝ

)
=
∑

g∈G

λgρ(g
−1)(m).

Conversely, if M is a finite dimensional right Z[G]-module, we associate with M a
finite dimensional Z-representation ρM : G→ GLn(Z) where

ρM(g)(m) = m · ĝ−1.

This correspondence between Z-representations of G and right modules over Z[G] is
clearly 1−1. Such a viewpoint was initiated by Noether in the 1920s and allows us to
consider, among other things, properties of modules by working with the associated
representations. We say two n-dimensional representations ρ, σ are equivalent if there
exists some X ∈ GLn(Z) such that ρ(g)X = Xσ(g) for all g ∈ G. In particular, this
is true if and only if the associated Z[G]-modules are isomorphic.

Of particular interest will be the following relationship between dual modules and
their representations. Specifically, we may think of the Z[G]-dual of a Z[G]-lattice M
as the lattice M∗ where G acts by

ρM∗(g) = ρM (g−1)T .

There are now three special cases of representations to note:

� The regular representation

This is simply the matrix description of the free module of rank 1; that is we
consider Z[G] as a module over itself. If |G| = n, this gives rise, via the above
correspondence, to the regular representation ρreg : G→ GLn(Z); that is,

ρreg(g)(m) = g ·m.

Each ρreg(g) is a permutation matrix and so satisfies the orthogonality condition
ρreg(g)

−1 = ρreg(g)
T . It therefore follows that ρreg ≡ ρ∗reg. Moreover, we may legiti-

mately identify Z[G] with Z[G]∗ by confusing the canonical basis {g}g∈G with its dual
basis {g∗}g∈G. This result generalises easily to give:
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Proposition 2.2.1. If M ∈ F(Z[G]), then

M is free ⇔M∗ is free.

We may extend Proposition 2.2.1 to encompass projectives in a straightforward man-
ner:

Proposition 2.2.2. If M ∈ F(Z[G]), then

M is projective ⇔M∗ is projective.

� The trivial representation

We consider Z to be a Z[G]-module in which each group element acts trivially, i.e.
each g ∈ G acts as the identity. In matrix terms, the trivial representation is therefore
given by the trivial homomorphism τ : G→ GL1(Z). Since τ(g) = τ ∗(g) = Id for all
g ∈ G, it is clear that Z ∼=Z[G] Z

∗.

� The augmentation ideal

The previous two cases were both self dual, and perhaps this was overly deceptive.
For, as already stated, it is not a property that is shared by Z[G]-modules in general.
Consider the augmentation map ǫ : Z[G] → Z, where ǫ(g) = 1. The kernel of ǫ
is of significant interest to us, called the augmentation ideal. We usually denote
the augmentation ideal by I(G), IG, or simply I when there is no confusion as to
which group we are working with. Clearly, I(G) ∈ F(Z[G]). Moreover, we have the
following well known result:

Proposition 2.2.3. The augmentation ideal I(G) has a Z-basis given by

{g − 1G | g ∈ G such that g 6= 1G}.

Although in general I(G) is not self dual, there is a specific case worth noting
where I(G) ∼= I(G)∗. Suppose G = Cn =< x | xn = 1 > is the cyclic group of order
n. Then we write I(Cn) as

I(Cn) = spanZ{x− 1, x2 − 1, . . . , xn−1 − 1}.

By a series of elementary basis changes, we confuse the basis of I(Cn) with it’s dual
basis; that is:

Proposition 2.2.4. Let Cn denote the cyclic group of order n; then

I(Cn) ∼=Z[Cn] I(Cn)
∗.

As it happens, this is the only case for which I(G) is self-dual. This fact follows since
self duality of I(G) is equivalent to G having cohomological period 2. As shown by
Swan [55] (Lemma 5.2), this is only true when G is cyclic.

It will become necessary throughout this thesis to understand how lattices interact
under the tensor product. For this reason, we recall a few basic facts. When M, N
are Λ-lattices of ranks m and n, respectively, with corresponding representations ρM
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and ρN , then the tensor product M ⊗Z N is a lattice of rank mn where the G-action
is given by,

(v ⊗ w) · g = vg ⊗ wg.

Recall that if X = (xij) and Y = (yij) are two matrices, then X ⊗ Y = (Xyij).
Consequently, M ⊗Z N is determined by a representation,

ρM⊗N : G −→ GLmn(Z)

g 7→ ρM(g)⊗ ρN(g).

As we shall be tensoring predominantly over Z, we drop the subscript in − ⊗Z −,
reserving subscripts only for tensoring over some other ring.

With these considerations in mind, we now move on to considering the repre-
sentations of lattices in more detail. First, we note the following standard results of
tensor products:

Proposition 2.2.5. If M, N are Z[G]-modules, then

HomZ(M, N) ∼= M∗ ⊗N.

Proposition 2.2.6. LetM, N be two Λ-lattices. Then the dual of their tensor product
is isomorphic to the tensor product of their duals; that is,

(M ⊗N)∗ ∼=M∗ ⊗N∗.

Moreover, HomZ(M, N) is a lattice on which G acts by (fg)(v) = (f(vg−1))g. In
particular M∗ ⊗M is the matrix ring Mm(Z) on which G acts by conjugation,

Ag = ρM(g−1)AρM (g).

Finally, we introduce a result that will be of use throughout Part I of this thesis.

Proposition 2.2.7. Let {Eψ}ψ∈Ψ be a Z-basis for the free abelian group A and let
B ⊂ A be an additive subgroup such that rkZ(B) ≤ m. Suppose also that there exists
a subset Φ ⊂ Ψ such that |Φ| = m and Eφ ∈ B for each φ ∈ Φ; then

i) rkZ(B) = m;

ii) {Eφ}φ∈Φ is a Z-basis for B;

iii) A/B is torsion free.

2.3 Cyclic Algebras

Let R be a commutative ring and let θ : R → R be a ring automorphism of finite
order dividing n ≥ 2, i.e. we have θn = Id. We define the fixed ring,

Rθ = {r ∈ R | θ(r) = r}.

If α ∈ Rθ then we define the cyclic algebra Cn(R, θ; α) to be the two-sided R-module

Cn(R, θ; α) = R · 1⊕ R · y ⊕ · · · ⊕ R · yn−1
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which is free of rank n over R with basis {1, y, . . . , yn−1}. Moreover, we have multi-
plication determined by

yn = α, y · r = θ(r) · y, where r ∈ R.

Evidently, Cn(R, θ; α) is an algebra over the fixed point ring Rθ. For ease of notation,
whenever α = 1, we shall simply denote this by Cn(R, θ).

The cyclic algebra construction allows us to construct certain group rings from
other, simpler, group rings. For example, let R = Z[C3] denote the integral group
ring of the cyclic group of order 3. We may then construct Z[D6], the integral group
ring of the dihedral group of order 6. Let θ ∈ Aut(C3) be nontrivial of order 2, i.e.
θ2 = Id. Take 1 to be the element of the fixed ring. It is straightforward to now show

Z[D6] = C2(Z[C3], θ; 1).

Now define a pointed n-ring to be a triple (R, θ; α) such that θ : R → R satisfies
θn = Id and α ∈ Rθ. We in fact have a category of pointed n-rings with morphism

f : (R, θ; α) → (S, ψ; β)

such that f : R → S is a ring homomorphism where f(α) = β, and f ◦ θ = ψ ◦ f .
Formally, the cyclic algebra construction is functorial on pointed n-rings. However, it
should be noted that we do also want to allow the case where θn = Id but ord(θ) 6= n.
For consider the above example of Z[C3] in which θ2 = Id. As θ fixes 1 + x + x2,
then θ induces a ring automorphism on the quotient I(C3)

∗ = Z[C3]/(1 + x + x2).
Likewise, the augmentation ideal I(C3) is stable under θ and so θ induces the identity
automorphism on the quotient Z = Z[C3]/I(C3). Thus, we can apply the cyclic
algebraic construction to both I(C3)

∗ and Z. This is important in the context of fibre
squares (see Section 6.2), for which we have the following crucial result:

Proposition 2.3.1. The cyclic algebra construction Cn preserves fibre squares of
pointed n-rings.

This result will be of significant use in Part II of this thesis.

2.4 The Ext1 functor

By Ext1Λ we mean the collection of short exact sequences of Λ-modules and
Λ-homomorphisms of the form,

E = (0 → E+
i
→ E0

p
→ E− → 0). (2.4.1)

This becomes a category upon introducing the following commutative diagrams as
morphisms

E= (0 −−−→ E+ −−−→ E0 −−−→ E− −−−→ 0)yϕ ϕ+

y ϕ0

y ϕ−

y
F= (0 −−−→ F+ −−−→ F0 −−−→ F− −−−→ 0).
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By Ext1Λ(A, B) we mean the full subcategory of Ext1Λ in which E+ = B and E− = A.
When there is no confusion as to the choice of ring, we omit the suffix and write Ext1

and Ext1(A, B).
Suppose E , F ∈ Ext1(A, B), then we define a congruence to be a morphism

ϕ : E → F that induces the identity at both ends; that is, we have a commutative
diagram

E= (0 −−−→ B −−−→ E0 −−−→ A −−−→ 0)yϕ Id

y ϕ0

y Id

y
F= (0 −−−→ B −−−→ F0 −−−→ A −−−→ 0).

If such a congruence exists, we write ‘E ≡ F ’. It is then a straightforward conse-
quence of the Five Lemma that congruence is an equivalence relation on Ext1(A, B).
We denote the collection of such equivalence classes in Ext1(A, B) under ‘≡’ by
Ext1(A, B).

Observe that Ext1(A, B) is equivalent to a small category, so that Ext1(A, B) is
in fact a set. It is then a well known result that the ‘Baer sum’ induces the structure
of an abelian group on Ext1(A, B). To describe this operation, we first recall some
natural constructions on Ext1(A, B):

� Pushout: Let A, B1, B2 be Λ-modules; if f : B1 → B2 is a Λ-homomorphism

and E = (0 → B1
i
→ E0

η
→ A→ 0) ∈ Ext1(A, B1) we put

f∗(E) = (0 → B2
j
→ lim
−→

(f, i)
ǫ
→ A→ 0),

where lim
−→

(f, i) = (B2⊕E0)/Im(f×−i) denotes the colimit and j is the injection

j : B2 → lim
−→

(f, i), j(x) = [x, 0]. The correspondence E 7→ f∗(E) determines

the covariant ‘pushout’ functor f∗ : Ext
1(A, B1) → Ext1(A, B2). Furthermore,

there is a natural transformation νf : Id → f∗ obtained as follows:

E = (0 −−−→ B1
i

−−−→ E0 −−−→ A −−−→ 0)yνf f

y ν

y Id

y
f∗(E)= (0 −−−→ B2 −−−→ lim

−→
(f, i) −−−→ A −−−→ 0)

where ν : E0 → lim
−→

(f, i) is the mapping ν(x) = [0, x].

� Pullback: Let A1, A2, B be Λ-modules; if f : A1 → A2 is a Λ-homomorphism
and E = (0 → B → E0

η
→ A2 → 0) ∈ Ext1(A2, B) we put

f ∗(E) = (0 → B → lim
←−

(η, f)
ǫ
→ A1 → 0),

where lim
←−

(η, f) = (E0 ×η, f A1) = {(x, y) : η(x) = f(y)} denotes the fi-

bre product and ǫ : lim
←−

(η, f) → A1 is the projection ǫ(x, y) = y. The
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correspondence E 7→ f ∗(E) determines the contravariant ‘pullback’ functor
f∗ : Ext1(A2, B) → Ext1(A1, B). Furthermore, there is a natural transfor-
mation µf : f

∗ → Id defined by:

f ∗(E)= (0 −−−→ B −−−→ lim
←−

(η, f) −−−→ A1 −−−→ 0)
yµf Id

y µ0

y f

y
E = (0 −−−→ B −−−→ E0

η
−−−→ A2 −−−→ 0)

where µ0 : lim
←−

(η, f) → E0 is the projection µ0(x, y) = x.

� Direct product: Let A1, A2, B1, B2 be Λ-modules, and for r = 1, 2, let

Er = (0 → Br → E(r)0 → Ar → 0) ∈ Ext1(Ar, Br).

Then E1 × E2 = (0 → B1 ×B2 → E(1)0 ×E(2)0 → A1 ×A2 → 0) is exact, and
we get a functorial pairing

× : Ext1(A1, B1)× Ext1(A2, B2) → Ext1(A1 ⊕ A2, B1 ⊕ B2).

Now, we define the external sum,

⊕ : Ext1(A, B1)×Ext1(A, B2) → Ext1(A, B1 ⊕B2)

by E1 ⊕ E2 = ∆∗(E1 × E2) where ∆ : A → A× A is the diagonal. Next, the addition
map + : B × B → B can also be regarded as a Λ-homomorphism,

α : B ⊕ B → B, α(b1, b2) = b1 + b2.

By combining the external sum with the pushout, we obtain the ‘Baer sum’. Explic-
itly, let E1, E2 ∈ Ext1(A, B); then the Baer sum E1 + E2 is given by,

E1 + E2 = α∗(E1 ⊕ E2) = α∗∆
∗(E1 × E2).

This gives a functorial pairing

+ : Ext1(A, B)× Ext1(A, B) → Ext1(A, B).

It is a straightforward observation that congruence in Ext1 is compatible with the
Baer sum.

The reader is now directed to Chapter 4 of [22] for proofs of the following:

� (E1 + E2) + E3 ≡ E1 + (E2 + E3);

� E1 + E2 ≡ E2 + E1;

� By T , we denote the trivial extension

T = (0 → B
iB−→ B ⊕ A

πA−→ A→ 0),
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where iB(b) = (b, 0) and πA(b, a) = a. Whenever there exists a congruence
E ≡ T we say that E splits. We then have

E + T ≡ E ≡ T + E .

� If E ∈ Ext1(A, B) is defined as that of (2.4.1) with E+ = B and E− = A, we
denote by −E the extension

−E = (0 → B
i
→ E0

−p
→ A→ 0).

We then have,
E + (−E) ≡ T ≡ (−E) + E .

By the above, Ext1(A, B) is an abelian group with respect to the Baer sum.
We conclude by introducing the derived module category, and discussing a ‘desta-

bilization theorem’ that will allow us to ‘cancel’ excess free modules in our exact
sequences. For any two Λ-modules M, N , we say that a homomorphism f :M → N
factors through a projective module (written f ≈ 0) when there exists a projective
module P , and a pair of homomorphisms η : M → P and ξ : P → N such that
f = ξ ◦ η. Evidently, this is equivalent to f factoring through a free module. We now
define

〈M, N〉 = {f :M → N | f ≈ 0}.

It may be shown that 〈M, N〉 is an additive subgroup ofHomΛ(M, N) in which f ≈ g
if and only if f − g ≈ 0. We now obtain the derived module category Der = Der(Λ),
whose objects are right Λ-modules, and in which, for any two objects M, N , the set
of morphisms HomDer(M, N) is give by

HomDer(M, N) = HomΛ(M, N)/〈M, N〉.

In particular, HomDer(M, N) has the natural structure of an abelian group since
〈M, N〉 is a subgroup of HomΛ(M, N). As a final comment, we highlight the im-
portant result that two objects M, N are isomorphic in the derived module category
M ∼=Der N if and only if M ⊕ P ∼=Λ N ⊕Q, for some projective modules P, Q. For a
more detailed exposition, the reader is directed to Chapter 5 of [22].

Next, we say that a module M is coprojective when Ext1(M, Q) = 0 for any
projective module Q; that is, every such short exact sequence splits. Since the dual
of any short exact sequence of Λ-lattices is another short exact sequence, and since the
dual of a projective module is projective, it follows that any Λ-lattice is coprojective.
We therefore have the following theorem [22] (p. 97):

Proposition 2.4.2 (Johnson’s destabilization theorem). Consider the following exact

sequence of Λ-modules 0 → J ⊕Q0
j
→ Q1 → M → 0 in which Q0, Q1 are projective;

if M is coprojective, then Q1/j(Q0) is projective.

2.5 Free resolutions and syzygies

As before, we let Λ = Z[G] denote the integral group ring for some finite group G.
It is well known that any module M may be written as the quotient of some free
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module; that is, if M is a Λ-module, then we write

M = F0/K0.

As we are only interested in finitely generated modules, we may take F0 to be a
module with a basis indexed by the generators of M . There is then a surjective map
ϕ : F0 → M which sends basis elements to generators. It therefore follows that
M ∼= F0/Ker(ϕ), as required.

Now, write K0 = Ker(ϕ), and observe K0 is a submodule of a finitely generated
module, and hence finitely generated (because Z[G] is Noetherian). It follows that
K0 is itself a quotient K0 = F1/K1 of some free module F1. We may continue this
process to yield a sequence

· · · → F2 → F1 → F0 → M → 0

which is necessarily exact. Furthermore, each Fr is finitely generated by construction.
We call this a free resolution of M . In our case, let

· · ·
∂n+2

→ Fn+1
∂n+1

→ Fn
∂n→ · · ·

∂2→ F1
∂1→ F0

∂0→ Z → 0 (F)

be a resolution of the trivial module Z over Λ such that each Fr is a finitely generated
free module. We define the syzygy modules (Jr)1≤r of F to be the intermediate
modules,

Jr = Im(∂r) = Ker(∂r−1).

This definition allows us to break F up into a collection of short exact sequences,

0 → J1
i1−→ F0

∂0−→ Z → 0 and 0 → Jn
in−→ Fn−1

pn−1

−→ Jn−1 → 0.

It is quite evident that these depend upon the free resolution chosen. For consider
the second short exact sequence above. This may be transformed by the addition of
a free module F ,

0 → Jn ⊕ F
in⊕Id−→ Fn−1 ⊕ F

p′n−1

−→ Jn−1 → 0

where p′n−1 is the obvious composition of pn−1 with the projection Fn−1 ⊕F → Fn−1.
Clearly, Jn ⊕ F is another syzygy related via the free module F . In this sense,
there may be many syzygies which are distinct as Λ-modules. To impose a sense of
uniqueness we consider the stable class of syzygies. The stability relation between
Λ-modules M , M ′ is understood to be the isomorphism M ⊕ Λa ∼=M ′ ⊕ Λb for some
integers a, b ≥ 0. We then say that M and M ′ are stably equivalent and denote this
M ∼ M ′. It is straightforward to show:

Proposition 2.5.1. The relation ‘∼’ is an equivalence on isomorphism classes of
Λ-modules.

We denote the set of isomorphism classes of modules N such that N ∼ M by [M ]
and call this the stable module of M . Given this, the stable syzygy Ωr(Z) is therefore
defined to be the stable class [Jr] of any such Jr.

Proposition 2.5.2. Suppose the following are two free resolutions of the Λ-module
M :

· · ·Fn
δn−→ Fn−1

δn−1

−→ · · ·
δ2−→ F1

δ1−→ F0
δ0−→ M → 0
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· · ·F ′n
δ′n−→ F ′n−1

δ′n−1

−→ · · ·
δ′
2−→ F ′1

δ′
1−→ F ′0

δ′
0−→ M → 0

If Jr = Ker(δr−1) and J
′
r = Ker(δ′r−1) as before, then Jr ∼ J ′r for each r.

To prove this, we use the following well known result:

Proposition 2.5.3 (Schanuel’s Lemma). Suppose we have two short exact sequences
of Λ-modules

0 → K → F →M → 0

and
0 → K ′ → F ′ →M → 0

in which F, F ′ are free (or, indeed, projective); then,

K ⊕ F ′ ∼= K ′ ⊕ F

and hence K ∼ K ′.

Proof of Proposition 2.5.2. Proceed by induction. First, when n = 1 we have the
short exact sequences

0 → J1 → F0 → M → 0

and
0 → J ′1 → F ′0 →M → 0.

By Schanuel’s Lemma, J1 ⊕ F ′0
∼= J ′1 ⊕ F0, i.e. J1 ∼ J ′1.

Now suppose the statement holds for n = r − 1, i.e. for some a, b ≥ 0 we have:

Jr−1 ⊕ Λa ∼= J ′r−1 ⊕ Λb. (2.5.4)

Consider when n = r; we have

0 → Jr → Fr−1 → Jr−1 → 0

and
0 → J ′r → F ′r−1 → J ′r−1 → 0.

By using (2.5.4), and modifying the above exact sequences, we obtain:

0 → Jr → Fr−1 ⊕ Λa → Jr−1 ⊕ Λa → 0

and
0 → J ′r → F ′r−1 ⊕ Λb → Jr−1 ⊕ Λa → 0.

By once more using Schanuel’s Lemma, we obtain the desired isomorphism

Jr ⊕ F ′r−1 ⊕ Λb ∼= J ′r ⊕ Fr−1 ⊕ Λa,

i.e. Jr ∼ J ′r.

Proposition 2.5.2 can therefore be reinterpreted as:

Proposition 2.5.5. The stable syzygy Ωr(Z) is independent of the choice of free
resolution F .
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Proposition 2.5.6. Let Ωr(Z) and Ωs(Z) be stable syzygies of the trivial Λ-module
Z; then

Ωr(Z)⊗ Ωs(Z) = Ωr+s(Z).

Proof. To prove this we first demonstrate:

Ωr(Z)⊗ Ω1(Z) = Ωr+1(Z). (2.5.7)

As the tensor product is associative, we may iterate this process to reach the desired
conclusion. As before, we proceed by induction. For ease of notation, for each r write
Ωr for a representative element of Ωr(Z). Now, consider the case for r = 1,

0 → Ω1 → Λa → Z → 0

for some a ≥ 1. Now apply −⊗ Ω1,

0 → Ω1 ⊗ Ω1 → Λa ⊗ Ω1 → Z⊗ Ω1 → 0

and note that we may write Λa ⊗ Ω1
∼= (Λ⊗ Ω)a. We therefore have

0 → Ω1 ⊗ Ω1 → (Λ⊗ Ω1)
a → Ω1 → 0.

By Corollary 2.1.9 this can be rewritten as

0 → Ω1 ⊗ Ω1 → Λb → Ω1 → 0

for some b ≥ 1. Thus, Ω1 ⊗ Ω1 = Ω2, as required.
Now suppose we have shown the result for r − 1; that is,

Ωr−1 ⊗ Ω1 = Ωr. (2.5.8)

Consider the exact sequence,

0 → Ωr → Λα → Ωr−1 → 0

for some α ≥ 1, and apply −⊗ Ω1 as before

0 → Ωr ⊗ Ω1 → Λα ⊗ Ω1 → Ωr−1 ⊗ Ω1 → 0.

By (2.5.8), Ωr−1⊗Ω1 = Ωr, and by once again identifying Λα⊗Ω1
∼= (Λ⊗Ω1)

α ∼= Λβ

for some β ≥ 1, we have

0 → Ωr ⊗ Ω1 → Λβ → Ωr → 0

and hence Ωr ⊗ Ω1 = Ωr+1. The result now follows by our earlier remark.

Evidently, Proposition 2.5.6 is telling us something about what is going on when
these syzygies interact. However it isn’t telling us much. As such, it will be our aim
in Chapters 3, 4 and 5 to discuss how these syzygies interact outside of the stable
class. In particular, for the metacyclic groups in question, we will demonstrate the
existence of a cyclic group formed within the stable class. The order of this group
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turns out to be related to what we call the periodic cohomology of the group G, which
we now define.

First, for a finite group G we may say, prima facie, that there are two possibilities
within the stable category: either

(i) the stable syzygies (Ωr(Z))r∈Z are isomorphically distinct; or

(ii) Ωr(Z) ∼= Ωs(Z) for some r, s ∈ Z where r 6= s.

As it happens, most finite groups belong to type (i), but there are a number of
important examples belonging to type (ii). Two such examples are the cyclic groups
Cm of order m, and the metacyclic groups G(p, q) of order pq.

The categorisation of finite groups within these two types depends upon the Sy-
low subgroup structure. Specifically, when for each odd prime p the Sylow
p-subgroup is cyclic and the Sylow 2-subgroup is either cyclic or generalized quater-
nion, then G belongs to type (ii). For a classification of all finite soluble groups
satisfying these conditions, the reader is directed to [58], and for finite non-soluble
groups to [53].

Now, we say that n > 0 is a (free) cohomological period of G if Ωr+n(Z) ∼= Ωr(Z)
for all r ∈ Z. We now have the following useful result (see [20], Chapter 7):

Proposition 2.5.9. Whenever G is a finite group of (free) cohomological period
n ∈ N, then the following conditions are equivalent:

F1(n) : Ωr+n(Z) ∼= Ωr(Z) for all r ∈ Z;

F2(n) : Ωr+n(Z) ∼= Ωr(Z) for at least one r ∈ Z\{0};

F3(n) : There exists an exact sequence in F(Λ) of the form

0 → Z → Fn−1 → · · · → F0 → Z → 0

where each Fi is finitely generated and free over Λ.

When the above free modules are merely projective, we say G has cohomological
period n. The two are related as the cohomological period divides the (free) coho-
mological period. So, if the cohomological period of G is n, then its free period is δn
where δ ≥ 1. In particular, δ divides the order of the projective class group K̃0(Z[G]).

Next, note that the cohomological period is necessarily even. Consequently, the
smallest possible non-trivial period is n = 2. This is realised in the case of cyclic
groups. If we describe Cn as, Cn = 〈x | xn = 1〉 then there is a free resolution of
period 2 given by:

0 → Z
ǫ∗
→ Λ

x−1
→ Λ

ǫ
→ Z → 0

where ǫ is the augmentation map, and ǫ∗ is its dual. The converse was also shown to
hold true by Swan (see [55], p. 205); that is, if n = 2 is a cohomological period of G,
then G is necessarily cyclic. We return to this in Chapter 3.

The next case is when n = 4. Unlike the previous case, this does not have a
single type of group associated with this cohomological period. For example, both
D4n+2 and Q(4n) for n ≥ 2 have (free) cohomological period 4 but are clearly not
isomorphic. In Chapter 4, we shall focus our attention on the former. It should be
noted, however, that the order 4n + 2 is necessary, for the dihedral groups of order
4n do not have a finite free cohomological period. For a general metacyclic group
G(p, q) we note this has cohomological period 2q.
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2.6 Stably free modules

We say that a Λ-module S is stably free when it is stably equivalent to the zero
module; that is, when S⊕Λa ∼= F , where a ≥ 1 and F is a free module of unspecified
rank. Trivially, any free module is stably free and an obvious question is when (if
ever) the converse is true. When any stably free Λ-module is necessarily trivial (i.e.
free), we shall say that Λ has stably free cancellation (SFC).

By a theorem of Gabel (see [15]) any stably free module that is not finitely
generated is necessarily trivial. Consequently, the question is now posed as to whether
every finitely generated stably free module is trivial. In general this is not the case.
For instance, in [56] Swan considered the integral group rings of the generalized
quaternions Q(4n), n ≥ 2,

Q(4n) =< x, y | xn = y2, xyx = y > .

Specifically, Swan showed that Z[Q(4n)] admits no nontrivial stably free modules if
and only if n ≤ 5, and at least one nontrivial stably free module exists whenever
n ≥ 6.

Nevertheless, there are still cases of importance where there are no nontrivial
stably frees. In the realm of finite groups, it is a sufficient condition for our group to
satisfy the Eichler condition. To understand this first recall that, by Wedderburn’s
Theorem, we have the following decomposition of the real group ring,

R[G] ∼=

m∏

i=1

Mdi(Di)

where Di
∼= C, R or H, the ring of Hamiltonian quaternions. We say that G satisfies

the Eichler condition when H is not a factor of R[G]. We then have the following
form of a result due to Swan and Jacobinski (see [11], p.324):

Theorem 2.6.1 (Swan-Jacobinski). If G satisfies the Eichler condition, then Z[G]
has SFC.

It should be noted, however, that this is not a necessary condition. Indeed,
consider the following real Wedderburn decomposition of the generalized quaternions,

R[Q(4n)] ∼=

{
R(4) ×M2(R)(n−2)/2 ×H(n/2), n even;

R(2) ×M2(R)(n−1)/2 ×C×H(n−1)/2, n odd.

Clearly, Q(4n) fails to be Eichler, and yet we have already discussed the stably free
modules when n ≤ 5 - they are trivial.

One of our main goals in this thesis will be to understand the syzygies of certain
metacyclic groups. As such, we note the following:

Proposition 2.6.2. D2n satisfies the Eichler condition.

Proof. Make the identification Q[Cn] = Q[x]/(xn − 1), where Cn is the cyclic group
of order n. As an initial observation,

Q[x]/(xn − 1) ∼= Q×Q[x]/(xn−1 + · · ·+ x+ 1).
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To go one step further, we fully factorise xn − 1 into a product of cyclotomic polyno-
mials

xn − 1 =
∏

d|n

cd(x)

and define Q(d) = Q[x]/(cd(x)). As is well known, each cd(x) is an irreducible
polynomial over Q. Hence Q(d) is a field. As such, we have the following rational
Wedderburn decomposition of Cn,

Q[Cn] ∼=
⊕

d|n

Q(d). (2.6.3)

In particular, we observe Cn is necessarily Eichler when considering the group ring
over R.

We now use the cyclic algebraic construction of Section 2.3 to find theWedderburn
decomposition of D2n. Observe that for any n ≥ 3,

Q[D2n] ∼= C2(Q[Cn], θ, 1),

where θ : Q[Cn] → Q[Cn] is the involution on group elements given by θ(g) = g−1.
Under the isomorphism of (2.6.3) this induces an involution γd : Q(d) → Q(d), which
is the identity for d = 1, 2, and complex conjugation otherwise. In the latter instance,
we take a primitive dth-root of unity ζd, and write µd = ζd + ζ̄d. Then the fixed field
of Q(d) under complex conjugation is Q(µd). It is then straightforward to see

C2(Q(d), γd) ∼=

{
Q×Q, d = 1, 2;

M2(Q(µd)), d ≥ 3.

Thus, for any n ≥ 3, we have the following rational Wedderburn decomposition of
D2n,

Q[D2n] ∼=
∏

d|n

C2(Q(d), γd) ∼=

{
Q×Q×

∏
d|n, d≥3M2(Q(µd)), n = 2m+ 1

Q×Q×Q×Q×
∏

d|n, d≥3M2(Q(µd)), n = 2m.

(2.6.4)
The result now follows as evidently no factor in the real decomposition of D2n can be
represented by H.

Corollary 2.6.5. Z[D2n] has SFC.

When considering more general metacyclic groups, we note the following rational
Wedderburn decomposition of G(p, q) = Cp ⋊ Cq,

Q[G(p, q)] ∼= Q[Cq]×Mq(K0)

where K0 = {x ∈ Q(ζp) | θ(x) = x} is the fixed field (and centre) of Cq(Q(ζp), θ)
and ζp = exp(2πi/p). In the interests of succinctness, we omit a proof. The reader
is directed to [41] (see Chapter 4). Once again, it is quite clear that no such factor
can be represented by H when considering the Wedderburn decomposition over R.
As such, we have:
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Proposition 2.6.6. The metacyclic group G(p, q) of order pq satisfies the Eichler
condition. In particular, Z[G(p, q)] has SFC.

2.7 The tree structure of stable syzygies

Consider once more the stable module [M ] of a finitely generated Λ-module M . We
may view this graphically by adopting a strategy first introduced by Dyer and Sier-
adski [13]. Here, the stable module can be expressed as a ‘tree with roots’ where each
vertex is the isomorphism class of a module N ∈ [M ], and where we draw an arrow
N1 → N2 when N2

∼= N1 ⊕ Λ. Each module N has a unique arrow exiting the vertex
given by N → N ⊕Λ. Consequently, the only way a nontrivial loop in [M ] can occur
is if N ∼= N ⊕ Λa for some a > 0, a possibility precluded by supposing our ring Λ
has what we call the surjective rank property (see [22], p. 7). Here, we suppose that
for any surjective Λ-homomorphism ϕ : ΛN → Λn we necessarily have n ≤ N . Note
that this is sometimes referred to in the literature as requiring that Λ has unbounded
generating number. While trivial for a finite group, we note that this property is also
present in the infinite groups of Part II of this thesis. We note the following chain of
implications (see [7]):

WF ⇒ SR ⇒ IBN,

where the above are as explained at the beginning of this chapter. In particular,
as integral group rings are weakly finite, they therefore have the SR property, as
required.

These finiteness conditions are also of use in the context of a well-defined rank
for stably free modules. Suppose S is some finitely generated stably free Λ-module,
i.e. S ⊕ Λa ∼= Λb for some integers a, b ≥ 1. For any weakly finite ring we have a
well-defined positive rank for stably free modules. We write this as rk(S) = b− a.

Given the above we now portray a stable module [M ] as a ‘tree with roots’. The
key observation here is that this tree does not extend infinitely downwards. In other
words, we can define a minimal module M0 to be a module that does not contain a
summand isomorphic to Λ. Graphically, these minimal modules are the roots of our
tree. Whenever G is finite, there are three types of tree structure for [M ]:
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Here, A can represent the stable class of [0] when Λ = Z[Q(24)], where Q(24) denotes
the quaternion group of order 24. The second tree, denoted by B, can represent the
stable class Ω3(Z) over Z[Q(32)], the integral group ring of the quaternion group of
order 32. Finally, C can represent the stable class Ω3(Z) over Z[D4n+2], the integral
group ring of the dihedral groups of order 4n+ 2.

In particular, those stable modules whose tree structure is that of C share a
common property. We say that a Λ-latticeM has the cancellation property when, for
any Λ-lattice N such that rkZ(M) ≤ rkZ(N), we have

N ⊕ Λa ∼=M ⊕ Λb ⇒ N ∼=M ⊕ Λb−a.

Consequently, we say that the stable module [M ] has the strong cancellation prop-
erty if every N ∈ [M ] has the cancellation property. We then have the following
relationship with the above tree structures (see [20], Chapter 3):

Proposition 2.7.1. Let M be a finitely generated Λ-lattice; then the stable module
[M ] has the strong cancellation property if and only if [M ] is straight.

We have already seen a special case of the cancellation property; namely, SFC.
In relation to this, we have discussed the Eichler condition and its role in the Swan-
Jacobinski Theorem. However, it should also be noted that this theorem says decid-
edly more than we previously stated. For a Λ-lattice M , we write MR = M ⊗ R.
Such a lattice is said to be Eichler if the endomorphism ring EndΛR

(MR) has no
simple Hamiltonian factor, H. In particular, when Λ satisfies the Eichler condition,
any Λ-lattice M is Eichler. We then have the following form of Swan-Jacobinski:

Theorem 2.7.2 (Swan-Jacobinski). Let M be an Eichler lattice over Λ such that
M ∼= M0 ⊕ Λ for some module M0; then M has the cancellation property.

Now, we say that a module M satisfies the weak cancellation property whenever
M ⊕ Λ satisfies the cancellation property. In light of this, we may view the above
form of Swan-Jacobinski as saying any Λ-lattice has the weak cancellation property
if Λ is Eichler. The reader is directed to Chapter 3 of [20] for more details.

Next, we define a fork to mean a tree structure with a finite number of ‘roots’ at
the minimal level, and no branching above level 1. Thus, a fork structure looks like
either B or (trivially) C. In particular, if M has the weak cancellation property, then
it necessarily has the structure of a fork. Relating this to the syzygies from earlier,
we note that any odd stable syzygy necessarily has a fork structure [20]; that is:

Proposition 2.7.3. For each n ≥ 0, Ω2n+1(Z) is a fork.

This result is of particular interest in the context of theR(2)−D(2) problem. Less
important in this context are the even syzygies. Nevertheless, Johnson demonstrated
in [20] that there is one other possibility for such syzygies; namely, what we call a
crow’s foot. This is a tree structure in which there is just one module at the minimal
level and a finite number of at least one at level 1. There is no branching at level 2
or above. Such trees look like either A or (trivially) C.

When considering what our syzygies look like, we have the following useful result
[20]:

Proposition 2.7.4. Let G be a finite group such that Z[G] has SFC; then the aug-
mentation ideal I(G) is the unique minimal representative of Ω1(Z). In particular,
Ω1(Z) is straight.
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Furthermore, duality M 7→ M∗ induces a 1− 1 correspondence Ω1(Z) ↔ Ω−1(Z). In
other words, we have the following corollary:

Corollary 2.7.5. Let G be a finite group such that Z[G] has SFC; then (I(G))∗ is
the unique minimal representative of Ω−1(Z), i.e. Ω−1(Z) is straight.

The situation for even syzygies is decidedly more complicated. Nevertheless, we do
have the following result (see [20], Proposition 29.5, p. 122):

Proposition 2.7.6. Let M0 be a minimal representative of Ω2n(Z), where Z is the
trivial Λ-module. If Λ satisfies the Eichler condition, there are two possibilities:

(i) if rkZ(M0) > 1, then Ω2n(Z) is a fork; or

(ii) if M0
∼= Z, then Ω2n(Z) is straight.

2.8 Indecomposable modules

As we shall see in Chapter 4, we have the unusual result that the stable class of an
indecomposable module (in our case Z) decomposes nontrivially. As pointed out by
Johnson in [24], this paradoxical nature of stable modules seems to have been first
discussed in a paper by Gruenberg and Roggenkamp [17] (although they attribute the
original observation to E.C. Dade). As we are primarily concerned with metacyclic
groups, we find that we can still say something about the cancellation of the compo-
nent parts. Whereas we shall leave the specifics to the relevant chapters, we note the
role of indecomposable modules in the cancellation of some of the constituent parts.
For now, it will be sufficient to state the classification of indecomposable modules
over Z[G(p, q)] due to Pu [39]. Of particular use will be the quasi-triangular subring
Tq(A, π) ofMq(A), as defined in the previous chapter (see also Example 6.2.12). This
decomposes as a direct sum of right ideals

Tq(A, π) ∼= R(1)⊕ · · · ⊕ R(q)

in which R(i) is the ith row of Tq(A, π).

Next, recall the reduced projective class group K̃0(Λ) which is constructed as
follows. Let P(Λ) denote the set of isomorphism classes of finitely generated projective
Λ-modules. This becomes an abelian monoid under direct sum, [P ] + [Q] = [P ⊕Q].
The Grothendieck group K0(Λ) is then the universal abelian group obtained from
P(Λ). We now define the reduced Grothendieck group (or reduced projective class

group) to be the quotient K̃0(Λ) = K0(Λ)/[Λ], in which [Λ] is the subgroup generated
by the class of Λ. In the context of free resolutions, we may ignore the indecomposable
modules not arising from the identity element in K̃0(Λ) (see [16]). We now have the
following special case of Pu:

Proposition 2.8.1. Let p, q be prime numbers such that q|p− 1. There are a total
of 2 + q + 2q−1 + 2q distinct non-isomorphic genera3 of indecomposable modules for
Λ = Z[Cp ⋊ Cq].

3Here, we adopt the usual convention of saying two Λ-lattices M, N belong to the same genus if
they are isomorphic when localised at (p) for any prime p, i.e. M(p)

∼= N(p).
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In the manner of [41], we list the indecomposable modules as follows:

I. There are three indecomposable modules over Z[Cq] that become modules over
Λ via the quotient map G(p, q) → Cq:

(i) The trivial module (rank 1);

(ii) The augmentation ideal, IQ = Ker(Z[Cq] → Z) (rank q − 1);

(iii) The group ring itself Z[Cq] (rank q).

II. There are q distinct indecomposable modules over Cq(Z[ζp], θ) ∼= Tq(A, π) of
rank p− 1:

(iv) R(i) ∼= (ζp − 1)eZ[ζp], where 0 ≤ e ≤ q − 1 and R(0) = R(q).

These are distinct Λ-modules via the twisting relation yζrp = ζ
θ∗(r)
p y.

We may think of the above as the ‘basic’ indecomposable modules. The remaining
genera of indecomposable modules then arise in the form of non-split extensions

0 → X →? → Y → 0

where X is the direct sum of possible combinations (without repeat) of R(i), and
Y = Z, IQ or Z[Cq]. The proof of this can be found in [10], [39] and, in the form of
a specific case, in [41].

III. There is one extension when Y = Z:

(v) 0 → R(1) → Λ̄0 → Z → 0 (rank p).

IV. There are 2q−1 indecomposable non-split extensions when Y = IQ.
As Ext1Λ(IQ, R(1)) = 0, such extensions cannot contain R(1). Consequently,
there are a total of q − 1 indecomposable modules in X . Let k1 denote the
number of distinct type II modules combined in X that is contained in an
extension with IQ. There exist:

(vi)
∑q−1

k1=1

(
q−1
k1

)
extensions of the form 0 → X → Vc → IQ → 0 where

1 ≤ c ≤ 2q−1 − 1. In particular, we note rkZ(Vc) = (p− 1)k1 + (q − 1).

V. There are 2q−1 indecomposable non-split extensions for Y = Z[Cq]. Here there
are no split extensions, and so there are a total of q indecomposable modules in
X . Let k2 denote the number of distinct type II modules combined in X that
is contained in an extension with Z[Cq]. Then there exist:

(vii)
∑q

k2=1

(
q
k2

)
extensions of the form 0 → X → Yd → Z[Cq] → 0 where

1 ≤ d ≤ 2q − 1. In particular, rkZ(Yd) = (p− 1)k2 + q.

Any other indecomposable modules belong to the non-trivial elements of K̃0(Λ)
and are therefore of no consequence in the context of free resolutions. As we shall see,
the importance of the above list is that it tells us that there are a limited number of
Z-ranks that an indecomposable module can be in any given group ring Z[G(p, q)].
This fact will allow us to deduce some properties of the tree structures of syzygies.
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As a final comment, consider the stable class [R(i)] of R(i) (considered as a
Z[G(p, q)]-module). We have the following result:

For each i ∈ {1, . . . , q} the stable class [R(i)] is straight. (2.8.2)

A proof of this can (essentially) be found in Chapter 6 of [41] using [39]. However,
the proof of this is far from clear and so we provide an alternative proof that was
shown to the author by Prof. F. E. A. Johnson. The downside of this approach is
that it will rely upon several ideas and results introduced in Part II of this thesis. As
these ideas will not be directly required elsewhere in Part I, we will postpone a proof
of this until Section 6.8.



Chapter 3

The syzygies of Z[Cn]

As we observed in the previous chapter, the smallest possible non-trivial cohomolog-
ical period (k = 2) is realized in the case of cyclic groups. If we describe the cyclic
group of order n as Cn = 〈x | xn = 1〉 then there is a free resolution of period 2 given
by:

0 → Z
ǫ∗
→ Λ

x−1
→ Λ

ǫ
→ Z → 0

where ǫ is the augmentation map, and ǫ∗ is its dual. Throughout this chapter we
denote the integral group ring of Cn by Λ = Z[Cn] and the augmentation ideal as
I = ker(ǫ). We can now read off the syzygies from the above free resolution:

Ωr(Z) =

{
Z, r ≡ 0(mod 2);

I, r ≡ 1(mod 2).

In Proposition 2.5.6, we saw Ω1(Z)⊗Ω1(Z) = Ω2(Z) allowing us to form a cyclic
group of order 2, generated by I. In this chapter we will explicitly examine I ⊗ I to
better understand what is happening. In particular, this will give us a description
that will be of fundamental use in Chapters 4 and 5. It is useful to bear in mind that,
as we are tensoring over Z, tensoring with Z acts like the identity. We therefore have
the following table:

⊗ Z I

Z Z I
I I ??

3.1 The isomorphism I ⊗ I ∼= Z⊕ free

The ultimate aim will be to show

I ⊗ I ∼= Z⊕ Λn−2. (3.1.1)

However, we stress that it is the precise description of this isomorphism that will be
the main result of this chapter. Now, to justify the n − 2, first recall that I can be
written as

I = spanZ{x− 1, x2 − 1, . . . , xn−1 − 1},

and in particular rkZ(I) = n − 1. Since rkZ(Λ) = n, we deduce that we necessarily
have n−2 copies of Λ. Proving this result will take up the remainder of this chapter.

36
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To start, consider the standard exact sequence,

0 → I
i
→ Λ

ǫ
→ Z → 0

and dualise1,

0 → Z
ǫ∗
→ Λ

i∗
→ I∗ → 0

where ǫ∗(1) = Σ =
∑n−1

r=0 x
r is central. Therefore, Im(ǫ∗) is the two-sided ideal of

Λ, generated by Σ. Consequently, I∗ ∼= Λ/(Σ) is naturally a ring. Moreover, when
n = p, prime, we can think of I∗ as the cyclotomic ring Z[ζp]. Next, we put νr = i∗(xr)
where ν0 = 1, and observe that we can write νr = (ν1)

r = νr. If we think of I∗ as a Λ-
module, then I∗ has a Z-basis {1, ν, ν2, . . . , νn−2}, where νn−1 = −1− ν−· · ·− νn−2

and the action of x is to multiply by ν.
It may also be useful to recall Proposition 2.2.4 in which we observed I ∼= I∗.

Nevertheless, with the next two chapters in mind, it will be beneficial to distinguish
between them.

Now, if n = 2 then (3.1.1) is immediate. We therefore let n ≥ 3 and define the
following for 1 ≤ r ≤ n− 2:

V (r) = spanZ{ν
r+k ⊗ νk | 0 ≤ k ≤ n− 1} ⊂ I∗ ⊗ I∗.

Proposition 3.1.2. For each 1 ≤ r ≤ n− 2, we have V (r) ∼= Λ.

Proof. We will prove the map fr : Λ → V (r) which sends xk 7→ νr+k ⊗ νk is an
isomorphism. This map is clearly surjective by the definition of V (r). To prove that
it is injective, we need to show that the defining set of V (r) is linearly independent.

To start, observe that νn = 1 and consider,

λ1(ν
r ⊗ 1) + λ2(ν

r+1 ⊗ ν) + · · ·+ λn−1(ν
r+n−2 ⊗ νn−2) + λn(ν

r−1 ⊗ νn−1) = 0.

To show linear independence, we will utilise the fact that {νi ⊗ νj | 0 ≤ i, j ≤ n− 2}
is a Z-basis of I∗ ⊗ I∗, i.e. we need to rewrite every term of the form − ⊗ νn−1 or
νn−1⊗−. To do so, we use νn−1 = −1− ν−· · ·− νn−2, and rewrite the above sum as

(λ1ν
r − λnν

r−1)⊗ 1 + (λ2ν
r+1 − λnν

r−1)⊗ ν+ · · ·+ (λn−2ν
r+n−3 − λnν

r−1)⊗ νn−3 +

+(λn−1ν
r+n−2 − λnν

r−1)⊗ νn−2 = 0.

If this sum equals zero, then it follows from the linear independence of
{νi ⊗ νj | 0 ≤ i, j ≤ n− 2} that each term −⊗ νj = 0. Start with those terms of the
form − ⊗ 1, and observe λ1ν

r − λnν
r−1 = 0 if and only if λ1 = λn = 0. The above

can now be rewritten a final time as

λ2ν
r+1 ⊗ ν + · · ·+ λn−2ν

r+n−3 ⊗ νn−3 + λn−1ν
r+n−2 ⊗ νn−2 = 0. (3.1.3)

It is now clear that λ1 = λ2 = · · · = λn−1 = λn = 0. If we are to be strictly
formal, then we should note that νn−1 can appear on the left hand side of the a term
of the form −⊗ νj for some 1 ≤ j ≤ n− 2. However, even in this case, this will not

1The reader is reminded i∗ can either refer to the dualisation of i, or to the restriction of scalars
induced from i. While not ideal, it should be clear from the context which we mean. For this
chapter, we will always mean the dualisation of i.
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change that fact that each λi = 0. For suppose λiν
r+i−1 ⊗ νi−1 = λiν

n−1 ⊗ νi−1. For
the sum of (3.1.3) to be zero, each term of the form −⊗ νj = 0. In particular,

λi(−1− ν − · · · − νn−2)⊗ νi−1 = 0.

However, by again utilising the linear independence of {νi ⊗ νj | 0 ≤ i, j ≤ n− 2} it
then follows that each −λiν

k ⊗ νi−1 = 0 and so λi = 0.
As explained above, we can now define the map fr : Λ → V (r) by xk 7→ νr+k⊗νk,

for 0 ≤ k ≤ n − 1. This is clearly a Λ-homomorphism that maps basis elements to
basis elements.

Proposition 3.1.4. For any 1 ≤ r ≤ n− 2,

V (r) ∩ (V (1) + · · ·+ V (r − 1) + V (r + 1) + · · ·+ V (n− 2)) = {0}.

Proof. Suppose vr ∈ V (r)∩ (V (1) + · · ·+ V (r− 1) + V (r+ 1) + · · ·+ V (n− 2)). We
can write this as

n∑

i=1

µr, iν
r+i−1 ⊗ νi−1 =

n−2∑

j=1, j 6=r

(
n∑

k=1

ηj, kν
j+k−1 ⊗ νk−1

)
.

This can be rewritten as

n−2∑

i=1

(
n∑

j=1

λi, jν
i+j−1 ⊗ νj−1

)
= 0

where λi, j = ηi, j if i 6= r and λr, j = −µr, j. By replacing νn−1 with
∑n−2

l=0 ν
l, we have

n−2∑

i=1

(
n−1∑

j=1

λi, jν
i+j−1 − λi, nν

i+n−1 ⊗ νj−1

)
= 0 (3.1.5)

We first show λi, n = 0 for each i ∈ {1, . . . , n− 2}. Begin by setting j = 1. Write

n−2∑

i=1

(λi, 1ν
i − λi, nν

i+n−1)⊗ 1 = 0

and observe n ≤ i+n− 1 ≤ 2n− 3, i.e. νi+n−1 = νi−1 varies between 1 and νn−3. As
νi varies between ν and νn−2 we end up with

(−λ1, n + (other terms not including 1))⊗ 1 = 0.

Thus, λ1, n = 0.
Next, let T (k) be the statement,

T (k) : λk, n = 0.
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Note that we have already shown T (1) is true, and suppose T (k) is true for some
k ∈ {1, . . . , n− 3}. If we set j = k + 1, we have

n−2∑

i=1

(λi, k+1ν
i+k − λi, nν

i−1)⊗ νk = 0.

First observe i + k ≡ n − 1 (mod n) if and only if i ≡ n − (k + 1) (mod n). We
therefore have the term λn−k−1, k+1ν

n−1. Before we replace this term, we make two
observations. First, i+k 6≡ k−1(modn) for any i ∈ {1, . . . , n−2}. Secondly, observe
i − 1 ≡ k − 1 (mod n) if and only if i = k. Thus, the term λk, nν

k−1 vanishes by the
inductive assumption. So, when we replace λn−k−1, k+1ν

n−1 by −λn−k−1, k+1

∑n−2
l=0 ν

l

we end up with

(−λn−k−1, k+1ν
k−1 + (other terms not including νk−1))⊗ νk = 0.

By the linear independence of {νi⊗νj |0 ≤ i, j ≤ n−2} we conclude λn−k−1, k+1 = 0.
When i = k+1 we have the term λk+1, k+1ν

2k+1−λk+1, nν
k. As νi+k 6≡ νk (modn)

for any i ∈ {1, . . . , n− 2}, we have

(−(λn−k−1, k+1 + λk+1, n)ν
k + (other terms not including νk))⊗ νk = 0

and so
(−λk+1, nν

k + (other terms not including νk))⊗ νk = 0.

Thus, λk+1, n = 0, as required. We have therefore shown T (k) ⇒ T (k + 1) and so
T (k) is true for each k ∈ {1, . . . , n− 2}. We can therefore rewrite (3.1.5) as

n−2∑

i=1

(
n−1∑

j=1

λi, jν
i+j−1 ⊗ νj−1

)
= 0. (3.1.6)

By the linear independence of {νi ⊗ νj | 0 ≤ i, j ≤ n − 2} we conclude that for
each j ∈ {1, . . . , n− 1} we have

∑n−2
i=1 λi, jν

i+j−1 ⊗ νj−1 = 0. So we need only worry
about the left hand side of each − ⊗ νj−1. If i + j − 1 6≡ n − 1 (mod n) for any
i ∈ {1, . . . , n− 2}, then we have a sum of linearly independent terms, and therefore
conclude each λi, j = 0 for 1 ≤ i ≤ n− 2.

Alternatively, suppose i+ j− 1 ≡ n− 1 (modn) for i ≡ n− j (modn). As i varies
over n− 2 terms, we note there will be an ‘extra’ two terms when we replace νn−1 by
−
∑n−2

l=0 ν
l. For notational simplicity, say these two terms are νa and νb. We then get

−λn−j, jν
a⊗ νj−1 −λn−j, jν

b⊗ νj−1+(other terms not including νa or νb)⊗ νj−1 = 0.

As these terms are all linearly independent, it follows that λn−j, j = 0. We can
therefore rewrite

∑n−2
i=1 λi, jν

i+j−1 ⊗ νj−1 as

n−j−1∑

i=1

λi, jν
i+j−1 ⊗ νj−1 +

n−2∑

i=n−j+1

λi, jν
i+j−1 ⊗ νj−1 = 0.

These terms are all linearly independent and so λi, j = 0 for each i ∈ {1, . . . , n−2}.
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We therefore set V = V (1)⊕· · ·⊕V (n− 2) and observe that rkZ(V ) = n(n− 2).
Thus, rkZ((I

∗ ⊗ I∗)/V ) = 1. So, by considering the underlying abelian group of
(I∗ ⊗ I∗)/V , we apply the fundamental theorem of finitely generated abelian groups
to see that this is isomorphic to

Z⊕ (finite abelian).

Proposition 3.1.7. (I∗ ⊗ I∗)/V is torsion free.

Proof. Begin by expressing the basis elements of I∗ ⊗ I∗ as:

1⊗ 1, 1⊗ ν, · · · 1⊗ νn−3, 1⊗ νn−2,
ν ⊗ 1, ν ⊗ ν, · · · ν ⊗ νn−3, ν ⊗ νn−2,
...

...
. . .

...
...

νn−3 ⊗ 1, νn−3 ⊗ ν, · · · νn−3 ⊗ νn−3, νn−3 ⊗ νn−2,
νn−2 ⊗ 1, νn−2 ⊗ ν, · · · νn−2 ⊗ νn−3, νn−2 ⊗ νn−2.

Observe that 1⊗νn−1 = −1⊗(1+ν+· · ·+νn−2) and νn−1⊗ν = −(1+ν+· · ·+νn−2)⊗ν.
Thus, in the above basis of I∗ ⊗ I∗, we can replace 1⊗ 1 and 1⊗ ν by 1 ⊗ νn−1 and
νn−1⊗ ν, respectively. This can be repeated for each ‘row’ (except for the last ‘row’),
where we replace νi ⊗ νi and νi ⊗ νi+1 by νi ⊗ νn−1 and νn−1 ⊗ νi+1, respectively
(0 ≤ i ≤ n − 3). Thus, by performing elementary basis transformations, the above
basis for I∗ ⊗ I∗ can be replaced by the basis

{νr+k ⊗ νk | 1 ≤ r ≤ n− 2, 0 ≤ k ≤ n− 1} ∪ {νn−2 ⊗ νn−2}.

It therefore follows from Proposition 2.2.7 that (I∗ ⊗ I∗)/V is the rank 1 lattice
generated by ♮(νn−2⊗νn−2), where ♮ : I∗⊗I∗ → (I∗⊗I∗)/V is the natural surjection.
Furthermore, as Z is the only rank 1 lattice over Λ, we observe (I∗⊗ I∗)/V ∼= Z.

Continuing on from the above proof, we can perform further basis transformations
(see Proposition 4.5.11), and replace νn−2 ⊗ νn−2 by T , where

T = 1⊗ 1 + 1⊗ ν + 1⊗ ν2 + · · · + 1⊗ νn−2

+ ν ⊗ ν + ν ⊗ ν2 + · · · + ν ⊗ νn−2

+ ν2 ⊗ ν2 + · · · + ν2 ⊗ νn−2

. . .
...

+ νn−2 ⊗ νn−2.

So (I∗ ⊗ I∗)/V is generated by ♮(T ). As will become apparent in later chapters, this
provides us with a more suitable description of the rank 1 lattice isomorphic to Z.
Alternatively, we note

Tx = ν ⊗ ν + ν ⊗ ν2 + ν ⊗ ν3 + · · · + ν ⊗ νn−2 + ν ⊗ νn−1

+ ν2 ⊗ ν2 + ν2 ⊗ ν3 + · · · + ν2 ⊗ νn−2 + ν2 ⊗ νn−1

+ ν3 ⊗ ν3 + · · · + ν3 ⊗ νn−2 + ν3 ⊗ νn−1

. . .
...

+ νn−2 ⊗ νn−2 + νn−2 ⊗ νn−1

+ νn−1 ⊗ νn−1.
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Evidently, Tx = T − 1 ⊗ [1 + · · · + νn−2] + [ν + · · · νn−1] ⊗ νn−1. Consider the last
‘column’ of Tx. This may be rewritten as

(ν + ν2 + · · ·+ νn−1)⊗ νn−1 = −1⊗ νn−1 = 1⊗ 1 + 1⊗ ν + · · ·+ 1⊗ νn−2.

Substituting back into Tx therefore shows Tx = T . Furthermore, it is clear that
T ∈ I∗ ⊗ I∗ but T /∈ V . For notational convenience, we shall adopt the slight abuse
of notation by writing T for the monogenic module of rank 1. As the need arises,
we shall often switch between using T to denote the element defined above and the
monogenic module of rank 1. It should always be clear from the context which we
mean. Now, observe T ∩V = {0}. Consequently, I∗⊗I∗ ∼=Z T ⊕V is an isomorphism
over Z. Hence (I∗ ⊗ I∗)/V ∼=Z T is an isomorphism over Z. As (I∗ ⊗ I∗)/V is
isomorphic to Z, we know x acts trivially on both (I∗⊗ I∗)/V and T . Thus, we have
shown (I∗ ⊗ I∗)/V ∼= T is an isomorphism over Λ.

In particular, the above arguments have shown the existence of the following short
exact sequence,

0 → V → I∗ ⊗ I∗ → T → 0. (3.1.8)

Recall the dual of a short exact sequence of Λ-lattices is another short exact sequence.
By the self-duality of V ∼= Λn−2 and T ∼= Z, we end up with the exact sequence

0 → Z → I ⊗ I → Λn−2 → 0

which splits. We therefore arrive at the desired isomorphism:

Theorem 3.1.9. I ⊗ I ∼= T ⊕ V ∼= Z⊕ Λn−2.



Chapter 4

The syzygies of Z[D4n+2]

Throughout this chapter we set G = D2p, the dihedral group of order 2p, p prime.
We will find it useful to write p = 2n+1. We then have the following description for
G,

D4n+2 =< x, y | x2n+1 = y2 = 1, yx = x2ny > .

As we shall see, many of our calculations will not overtly require 2n+ 1 to be prime.
Rather, the necessity of this is to ensure our syzygies do not get ‘too big’, and to
ensure our modules of interest are indecomposable (by using results such as those
of Pu’s paper outlined in Section 2.8). This does raise the question of whether the
results of this chapter may be extended to non-prime integers p. However, these
considerations will not be discussed in this thesis and throughout this chapter p will
always be a prime number that can be expressed as p = 2n+ 1.

Hereafter, we denote the integral group ring of G by Λ = Z[D2p], and the integral
group ring of Cp by Λ0 = Z[Cp]. Associated to Λ0 is the canonical injection i : Λ0 →֒ Λ.
Similarly, we have the canonical injection j : Z[C2] →֒ Λ. Recall that by [α) we mean
the right ideal generated by α; that is [α) = {αλ | λ ∈ Λ}. In particular, any ideal in
Λ is a Λ-lattice, i.e. a Λ-module whose underlying abelian group is finitely generated
and free. When considering the stable class of the right ideal [α), we will write this
simply as [α].

As already noted in Section 2.5, Λ has cohomological period four. Consequently,
the trivial module Z has a projective resolution of period 4 over Λ; that is, there
exists an exact sequence of Λ modules of the form

0 → Z → P3 → P2 → P1 → P0 → Z → 0

in which each Pi is a finitely generated projective Λ-module. We are interested in the
case where each Pi is finitely generated free.

By a diagonalised free resolution over Λ we mean an exact sequence of Λ-modules
of the form

· · · → Fm
∂m→ Fm−1

∂m−1

→ · · · → F1
∂1→ F0 → Z → 0 (4.0.1)

in which F0
∼= Λ and for each i ≥ 1, Fi is a free Λ-module of rank 2, i.e. Fi ∼= Λ2 for

i ≥ 1. Moreover, for each i ≥ 2 the differential ∂i has the diagonal form

∂i =

(
∂+i 0
0 ∂−i

)
.

42



Chapter 4. The syzygies of Z[D4n+2] 43

As a starting point to constructing such resolutions, we first note that the aug-
mentation ideal IG ofG decomposes as the direct sum of two indecomposable modules.
First, let M be a Λ0-lattice. We transform M into a module over Λ via a Galois ac-
tion. To do so first define a Galois structure on M to be an additive automorphism
Θ : M → M such that Θ2 = IdM and Θ(m · x) = Θ(m) · θ(x) for all m ∈ M where
θ is our chosen automorphism of Cp (in this case θ(x) = x−1). A Galois lattice shall
then mean a pair (M, Θ) where M is a lattice over Λ0 and Θ is a Galois structure on
M . We then make a Galois lattice (M, Θ) into a (right) Λ-lattice via the action,

m · xa = mxa;

m · y = Θ−1(m), (Θ(m) = my−1 = my).

If J ⊂ Λ0 is ideal such that θ(J) = J , then we put J̄ = (J, ΘJ) where ΘJ is simply
the restriction of θ to J . With this notation, we have the following decomposition of
the augmentation ideal IG,

IG ∼= ĪC ⊕ [y − 1). (4.0.2)

For a proof of this the reader is directed to [17], [24] or [25]. In the interest of clarity,
we provide a proof in the case of G = D2p below (Proposition 4.1.13).

Consider now the y-strand (or lower strand) of our desired diagonal resolution (as
explained in Section 1.1). The standard resolution of the trivial Z[C2]-module was
seen in the previous chapter to have the form,

0 → Z
ǫ∗
→ Z[C2]

y−1
→ Z[C2]

ǫ
→ Z → 0.

Here, ǫ is the usual augmentation map, and ǫ∗ its dual. In a natural way we can then
induce the following diagonal resolution of period two

· · ·
Σy

→ Λ
y−1
→ Λ

Σy

→ Λ
y−1
→ Λ

Σy

→ Λ
y−1
→ Λ

Σy

→ Λ
y−1
→ · · · (4.0.3)

where ǫ∗(1) = Σy = y + 1.
The x-strand (or upper strand), however, is decidedly more complex and a lot

more work is required. First, observe that the cyclic algebra C2(I
∗
C , θ) is another

description of the induced module i∗(I
∗
C). However, we have already observed that

C2(I
∗
C , θ)

∼= T2(A, π) by an explicit form of Rosen’s Theorem (see also [24]). We
therefore have

i∗(IC) ∼= R(1)⊕R(2).

It is quite clear that each R(i) is monogenic by composing the obvious projections
Λ ։ i∗(IC) and i∗(IC) ։ R(i) to give p(i) : Λ ։ R(i) for i = 1, 2. We define
K(i) = Ker(p(i)) and, using the calculations of Johnson in [24], there is an exact
sequence:

0 R(1) Λ Λ Λ Λ R(1) 0

K(2) K(1)

R(2)
(4.0.4)
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In fact, the above exact sequence (4.0.4) can be suitably modified to form a
periodic exact sequence that extends infinitely in both directions and repeats with
period four

· · · → Λ
∂+
0−→ Λ

∂+
3−→ Λ

∂+
2−→ Λ

∂+
1−→ Λ

∂+
0−→ · · ·

in which we give the ∂+i below. By ‘entwining’ this with the sequence of (4.0.3), we
therefore yield another exact sequence, again repeating with period four and again
extending infinitely in both directions:

· · · Λ⊕ Λ Λ⊕ Λ Λ⊕ Λ Λ⊕ Λ Λ⊕ Λ Λ⊕ Λ · · ·

(
∂+0 0
0 y + 1

) (
∂+3 0
0 y − 1

) (
∂+2 0
0 y + 1

) (
∂+1 0
0 y − 1

) (
∂+0 0
0 y + 1

)

This may now be suitably truncated to form the following diagonal resolution of
period four;

0 Z Λ Λ⊕ Λ Λ⊕ Λ Λ Z 0.
ǫ∗

(
∂+3
y − 1

) (
∂+2 0
0 y + 1

) (
∂+1 , y − 1

)
ǫ

(4.0.5)

The above was explicitly constructed by utilizing the following descriptions for R(1),
R(2), K(1) and K(2):

K(2) = K ∼= [Σx, y − 1) ∼= [(1− y)θ + Σxy), (4.0.6)

R(1) = P ∼= [(xn − 1)(y − 1)), (4.0.7)

K(1) = L ∼= [Σx, y + 1) ∼= [(1 + y)θ − Σxy), (4.0.8)

R(2) = R ∼= [(xn − xn+1)(y + 1)) = [(y − 1)(xn+1 − xn) = [(y − 1)(x− 1)), (4.0.9)

where Σx = 1 + x+ · · ·+ x2n and θ = 1 + x+ · · ·+ xn−1. In the notation of (4.0.5),
we have:

∂+0 = (1− y)θ + Σx · y;

∂+1 = (xn − 1)(y − 1);

∂+2 = (1 + y)θ − Σx · y;

∂+3 = (xn − xn+1)(y + 1).

For the remainder of this chapter we adopt Johnson’s notation [24] of K, L, P and
R as above.

An obvious benefit of the above diagonal resolution is that one can now simply
read off the syzygies as follows:

Ωr(Z) ∼





[K]⊕ [y + 1], r ≡ 0 mod 4;

[P ]⊕ [y − 1], r ≡ 1 mod 4;

[L]⊕ [y + 1], r ≡ 2 mod 4;

[R]⊕ [y − 1], r ≡ 4 mod 4.

In this sense, P is a representative element of part of the first syzygy. We aim to
explicitly show there is a relationship between P and a representative element of part
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of the second syzygy, namely L. Likewise, we show there is a relationship between P
and R, representing part of the third syzygy. Finally we show there is a relationship
between P and K, representing part of the fourth syzygy (= zeroth syzygy). In
particular, we shall show that there is a group structure of order four within the
stable class, generated by P with identity K. We therefore restate Theorems A and
B in this form for clarity:

Theorem A: With K defined as above, K⊗ ? ∼= ?⊕ Λr, for some r ≥ 0 and where
? = K, P, L or R.

Theorem B: With, K, P, L, R as defined above, we have the following relations:

1. P ⊗ P ∼= L⊕ Λn−1;

2. P ⊗ L ∼= R⊕ Λn;

3. P ⊗ R ∼= K ⊕ Λn−1.

It may be instructive to briefly outline the structure of this chapter. In Sections
4.1 and 4.3, we outline the necessary results of [24] regarding the modules P, R, K, L.
In addition, Section 4.3 will also discuss the indecomposable nature of K, L. Sec-
tion 4.2 will be concerned with the tree structures of [P ], [R], highlighting the fact
that they are necessarily straight. Once this preliminary work is finished, we prove
Theorem A in Section 4.4. We then dedicate one section for each of the required
isomorphisms in Theorem B. To conclude the chapter we use the results proven to
provide an alternative proof to that of Johnson, providing an affirmative answer to
the sequencing conjecture discussed in Section 1.1. It should be noted, however, that
this cannot be used to construct an explicit description of the diagonal resolution.
Nevertheless, it does provide a method to construct such resolutions for a given q
when an explicit description appears out of reach. This will be of use in Chapter 5.

4.1 The modules P and R

In keeping with the notation of [24] we set,

π = (xn − 1)(y − 1) (4.1.1)

ρ = (y − 1)(xn+1 − xn) = (xn − xn+1)(y + 1) (4.1.2)

ρ̃ = (y − 1)(x− 1). (4.1.3)

Clearly ρ̃ = ρ · xn+1 and ρ = ρ̃ · xn so that [ρ) = [ρ̃). We then define

P = [π), R = [ρ) = [ρ̃). (4.1.4)

The author stresses the importance of the expressions denoted by π, ρ and ρ̃. In
addition, we write Σx = 1 + x + · · · + x2n, which we observe is central in Λ. In
the interest of clarity, we now outline the results of [24] that will be of use to us
throughout this chapter. First, we note the following Z-basis for R.

Proposition 4.1.5. The Λ-module R has Z-rank 2n and Z-basis

{(y − 1)(xr − 1) | 1 ≤ r ≤ 2n}.
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Proof. First, consider the modules [x− 1) and [y − 1) and, in particular, the module
given by their intersection, [x − 1) ∩ [y − 1). We show this latter module is, in fact,
R. First, recall the augmentation ideal IG of Λ has Z-basis {g − 1 | g ∈ D4n+2\{1}}
which, by performing elementary basis transformations, may be written

{xr − 1, y − 1, (y − 1)(xs − 1) | 1 ≤ r, s ≤ 2n}.

From the identities, xr − 1 = (x − 1)
∑r−1

s=0 x
s and yxr − 1 = (xr − 1) + (y − 1)xr it

follows
IG = [x− 1) + [y − 1).

However, this sum is certainly not direct and we have an exact sequence

0 → [x− 1) ∩ [y − 1) → [x− 1)⊕ [y − 1) → IG → 0. (4.1.6)

Claim 1. [x− 1) has Z-basis {xr − 1, (y− 1)(xs − 1) | 1 ≤ r, s ≤ 2n}. In particular,
rkZ([x− 1)) = 4n.

To prove Claim 1, denote the augmentation ideal of Z[C2n+1] by IC . Next, regard
[x− 1) as the induced module [x− 1) = IC ⊗Z[C2n+1] Λ. As Λ is a free module of rank
2 over Z[C2n+1], it follows that

rkZ([x− 1)) = 2rkZ(IC) = 4n. (4.1.7)

Now, it is clear that xr − 1 ∈ [x− 1) for 1 ≤ r ≤ 2n, and we observe

(y− 1)(xr− 1) = (x2n+1−r− 1)y− (xr− 1) = (x− 1)

(
2n−r∑

s=0

xs

)
y− (xr− 1) ∈ [x− 1).

Consequently, by using (4.1.7) and applying Proposition 2.2.7, the claim now follows.

Claim 2. [y − 1) has Z-basis {y − 1, (y − 1)(xr − 1) | 1 ≤ r ≤ 2n}. In particular,
rkZ([y − 1)) = 2n+ 1.

Claim 2 follows similarly to that of Claim 1. Simply regard [y−1) as the induced
module [y − 1) = I(C2)⊗Z[C2] Λ and proceed as above.

Using Claims 1 and 2 alongside (4.1.6), we calculate rkZ([x− 1) ∩ [y − 1)) = 2n.
However, it is also apparent that (y−1)(xr−1) ∈ [x−1)∩ [y−1) for each 1 ≤ r ≤ 2n.
Thus, by applying Proposition 2.2.7, we find

{(y − 1)(xr − 1) | 1 ≤ r ≤ 2n} is a Z-basis for [x− 1) ∩ [y − 1). (4.1.8)

Finally, we turn to R = [ρ̃). It is clear that ρ̃ ∈ [y−1) so R ⊂ [y−1). Furthermore,
we can write ρ = (xn − xn+1)(y + 1) = (x− 1)(−xn)(y + 1) so that R ⊂ [x− 1), i.e.
R ⊂ [x− 1) ∩ [y − 1). Conversely, it is a trivial observation that (y − 1)(x− 1) ∈ R.
Moreover,

(y − 1)(xr − 1) = (y − 1)(x− 1) · (1 + x+ · · ·+ xr−1)

so that (y−1)(xr−1) ∈ R for 1 ≤ r ≤ 2n. Hence, [x−1)∩ [y−1) ⊂ R and therefore
R = [x− 1) ∩ [y − 1). The result now follows from (4.1.8).
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As an addendum to the above proof observe that the method used to prove Claims
1 and 2 also applies to the ideal [y + 1). By regarding this as the induced module
[y + 1) = Z⊗Z[C2] Λ we can once more use Proposition 2.2.7 to show:

[y + 1) has Z-basis {y + 1, (y + 1)(xr − 1) | 1 ≤ r ≤ 2n}. (4.1.9)

Observe that both [y − 1) and [y + 1) are self-dual. For instance, the self-duality of
[y + 1) follows immediately from Proposition 2.1.10. A similar argument applies for
[y − 1). It must be stressed, however, that [y − 1) and [y + 1) are not isomorphic, as
Λ-modules.

Proposition 4.1.10. The ideal [x− 1) decomposes as a direct sum

[x− 1) = P ⊕ R.

Proof. Define Q = [x− 1)/R and consider the canonical short exact sequence

0 → R → [x− 1)
♮
→ Q→ 0. (†)

It is sufficient to show † splits over Λ and, in turn, it suffices to show the natural map
♮ : [x− 1) → Q restricts to an isomorphism ♮ : Q

≃
→ P .

To this end recall that in the proof of Proposition 4.1.5 it was shown that [x− 1)
has a Z-basis {(xr − 1), (y − 1)(xs − 1) | 1 ≤ r, s ≤ 2n}. Moreover, by Proposition
4.1.5 itself it is known that R has Z-basis {(y− 1)(xr − 1) | 1 ≤ r ≤ 2n}. It therefore
follows that

Q is torsion free with Z-basis {♮(xr − 1) | 1 ≤ r ≤ 2n}. (4.1.11)

Recall π = (xn − 1)(y− 1) and define π̃ = πxn+1 so that π = π̃xn and P = [π) = [π̃).
It is straightforward to show

π̃ = (x− 1) + (y − 1)(x− 1)− (y − 1)(xn+1 − 1)

and hence ♮(π̃) = ♮(x− 1). In particular, ♮(π̃ · xr) = ♮((x− 1)xr). Next, observe that

(xr − 1) = (x− 1)

(
r−1∑

s=0

xs

)

so that
♮(xr − 1) = ♮(π̃ · [Σr−1s=0x

s]).

It therefore follows that ♮ : P → Q is surjective and rkZ(P ) ≥ 2n. However, as
πy = −π it follows that P = spanZ{π · x

r | 0 ≤ r ≤ 2n}. Moreover, πΣx = 0 since Σx
is central, and so

P = spanZ{π · xr | 1 ≤ r ≤ 2n}.

Consequently, rkZ(P ) ≤ 2n and thus, rkZ(P ) = 2n = rkZ(Q). As ♮ : P → Q is
surjective, we therefore conclude ♮ is an isomorphism, as required.

In the course of the proof, we showed:

Proposition 4.1.12. The Λ-module P has Z-basis {π · xr | 1 ≤ r ≤ 2n}.



Chapter 4. The syzygies of Z[D4n+2] 48

Proposition 4.1.13. IG = P ⊕ [y − 1).

Proof. Recall IG = [x − 1) + [y − 1) which we can rewrite as IG = P + R + [y − 1).
However, R = [x − 1) ∩ [y − 1) so that IG = P + [y − 1). Now, P ⊂ [x − 1) so that
P ∩ [y − 1) ⊂ P ∩ [x − 1) ∩ [y − 1) ⊂ P ∩ R. Since P ∩ R = {0} (from Proposition
4.1.12), it follows that P ∩ [y − 1) = {0}. Thus, the sum is direct, as required.

When characterising P, R, the following will be of particular use. We consider
the following three properties for a Λ-lattice M :

M(−): there exists ϕ̂− ∈M such that {ϕ− · x
r | 1 ≤ r ≤ 2n} is a Z-basis for M and for

which ϕ̂− · y = −ϕ̂−;

M(+): there exists ϕ̂+ ∈M such that {ϕ+ · xr | 1 ≤ r ≤ 2n} is a Z-basis for M and for
which ϕ̂+ · y = ϕ̂+;

M(Σ): the identity m · Σx = 0 holds for each m ∈M .

Proposition 4.1.14. For a Λ-lattice M , we have M ∼= P if and only if M satisfies
M(−) and M(Σ). Likewise, M ∼= R if and only if M satisfies M(+) and M(Σ).

Using this we can now show two alternative descriptions for P and R. Recall that
in Chapter 3 we discussed the augmentation ideal IC , and its dual I∗C of Z[C2n+1]. In
particular, I∗C has Z-basis, {νr |0 ≤ r ≤ 2n−1} where 1+ν+ · · ·+ν2n = 0. Now, the
action of Cp on I

∗
C may be extended in one of two ways to an action of the dihedral

group:

• Either: νr · y = ν−r = ν2n+1−r for 0 ≤ r ≤ 2n− 1;

• or: νr · y = −ν−r = −ν2n+1−r for 0 ≤ r ≤ 2n− 1.

Under the former, we denote (I∗C)+, and under the latter we denote (I∗C)−. Later,
particularly in the next chapter, we denote the introduction of the y-action by placing
a bar over the Λ0-module in question.

Proposition 4.1.15. P ∼= (I∗C)−.

Proof. We use the recognition criteria of Proposition 4.1.14. Take ν0 ∈ (I∗C)− and
note that ν0 · xr = νr. Moreover, ν0 · y = −ν0 by our choice of Galois action. Thus,
M(−) is satisfied.

It remains to show M(Σ) is satisfied. Let α ∈ (I∗C)− be written as α = Σrarν
r.

Since 1 + ν + ν2 + · · ·+ ν2n = 0,

νrΣx = νr(1 + x+ x2 + · · ·x2n)

= νr + νr+1 + νr+2 + · · ·+ νr+2n

= νr(1 + ν + ν2 + · · ·+ ν2n) = 0

Thus, M(Σ) is satisfied and P ∼= (I∗C)−, as required.

By a similar argument, we have:

Proposition 4.1.16. R ∼= (I∗C)+.
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Evidently, P and R are not isomorphic as Λ-modules, nor even stably isomorphic.
Nevertheless, by considering the representations of P and R, we have:

P ∗ ∼= R and R∗ ∼= P. (4.1.17)

Finally, return to the quasi-triangular matrices T2(A, π) ∼= R(1) ⊕ R(2), where
A = Z[ζp]

θ and π = (ζp − 1)2. It is useful to describe both R(1) and R(2) as
Galois modules. First, observe R(2) satisfies the conditions M(+) and M(Σ) where
ϕ̂+ = (0, 1) ∈ R(2). By Proposition 4.1.14, we therefore conclude R(2) ∼= R ∼= (I∗C)+.
In [25], it is shown that:

Proposition 4.1.18. R(2)∗ ∼= R(1).

By Proposition 4.1.18 and (4.1.17) it therefore follows that R(1) ∼= P ∼= (I∗C)−.

4.2 The tree structures of the odd syzygies

Using the result of Proposition 2.8.1 we have a complete list of the genera of inde-
composable modules over Λ. This can be used to deduce that the tree structures of
[P ] and [R] are straight. For convenience, we rewrite the indecomposable modules
of Section 2.8 for the specific case of q = 2. We have a total of 10 indecomposable
genera.

I. There are three indecomposable modules over Z[C2] that become modules over
Λ via the quotient map D2p → C2:

(i) The trivial module (rank 1);

(ii) The augmentation ideal, I(C2) = Ker(Z[C2] → Z) (rank 1). This may
also be thought of as Z−, the rank 1 module in which x acts trivially and
y acts as multiplication by −1;

(iii) The group ring itself Z[C2] (rank 2).

II. There are two distinct indecomposable modules over T2(A, π) of rank p− 1:

(iv) R = Z[ζp] ∼= (I∗C)+ (rank p− 1);

(v) P = (ζp − 1)Z[ζp] ∼= (I∗C)− (rank p− 1).

III. There is one extension when Y = Z:

(vi) 0 → P → Λ̄0 → Z → 0 (rank p).

IV. There is one indecomposable non-split extension when Y = I(C2):

(vii) 0 → R → V1 → Z− → 0 where rkZ(V1) = p.

V. There are three indecomposable non-split extensions for Y = Z[C2]:

(viii) 0 → R → Λ/R → Z[C2] → 0 where rkZ(Λ/R) = p+1. We note Λ/R ∼ K;

(ix) 0 → P → Λ/P → Z[C2] → 0 where rkZ(Λ/P ) = p+1. We note Λ/P ∼ L;

(x) 0 → R⊕ P → Λ → Z[C2] → 0.
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Proposition 4.2.1. LetM ∈ Ω1(Z) be a minimal representative; thenM decomposes
as M ∼=M1 ⊕M2, where M1, M2 are non-trivial indecomposable modules.

Proof. Any minimal representative of Ω1(Z) occurs in the following exact sequence,

0 →M → Λ → Z → 0.

By Theorem 7.7 of [22] we can therefore write

EndDer(M) ∼= EndDer(Z) ∼= Z/|D2p| ∼= Z/2× Z/p

where Der once again denotes the derived module category in the sense of [20] or [22]
(recall the definition given at the end of Section 2.4).

Now, suppose we have the following decomposition of M into indecomposable
modulesM ∼=M1⊕· · ·⊕Mr, where r > 2. Apply EndDer(−) and observe EndDer(Mi)
is trivial for all i ≥ 3 (after reordering). By Proposition 5.5 of [22], it therefore
follows thatMi is projective for i ≥ 3. In [54], Swan has shown for any finite group Γ,
projective modules over Z[Γ] must have the same Z-rank as a free module. It therefore
follows that rkZ(M) > 2p, which is a contradiction as we know rkZ(M) = 2p− 1.

The only other possibility is that M is itself indecomposable. However, by the
above list we have no indecomposable module of Z-rank 2p − 1. Thus, M must
decompose as M ∼=M1 ⊕M2 where M1, M2 are non-trivial and indecomposable.

Recall (2.8.2), in which we discussed the straightness of each [R(i)]. In the case of
dihedral groups D2p, this can be rewritten as:

Proposition 4.2.2. The tree structure of [P ] is straight.

and

Proposition 4.2.3. The tree structure of [R] is straight.

A proof of these two results can be found in Section 6.8.

4.3 The modules K and L

We define the modules K and L to be

K = [Σx, y − 1) and L = [Σx, y + 1). (4.3.1)

As with Section 4.1, we outline the results of [24] necessary to what follows.

Proposition 4.3.2. The Λ-module K has Z-basis {(y − 1)xs | 0 ≤ s ≤ 2n} ∪ {Σx}
and therefore has rkZ(K) = 2n+ 2. In particular, Λ/K is torsion free.

Proof. Define K0 = {(1− y)a(x) | a(x) ∈ Z[C2n+1]} ⊂ K and observe

(y − 1)xs · y = −(y − 1)x2n+1−s.

It therefore follows that K0 is a Λ-submodule of K. Moreover, Σxy = Σx(y− 1)+Σx
from which it follows that K is spanned over Z by {(y−1)xs |0 ≤ s ≤ 2n}∪{Σx}. In



Chapter 4. The syzygies of Z[D4n+2] 51

particular, by starting from the canonical basis for Λ and proceeding by elementary
basis transformations, it follows that

{(y − 1)xr | 0 ≤ r ≤ 2n} ∪ {Σx} ∪ {xs | 1 ≤ s ≤ 2n}

is a Z-basis for Λ. By Proposition 2.2.7, it therefore follows that

{(y − 1)xs | 0 ≤ s ≤ 2n} ∪ {Σx}

is a Z-basis for K and Λ/K is torsion free.

Proposition 4.3.3. K is monogenic, generated by (1− y)θ + Σxy, where
θ = 1 + x+ · · ·+ xn−1.

Proof. Evidently, (1− y)θ + Σxy ∈ [Σx, y − 1). However, the identity

[(1− y)θ + Σxy] · x
n+1(1− y) = (y − 1)

demonstrates that y − 1 ∈ [(1 − y)θ + Σxy). Thus, (y − 1)θ ∈ [(1 − y)θ + Σxy) and
therefore Σxy ∈ [(1−y)θ+Σxy). Consequently, Σx = (Σxy) ·y ∈ [(1−y)θ+Σxy).

Proposition 4.3.4. Λ/K ∼= R.

Proof. Once again, perform elementary basis transformations to the basis of Λ so that
we have the following Z-basis for Λ, {xi |1 ≤ i ≤ 2n}∪{(y−1)xj |0 ≤ j ≤ 2n}∪{Σx}.
Thus, Λ/K has Z-basis {♮(xi) | 1 ≤ i ≤ 2n} where ♮ : Λ → Λ/K. In particular,
rkZ(Λ/K) = 2n. Moreover, since Σx = 0 in Λ/K we note mΣx = 0 for all m ∈ Λ/K.
It remains (by the criteria of Proposition 4.1.14) to show ♮(1)y = ♮(1). However, in
Λ we clearly have

1 · y = (y − 1) + 1

and so y acts trivially on ♮(1) as required. The result follows from Proposition 4.1.14.

Consequently, the module K arises in an exact sequence of the form

0 → K → Λ → R → 0. (4.3.5)

Using a similar argument to that of Proposition 4.2.1, we can also show Ω0(Z) de-
composes precisely into two non-trivial, indecomposable components. A detailed
exposition of this unusual behaviour may be found in Section 8 of [24]. We express
our result in the form provided in that paper:

Proposition 4.3.6. The stable module Ω0(Z) decomposes as

Ω0(Z) = [Z] = [K]⊕ [y + 1].

Corollary 4.3.7. The module K is indecomposable.

It should be noted, however, that we cannot claim [K] is straight. From Pu’s list, we
only know any K ∼ K ′ occurs in an exact sequence 0 → R → K ′ → Z[C2] → 0.

By defining L0 = {(y+1)a(x) | a(x) ∈ Z[C2n+1] ⊂ L} we adopt similar reasoning
to the above to show:
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Proposition 4.3.8. The Λ-module L has Z-basis {(y + 1)xs | 0 ≤ s ≤ 2n} ∪ {Σx}
and therefore rkZ(L) = 2n+ 2. In particular, Λ/L is torsion free.

Moreover, as [(1 + y)θ − Σxy] · x
n+1(y + 1) = −(y + 1) it may be similarly shown L

is monogenic.

Proposition 4.3.9. L is monogenic, generated by (1 + y)θ − Σxy.

As with K we have a corresponding exact sequence for L as follows:

0 → L→ Λ → P → 0. (4.3.10)

Proposition 4.3.11. The module L is indecomposable.

Finally, Johnson has shown that both K and L are self-dual; that is:

K∗ ∼= K; (4.3.12)

L∗ ∼= L. (4.3.13)

4.4 K⊗? ∼?

With the preliminary results of Sections 4.1 - 4.3 in mind, we can now show Theorem
A; that is, we show

K⊗? ∼=?⊕ Λr (4.4.1)

for some r ≥ 0 and where ? = K, P, L, R. Recall K = [y − 1, Σx) is self-dual and
define K0 = spanZ{(y− 1), (y− 1)x, . . . , (y− 1)x2n} so that K/K0 is represented by
the class of Σx. Observe:

� Σx · x = Σx; and

� Σx · y = yΣx = (y − 1)Σx + Σx = Σx in K/K0.

Thus, x and y act trivially on K/K0 and it is therefore isomorphic to Z. In particular,
we have an exact sequence of the form,

0 → K0 → K → Z → 0.

Proposition 4.4.2. If j : Z[C2] →֒ Λ, and I2 = Ker(ǫ : Z[C2] → Z), then
j∗(I2) ∼= [y − 1).

Proof. It is straightforward to show {(y − 1)xi | 0 ≤ i ≤ 2n} is a Z-basis for [y − 1).
Next, observe j∗(I2) = I2 ⊗Z[C2] Λ has Z-basis

{(y − 1)⊗C2
xs | 0 ≤ s ≤ 2n}.

We then define the map ϕ : j∗(I2) → [y − 1) by

ϕ((y − 1)⊗ xs) = (y − 1)xs.

It is straightforward to check ϕ is a Λ-homomorphism between basis elements.
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Using the above, we are now in the position to show K acts as the identity within
the stable class of our cyclic group of rank 4. Observe that tensoring with any of the
P, R, K or L therefore yields the exact sequence

0 → K0⊗? → K⊗? →? → 0.

Proposition 4.4.3. j∗(P ) ∼= j∗(R) ∼= Z[C2]
n.

Proof. Consider the exact sequence 0 → IC → Λ0 → Z → 0, and apply the exact
functor i∗(−) to yield

0 → i∗(IC) → Λ → Z[C2] → 0.

Next, observe that the induced module i∗(I
∗
C) is simply another description of C2(I

∗
C , θ).

So, using the isomorphism C2(I
∗
C , θ)

∼= T2(A, π), and the fact that i∗(I
∗
C)

∼= i∗(IC),
we have i∗(IC) ∼= T2(A, π). Since T2(A, π) ∼= P ⊕R (see Proposition 4.1.10), we have
the following exact sequence,

0 → R⊕ P → Λ → Z[C2] → 0.

Now apply the exact functor j∗(−),

0 → j∗(R ⊕ P ) → Z[C2]
2n+1 → Z[C2] → 0.

This sequence clearly splits and we observe j∗(R⊕P ) is stably free of rank 2n. As C2

satisfies the Eichler condition, Z[C2] has SFC by Swan-Jacobinski, hence both j∗(R)
and j∗(P ) are projective Z[C2]-modules of equal Z-rank.

Now, K̃0(Z[C2]) = 0 (see, for example, [42]) and so any projective module is
necessarily stably free. Using Swan-Jacobinski once more, we conclude j∗(P ) and
j∗(R) are free, each of rank n.

Proposition 4.4.4. K ⊗ R(i) ∼= R(i) ⊕ Λn, for 1 ≤ i ≤ 2 where R(1) ∼= P and
R(2) ∼= R.

Proof. Consider the following exact sequence,

0 → K0 ⊗R(i) → K ⊗R(i) → R(i) → 0.

Note that I2 ∼= Z−, the rank one module where x acts trivially and y acts as mul-
tiplication by −1. By two applications of Frobenius Reciprocity (Proposition 2.1.8),
and Proposition 4.4.3, we have the following isomorphism:

j∗(I2)⊗ R(i) ∼= j∗(I2 ⊗ j∗(R(i)))
∼= j∗(I2 ⊗ Z[C2]

n)
∼= j∗(Z[C2]

n)
∼= Λn.

Replacing this in the above exact sequence we therefore get

0 → Λn → K ⊗ R(i) → R(i) → 0

which splits, yielding K ⊗ R(i) ∼= R(i)⊕ Λn, as required.
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Proposition 4.4.5. j∗(K) ∼= Z[C2]
n+1.

Proof. Start with the following exact sequence,

0 → K → Λ → R → 0

and apply j∗(−),
0 → j∗(K) → Z[C2]

2n+1 → j∗(R) → 0.

By Proposition 4.4.3, we know j∗(R) ∼= Z[C2]
n and so the above exact sequence splits,

yielding
j∗(K)⊕ Z[C2]

n ∼= Z[Cn]
2n+1,

i.e. j∗(K) is stably free of rank n + 1. As Z[C2] has SFC, j∗(K) ∼= Z[C2]
n+1, as

required.

Since j∗(P ) ∼= j∗(R) we have the following dual statement:

Proposition 4.4.6. j∗(L) ∼= Z[C2]
n+1.

Proposition 4.4.7. K⊗Ki
∼= Ki⊕Λn+1, for 1 ≤ i ≤ 2 where K1 = L and K2 = K1.

Proof. Consider the exact sequence,

0 → K0 ⊗Ki → K ⊗Ki → Ki → 0.

Using Frobenius Reciprocity and Propositions 4.4.5 and 4.4.6, we have

j∗(I2)⊗Ki
∼= j∗(I2 ⊗ j∗(Ki))
∼= j∗(I2 ⊗ Z[C2]

n+1)
∼= j∗(Z[C2]

n+1)
∼= Λn+1.

For each 1 ≤ i ≤ 2, the above exact sequence now splits, yielding the desired isomor-
phism K ⊗Ki

∼= Ki ⊕ Λn+1.

Evidently, Theorem A follows directly from Propositions 4.4.4 and 4.4.7.

4.5 P ⊗ P ∼ L

In this section, we show
P ⊗ P ∼= L⊕ Λn−1. (4.5.1)

Recall Proposition 4.1.12 in which it was shown that P has Z-basis

{πxr | 1 ≤ r ≤ 2n}.

Consequently, P ⊗P has Z-basis {πxi⊗ πxj | 1 ≤ i, j ≤ 2n} with rkZ(P ⊗P ) = 4n2.
Furthermore, from Proposition 4.3.8 we know L has Z-basis

{(y + 1), (y + 1)x, . . . , (y + 1)x2n, Σx},

1It is instructive to observe that Ki ∼ K(i). Regarding the main result of Theorem A, however,
this distinction matters little since they are both isomorphic over Z[C2].
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where Σx = 1 + x+ · · ·+ x2n. By counting Z-ranks, it is clear that for the required
isomorphism to hold, n− 1 copies of Λ are required.

In Chapter 3, we constructed the isomorphism I∗C ⊗ I∗C
∼=Λ0

T ⊕ V , where

V = V (1)⊕ V (2)⊕ · · · ⊕ V (2n− 1)

and V (r) = spanZ{ν
r+k ⊗ νk | 0 ≤ k ≤ 2n}. Moreover, in Section 4.1 we introduced

the following action of y,
νr · y = −ν2n+1−r

As before, {νr | 0 ≤ r ≤ 2n− 1} is a Z-basis for I∗C , and under this action (I∗C)−
∼= P .

We start by constructing the free part. In particular, we show that for r ≥ 2,

Vr = V (r) + V (2n+ 1− r) is a Λ-module, and Vr ∼= Λ.

By Chapter 3 this is clearly true when restricted to modules over Λ0. To extend this
to an isomorphism over Λ, we consider representations.

Proposition 4.5.2. Define Ψ to be the (2n+ 1)× (2n+ 1) matrix where

Ψij =





1, i = 1, j = 2n+ 1;

1, j = i− 1, 2 ≤ i ≤ 2n+ 1;

0, o/w.

Then ρVr(x
−1) =

(
Ψ 0
0 Ψ

)
.

Proof. Label

ei = νr+i−1 ⊗ νi−1, 1 ≤ i ≤ 2n + 1

e(2n+1)+i = ν2n−r+i ⊗ νi−1, 1 ≤ i ≤ 2n+ 1.

Then e2n+1 ·x = νr⊗1 = e1 and for 2 ≤ i ≤ 2n+1, ei ·x = νr+i⊗νi = ei+1. Likewise,
we have e4n+2 · x = ν2n+1−r ⊗ 1 = e2n+2. In general, for 2 ≤ i ≤ 2n + 1, x acts on
e(2n+1)+i by e(2n+1)+i · x = ν2n+1−r+i ⊗ νi = e(2n+1)+i+1. The result now follows.

Proposition 4.5.3. Define the matrix Φ by

Φij =





1, i = j = 1;

1, j = 2n+ 3− i, 2 ≤ i ≤ 2n+ 1;

0, o/w.

Then ρVr(y) =

(
0 Φ
Φ 0

)
.

Proof. With the ei, e(2n+1)+i as defined above, first observe e1·y = ν2n+1−r⊗1 = e2n+2.
Now consider y acting on a general basis element of V (r) for 2 ≤ i ≤ 2n+ 1,

ei ·y = (νr+i−1⊗νi−1)y = (ν2n+2−r−i⊗ν2n+2−i) = (ν2n−r+(2−i)⊗ν1−i) = e2n+1+(2n+3−i).

Thus, for the first 2n+ 1 columns, we get zeroes in the first 2n+ 1 rows, and then Φ
making up the latter 2n+ 1 rows.
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Now let y act on the basis elements of V (2n + 1− r). As before,we have
e2n+2 · y = νr ⊗ 1 = e1. For a general basis element 2 ≤ i ≤ 2n+ 1,

e2n+1+i · y = (ν2n−r+i ⊗ νi−1)y = νr+(2n+2−i) ⊗ ν2n+2−i = e2n+3−i.

Thus, for the last 2n + 1 columns we get Φ making up the first 2n + 1 rows, and
zeroes thereafter.

Proposition 4.5.4. With Ψ, as defined above ρreg(x
−1) =

(
Ψ 0
0 Ψ

)
.

Proof. Set

fi = xi−1, 1 ≤ i ≤ 2n+ 1

f2n+1+i = yxi−1, 1 ≤ i ≤ 2n+ 1.

Clearly, f2n+1 · x = 1 = f1 and fi · x = xi = fi+1 for 1 ≤ i ≤ 2n. Similarly,
f4n+2 · x = y = f2n+2 and f2n+1+i · x = yxi = f2n+2+i. The result now follows.

Proposition 4.5.5. With Φ as defined above, ρreg(y) =

(
0 Φ
Φ 0

)
.

Proof. Let fi, f2n+1+i be as above. First observe f1 · y = y = f2n+2. For a more
general element where 2 ≤ i ≤ 2n+ 1,

fi · y = xi−1y = yx2n+2−i = f(2n+1)+2n+3−i.

Similarly f2n+2 · y = 1 = f1 For a more general element,

f2n+1+i · y = yxi−1y = x2n+2−i = f2n+3−i.

The result now follows.

Proposition 4.5.6. For r ≥ 2, Vr = V (r) + V (2n+ 1− r) ∼= Λ.

Proof. Immediate since ρVr(g) = ρreg(g) for all g ∈ D4n+2, by Propositions 4.5.2 -
4.5.5.

We are therefore left with T + V (1) which, we hope, can be used to give us L.
Consider the following map ψ : I∗C ⊗ I∗C → Z defined by,

νr ⊗ νs 7−→





1, if r = s+ 1;

−1, if s = r + 1;

0, if |r − s| 6= 1

where Z is taken to mean the trivial Λ0-module and 0 ≤ r, s ≤ 2n− 1.

Proposition 4.5.7. The map ψ, as defined above, is a Λ0-homomorphism.

Proof. It is straightforward to see ψ is well defined and a Z-homomorphism. By
applying the x-action, note that ψ(νrx ⊗ νsx) = ψ(νr+1 ⊗ νs+1) = ψ(νr ⊗ νs)x. We
therefore conclude that ψ is a Λ0-homomorphism.

Proposition 4.5.8. The map ψ : (IC)− ⊗ (IC)− → Z− induced from ψ above, is a
Λ-homomorphism.
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Proof. Consider how ψ behaves on νr ⊗ νs. By Proposition 4.5.7, we need only
consider the y-action. There are three cases to consider:

a) r = s+ 1;

b) s = r + 1;

c) |r − s| 6= 1.

For a) we have the following:

νs+1y ⊗ νsy =





−
∑2n−1

i=0 νi ⊗ 1, s = 0;

−ν2n−1 ⊗
∑2n−1

i=0 νi, s = 1;

ν2n−s ⊗ ν2n+1−s, 2 ≤ s ≤ 2n− 1.

As such,

ψ

(
−

2n−1∑

i=0

νi ⊗ 1

)
= ψ(−1⊗ 1− ν ⊗ 1− · · · − ν2n−1 ⊗ 1) = −1,

ψ

(
−ν2n−1 ⊗

2n−1∑

i=0

νi

)
= ψ(−ν2n−1 ⊗ 1− · · · − ν2n−1 ⊗ ν2n−2 − ν2n−1 ⊗ ν2n−1) = −1,

and finally ψ (ν2n−s ⊗ ν2n+1−s) = −1. It is worth observing that when s = 2n−1, we
have

νs+1 ⊗ νs = (ν2n ⊗ ν2n−1) = −1⊗ ν2n−1 − · · · − ν2n−2 ⊗ ν2n−1 − ν2n−1 ⊗ ν2n−1,

which is sent to 1 by ψ, as required. In any case, y acts by −1 when r = s + 1.
Likewise, the same is true for s = r + 1.

Finally, when |r − s| 6= 1 there are the following possibilities:

νry ⊗ νsy =





1⊗ 1, r = s = 0;

1⊗ ν2n+1−s, r = 0, 2 ≤ s ≤ 2n− 1;

ν2n ⊗ ν2n, r = s = 1;

ν2n ⊗ ν2n+1−s, r = 1, 3 ≤ s ≤ 2n− 1;

ν2n+1−r ⊗ 1, 2 ≤ r ≤ 2n− 1, s = 0;

ν2n+1−r ⊗ ν2n, 3 ≤ r ≤ 2n− 1, s = 1;

ν2n+1−r ⊗ ν2n+1−s, 2 ≤ r = s ≤ 2n− 1.

The only cases that do not obviously go to zero are those involving ν2n. First, consider
νr⊗νs where r is fixed such that 1 ≤ r ≤ 2n−2, and s varies between 0 ≤ s ≤ 2n−1.
It is clear that both r− s = 1 and s− r = 1 occur as s varies, hence they cancel each
other out and the effect is that νr ⊗ νs is sent to zero. As such, it is clear that both
ν2n ⊗ ν2n+1−s and ν2n+1−r ⊗ ν2n are sent to zero, as 3 ≤ r, s ≤ 2n− 1.

For the case ν2n ⊗ ν2n, we sum over all νr ⊗ νs where both r, s vary as above.
By the above remark, we are left with elements of the form 1 ⊗ νs and ν2n−1 ⊗ νs

where 0 ≤ s ≤ 2n − 1. The only elements sent to something other than zero in
the former is of the form 1 ⊗ ν, and in the latter ν2n−1 ⊗ ν2n−2. These are clearly



Chapter 4. The syzygies of Z[D4n+2] 58

sent to −1 and 1, respectively, and therefore cancel. It follows that ψ will map each
of the above elements to zero when |r − s| 6= 1. Consequently, y acts by −1 and
ψ : (I∗C)− ⊗ (I∗C)− → Z− is a Λ-homomorphism.

As an aside, it is worth mentioning that we may similarly use the other Galois
action defined in Section 4.1. This will yield another Λ-homomorphism. In par-
ticular, by combining these two Galois actions, we end up with the following four
Λ-homomorphisms,

� ψ1 : I(C2n+1)
∗
+ ⊗ I(C2n+1)

∗
+ −→ Z−;

� ψ = ψ2 : I(C2n+1)
∗
− ⊗ I(C2n+1)

∗
− −→ Z−;

� ψ3 : I(C2n+1)
∗
+ ⊗ I(C2n+1)

∗
− −→ Z;

� ψ4 : I(C2n+1)
∗
− ⊗ I(C2n+1)

∗
+ −→ Z.

Nevertheless, only ψ (or ψ2 in the above list) is of interest to us as only (I∗C)−
∼= P .

Now, let V ′ = V (2) + · · ·+ V (2n− 1) and observe that V ′ is free and V ′ ⊂ Ker(ψ).
Let

♮ : [(I∗C)− ⊗ (I∗C)−] → [(I∗C)− ⊗ (I∗C)−]/V
′

be the natural map and restrict ψ to [(I∗C)−⊗ (I∗C)−]/V
′. We then have the following

exact sequence,

0 → Ker(ψ) → [(I∗C)− ⊗ (I∗C)−]/V
′ ψ
→ Z− → 0. (4.5.9)

To emphasise which part of (I∗C)−⊗ (I∗C)− remains when we quotient by V ′, we shall
often write this as ♮(T + V (1)). Observe that the sum T + V (1) will not be direct
over Λ. Our goal now will be to prove:

Proposition 4.5.10. Ker(ψ) = spanZ{♮(ν
i ⊗ νi) | 0 ≤ i ≤ 2n}.

To do so, we need to prove a number of preliminary results. To make the notation
somewhat more readable, we will write p instead of 2n+ 1.

Proposition 4.5.11. For each j ∈ {0, 1, . . . , p− 1},

♮(νj ⊗ νj) = ♮(T ) +

j+p−2∑

i=j+1

♮(νi+1 ⊗ νi).

Proof. We split the proof into four cases; j = 0, 1 ≤ j ≤ p−3, j = p−2 and j = p−1.
Start with the case j = 0 in which we successively subtract the ‘columns’ from T .
We therefore have:

1⊗ 1 = T + νp−1 ⊗ νp−2 − (1 + ν + · · ·+ νp−3)⊗ νp−3 − · · ·

· · · − (1 + ν + · · ·+ νi)⊗ νi − · · · − (1 + ν)⊗ ν

= T + νp−1 ⊗ νp−2 + (νp−1 + νp−2)⊗ νp−3 + · · ·

· · ·+ (νp−1 + · · ·+ νi+1)⊗ νi + · · ·+ (νp−1 + · · ·+ ν2)⊗ ν

= T +
∑p−2

i=1 (ν
p−1 + · · ·+ νi+1)⊗ νi.
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However, νi+k ⊗ νi ∈ V (k) for some 1 ≤ k ≤ p− 2. We therefore conclude

♮(1⊗ 1) = ♮(T ) +

p−2∑

i=1

♮(νi+1 ⊗ νi). (4.5.12)

Next, we look at the region 1 ≤ j ≤ p−3. For this, we alter our approach slightly.
For i < j we systematically subtract ‘rows’ from T (where T is written as in Chapter
3). Once we reach j, we then subtract the ‘columns’. The result will be the removal
of all terms from T except νj ⊗ νj . To keep track of this we use the variable i when
subtracting rows, and k when subtracting columns. Thus, we have:

νj ⊗ νj = T + 1⊗ νp−1 − ν ⊗ (ν + · · ·+ νp−2)− ν2 ⊗ (ν2 + · · ·+ νp−2)− · · ·

· · · − νi ⊗ (νi + · · ·+ νp−2)− · · · − νj−1 ⊗ (νj−1 + · · ·+ νp−2)

−(νj + νj+1)⊗ νj+1 − (νj + νj+1 + νj+2)⊗ νj+2 − · · ·

· · · − (νj + · · ·+ νj+k)⊗ νj+k − · · · − (νj + · · ·+ νp−2)⊗ νp−2

= T + 1⊗ νp−1 −
∑j−1

i=1 ν
i ⊗ (νi + · · ·+ νp−2)−

∑p−2−j
k=1 (νj + · · ·+ νj+k)⊗ νj+k

= T + 1⊗ νp−1 +
∑j−1

i=1 ν
i ⊗ (νp−1 + 1 + ν + · · ·+ νi−1)

+
∑p−2−j

k=1 (νj+k+1 + · · ·+ νp−1 + 1 + ν + · · ·+ νj−1)⊗ νj+k

= T +
∑j−1

i=0 (ν
i ⊗ νp−1) +

∑j−1
i=1 ν

i ⊗ (νi−1 + · · · ν + 1)

+
∑p−2−j

k=1 (νj+k+1 + · · ·+ νp−1)⊗ νj+k +
∑p−2−j

k=1 (νj−1 + · · ·+ ν + 1)⊗ νj+k.

Now, we observe νi ⊗ νp−1 ∈ V (i + 1) and 1 ≤ i + 1 ≤ j ≤ p − 3. As such, we have∑j−1
i=0 ♮(ν

i ⊗ νp−1) = ♮(1⊗ νp−1). A similar observation shows

j−1∑

i=1

♮(νi ⊗ (νi−1 + · · · ν + 1)) =

j−1∑

i=1

♮(νi ⊗ νi−1).

Note 1 ≤ p − 2 − j ≤ p − 3 and 2 ≤ j + k ≤ p − 2. Consequently, each of the
following terms belong to some V (l) for 1 ≤ l ≤ p− 3 and so

p−2−j∑

k=1

♮((νj+k+1 + · · ·+ νp−1)⊗ νj+k) =

p−2−j∑

k=1

♮(νj+k+1 ⊗ νj+k).

Finally, for 1 ≤ k ≤ p− 2− j ≤ p− 3, νi ⊗ νj+k ∈ V (l) where 2 ≤ l ≤ p− 2, and so

p−2−j∑

k=1

♮((νj−1 + · · ·+ ν + 1)⊗ νj+k) = 0.

To conclude, for 1 ≤ j ≤ p− 3 we have

♮(νj⊗ νj) = ♮(T )+ ♮(1⊗ νp−1)+

j−1∑

i=1

♮(νi⊗ νi−1)+

p−2−j∑

k=1

♮(νj+k+1⊗ νj+k). (4.5.13)
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We now take j = p− 2 in which we successively subtract ‘rows’. We have:

νp−2 ⊗ νp−2 = T + 1⊗ νp−1 − ν ⊗ (ν + · · ·+ νp−2)− · · ·

· · · − νi ⊗ (νi + · · ·+ νp−2)− · · · − νp−3 ⊗ (νp−3 + νp−2)

= T + 1⊗ νp−1 −
∑p−3

i=1 ν
i ⊗ (νi + · · ·+ νp−2)

= T + 1⊗ νp−1 +
∑p−3

i=1 ν
i ⊗ (νi−1 + · · ·+ 1) +

∑p−3
i=1 ν

i ⊗ νp−1.

It is straightforward to show
∑p−3

i=1 ♮(ν
i ⊗ νp−1) = 0, and

p−3∑

i=1

♮(νi ⊗ (νi−1 + · · ·+ 1)) =

p−3∑

i=1

♮(νi ⊗ νi−1) =

p−4∑

i=0

♮(νi+1 ⊗ νi).

Then

♮(νp−2 ⊗ νp−2) = ♮(T ) + ♮(1⊗ νp−1) +

p−4∑

i=0

♮(νi+1 ⊗ νi) (4.5.14)

We conclude the proof with the case j = p− 1. For this, we add in the required
terms, each of which come from one of the V (r). In other words, we have

νp−1 ⊗ νp−1 = T + (ν + · · ·+ νp−2)⊗ 1 + · · ·+ (νi+1 + · · ·+ νp−2)⊗ νi + · · · νp−2 ⊗ νp−3

= T +
∑p−3

i=0 (ν
i+1 + · · ·+ νp−2)⊗ νi.

It is now clear that

♮(νp−1 ⊗ νp−1) = ♮(T ) +

p−3∑

i=0

♮(νi+1 ⊗ νi). (4.5.15)

Corollary 4.5.16.

� ♮(ν2 ⊗ ν2)− ♮(1⊗ 1) = ♮(1⊗ νp−1) + ♮(ν ⊗ 1)− ♮(ν2 ⊗ ν)− ♮(ν3 ⊗ ν2);

� For 3 ≤ j ≤ p− 4, ♮(νj+1 ⊗ νj+1)− ♮(νj ⊗ νj) = ♮(νj ⊗ νj−1)− ♮(νj+2 ⊗ νj+1);

� ♮(νp−1 ⊗ νp−1)− ♮(νp−2 ⊗ νp−2) = ♮(νp−2 ⊗ νp−3)− ♮(1⊗ νp−1).

Proof. Using Proposition 4.5.11, we have ♮(1⊗ 1) = ♮(T ) +
∑p−2

i=1 ♮(ν
i+1 ⊗ νi) and

♮(ν2 ⊗ ν2) = ♮(T ) +

p−4∑

k=1

♮(νk+3 ⊗ νk+2) + ♮(1⊗ νp−1) + ♮(ν ⊗ 1).

As 3 ≤ k + 2 ≤ p− 2 it follows

♮(ν2 ⊗ ν2)− ♮(1⊗ 1) = ♮(1⊗ νp−1) + ♮(ν ⊗ 1)− ♮(ν2 ⊗ ν)− ♮(ν3 ⊗ ν2)

Likewise, we can show ♮(νp−1 ⊗ νp−1)− ♮(νp−2 ⊗ νp−2) = ♮(νp−2 ⊗ νp−3)− ♮(1⊗ νp−1).
Next, let 3 ≤ j ≤ p− 4, then

♮(νj+1 ⊗ νj+1)− ♮(νj ⊗ νj) =
∑p−3−j

k=1 ♮(νj+k+2 ⊗ νj+k+1) +
∑j

i=1 ♮(ν
i ⊗ νi−1)

−
∑p−2−j

k=1 ♮(νj+k+1 ⊗ νj+k)− νj−1i=1 ♮(ν
i ⊗ νi−1).
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First note
∑j

i=1 ♮(ν
i ⊗ νi−1)−

∑j−1
i=1 ♮(ν

i ⊗ νi−1) = νj ⊗ νj−1. Next, we can rewrite

p−3−j∑

k=1

♮(νj+k+2 ⊗ νj+k+1) =

p−2−j∑

k=2

♮(νj+k+1 ⊗ νj+k)

so that
∑p−2−j

k=2 ♮(νj+k+1⊗ νj+k)−
∑p−2−j

k=1 ♮(νj+k+1 ⊗ νj+k) = −♮(νj+2 ⊗ νj+1). Thus,

♮(νj+1 ⊗ νj+1)− ♮(νj ⊗ νj) = ♮(νj ⊗ νj−1)− ♮(νj+2 ⊗ νj+1).

Proof of Proposition 4.5.10. Clearly Ω = spanZ{♮(ν
i⊗νi) |0 ≤ i ≤ p−1} ⊂ Ker(ψ).

For the converse, suppose v ∈ Ker(ψ) and write v =
∑p−1

r=0 αr♮(ν
r+1 ⊗ νr) + αT ♮(T ),

where αr, αT ∈ Z. By the results of Proposition 4.5.11, we can rewrite ♮(T ) as
♮(T ) = ♮(1⊗ 1)−

∑p−2
i=1 ♮(ν

i+1 ⊗ νi). We can therefore rewrite v as

v =

p−1∑

r=0

βr♮(ν
r+1 ⊗ νr) + αT ♮(1⊗ 1),

where β0 = α0, βr = αr − αT for 1 ≤ r ≤ p− 2 and βp−1 = ap−1. Thus, v ∈ Ω if and
only if v′ =

∑p−1
r=0 βr♮(ν

r+1 ⊗ νr) ∈ Ω.
Next, since ψ(♮(νr+1 ⊗ νr)) = 1 and ψ(v′) = 0, it follows that

∑p−1
r=0 βr = 0. In

particular, we can write:

v′ =
∑p−1

r=0 βr♮(ν
r+1 ⊗ νr)−

∑p−1
r=0 βr♮(ν ⊗ 1)

=
∑p−1

r=0 βr♮(ν ⊗ 1)xr −
∑p−1

r=0 βr♮(ν ⊗ 1)

= ♮(ν ⊗ 1)(
∑p−1

r=0 βrx
r −

∑p−1
r=0 βr)

= ♮(ν ⊗ 1)(
∑p−1

r=0 βr(x
r − 1))

= ♮(ν ⊗ 1)(
∑p−1

r=0 βr(x− 1)(xr−1 + · · ·+ 1))

= ♮(ν ⊗ 1)(x− 1)(
∑p−1

r=0 βr(x
r−1 + · · ·+ 1))

= [♮(ν2 ⊗ ν)− ♮(ν ⊗ 1)](
∑p−1

r=0 βr(x
r−1 + · · ·+ 1)).

It is therefore sufficient to show ♮(ν2 ⊗ ν)− ♮(ν⊗ 1) ∈ Ω. To do so, first note that for
3 ≤ j ≤ p−4, we can rewrite ♮(νj+3⊗νj+3)−♮(νj+2⊗νj+2)+♮(νj+1⊗νj+1)−♮(νj⊗νj)
as

♮(νj+2⊗νj+1)−♮(νj+4⊗νj+3)+♮(νj⊗νj−1)−♮(νj+2⊗νj+1) = ♮(νj⊗νj−1)−♮(νj+4⊗νj+3)

It follows that
∑p−1

j=3(−1)j♮(νj ⊗ νj) = ♮(ν3 ⊗ ν2)− ♮(1⊗ νp−1) and so

p−1∑

j=2

(−1)j♮(νj ⊗ νj)− ♮(1⊗ 1) = ♮(ν3 ⊗ ν2)− ♮(1⊗ νp−1) + ♮(1⊗ νp−1) +

+♮(ν ⊗ 1)− ♮(ν2 ⊗ ν)− ♮(ν3 ⊗ ν2)

= ♮(ν ⊗ 1)− ♮(ν2 ⊗ ν).



Chapter 4. The syzygies of Z[D4n+2] 62

With ♮ as above, we use Proposition 4.5.6 (and Proposition 2.2.7) to construct
the following split short exact sequence of Λ-lattices,

0 → Λn−1 → (I∗C)− ⊗ (I∗C)− → ♮(T + V (1)) → 0. (4.5.17)

Proposition 4.5.18. L, ♮(T + V (1)) ∈ Ext1(Z−, L0).

Proof. A similar argument to that of K, shows L occurs in an exact sequence

0 → L0 → L→ Z− → 0.

Thus, by (4.5.9) and Proposition 4.5.10 it remains to show

Ω = spanZ{♮(ν
i ⊗ νi) | 0 ≤ i ≤ 2n} ∼= L0.

To do so, denote the bases of Ω and L0 by {ei | 1 ≤ i ≤ 2n+1}, {fj | 1 ≤ j ≤ 2n+1},
respectively, where ei = ♮(νi−1 ⊗ νi−1) and fj = (y + 1)xi−1. Clearly, we have an
isomorphism as abelian groups. The result now follows as both sets of basis elements
are easily shown to be equivariant under the actions of x and y.

Corollary 4.5.19. L ∼= ♮(T + V (1)).

Proof. It is sufficient to show L and ♮(T+V (1)) belong to the same class ofExt1(Z−, L0).
First, recall (4.1.9) in which j∗(Z) = [y + 1). It is straightforward to see j∗(Z) ∼= L0.
Now, using Eckmann-Shapiro we get Ext1(Z−, j∗(Z)) ∼= Ext1(Z−, Z) ∼= Z/2. Since
L is indecomposable, it clearly does not belong in the trivial class.

For ♮(T + V (1)), we first observe this is free as a Z[C2]-module. Start with the
exact sequence

0 → Λn−1 → (I∗C)− ⊗ (I∗C)− → ♮(T + V (1)) → 0

and apply the exact functor j∗(−) so that we have

0 → Z[C2]
(2n+1)(n−1) → j∗((I∗C)− ⊗ (I∗C)−) → j∗(♮(T + V (1))) → 0.

As (I∗C)−
∼= P , and since j∗(P ) is free of rank n (Proposition 4.4.3), j∗(♮(T +V (1))) is

stably free of rank n+1. By the Swan-Jacobinski Theorem, j∗(♮(T+V (1))) is therefore
free of rank n + 1, i.e. j∗(♮(T + V (1))) ∼= Z[C2]

n+1. Next, j∗(L0) ∼= Z ⊕ Z[C2] (see
below). So if we suppose ♮(T + V (1)) is in the trivial class of Ext1(Z−, L0), then the
exact sequence containing ♮(T +V (1)) splits. In particular, so too does the restriction
of this exact sequence to Z[C2]. In other words, the following is a split short exact
sequence:

0 → Z⊕ Z[C2]
n ι
→ Z[C2]

n+1 → Z− → 0.

This exact sequence can be altered so that

0 → Z → Z[C2]
n+1/ι(Z[C2]

n) → Z− → 0 (4.5.20)

is also exact. By Johnson’s ‘destabilization theorem’ (Proposition 2.4.2) Z[C2]
n+1/ι(Z[C2]

n)
is projective. We can therefore construct the following split short exact sequence

0 → Z[C2]
n ι
→ Z[C2]

n+1 → Z[C2]
n+1/ι(Z[C2]

n) → 0.
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So Z[C2]
n+1/ι(Z[C2]

n) is stably free, and hence free, of rank 1. Replacing this in
(4.5.20), we have

0 → Z → Z[C2] → Z− → 0.

However, this clearly does not split and so ♮(T + V (1)) cannot belong in the trivial
class of Ext1(Z−, L0). Hence, both L and ♮(T +V (1)) belong to the non-trivial class.
It therefore follows that they are isomorphic, as required.

Using Corollary 4.5.19 we can replace ♮(T + V (1)) with L in (4.5.17). We therefore
have the following split the short exact sequence

0 → Λn−1 → (I∗C)− ⊗ (I∗C)− → L→ 0.

By recalling (I∗C)−
∼= P , we have therefore shown:

Proposition 4.5.21. P ⊗ P ∼= L⊕ Λn−1.

Furthermore, note the following dual statement:

Proposition 4.5.22. R⊗R ∼= L⊕ Λn−1.

Proof. By Proposition 4.5.21, we have P⊗P ∼= L⊕Λn−1. Moreover, we know P ∗ ∼= R
and thus, by applying Proposition 2.2.6,

R⊗ R ∼= (P ⊗ P )∗ ∼= (L⊕ Λn−1)∗ ∼= L⊕ Λn−1

where the last isomorphism follows from L and Λn−1 being self dual.

To conclude, we relate this to the result of Section 2.5, Ω1(Z)⊗ Ω1(Z) = Ω2(Z).
Thus far we have shown the minimal level of Ω1(Z) = P ⊕ [y − 1). As such,

(P⊕ [y−1))⊗(P ⊕ [y−1)) ∼= (P⊗P )⊕(P ⊗ [y−1))⊕([y−1)⊗P )⊕([y−1)⊗ [y−1)).
(4.5.23)

By Proposition 4.5.21, P ⊗ P ∼= L ⊕ Λn−1. Moreover, recall K0 = [y − 1) ∼= j∗(I2).
Therefore, by Frobenius Reciprocity and Corollary 2.1.9,

P ⊗ [y − 1) ∼= [y − 1)⊗ P ∼= j∗(I2)⊗ P
∼= j∗(I2 ⊗ j∗(P ))
∼= j∗(I2 ⊗ Z[C2]

n) ∼= j∗(Z[C2]
n) ∼= Λn

where we have used the fact that P is free when considered as a Z[C2]-module. Finally,
we come to [y − 1)⊗ [y − 1).

Proposition 4.5.24. j∗([y − 1)) ∼= I2 ⊕ Z[C2]
n.

Proof. Recall j∗(K) ∼= Z[C2]
n+1 by Proposition 4.4.5 and consider the exact sequence

0 → K0 → K → Z → 0. Now apply the restriction of scalars functor j∗(−) to yield

0 → j∗(K0) → Z[C2]
n+1 → Z → 0.

We also have the exact sequence 0 → I(C2) → Z[C2] → Z → 0. By Schanuel’s
Lemma we therefore have j∗(K0)⊕Z[C2] ∼= I(C2)⊕Z[C2]

n+1. The result now follows
since [I2] is straight.
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Using the fact that j∗(Z) ∼= [y + 1) = L0, a similar proof now shows:

Proposition 4.5.25. j∗([y + 1)) ∼= Z⊕ Z[C2]
n

Proposition 4.5.26. [y − 1)⊗ [y − 1) ∼= [y + 1)⊕ Λn.

Proof. Using Frobenius Reciprocity and Proposition 4.5.24, we have

[y − 1)⊗ [y − 1) ∼= j∗(I2 ⊗ j∗([y − 1)))
∼= j∗(I2 ⊗ (I2 ⊕ Z[C2]

n))
∼= j∗(I2 ⊗ I2)⊕ j∗(Z[C2]

n).

Now, recall that in Chapter 3 we showed I2 ⊗ I2 ∼= Z. Thus,

[y − 1)⊗ [y − 1) ∼= j∗(Z)⊕ j∗(Z[C2]
n) ∼= [y + 1)⊕ Λn.

Combining the above results, (4.5.23) becomes

(P ⊕ [y − 1))⊗ (P ⊕ [y − 1)) ∼= L⊕ [y + 1)⊕ Λ4n−1

as required.

4.6 L⊗ P ∼ R

The aim of this section will be to construct the following isomorphism:

L⊗ P ∼= R ⊕ Λn. (4.6.1)

First, recall:

� P has Z-basis {πx, πx2, . . . , πx2n}, π = (xn − 1)(y − 1);

� L has Z-basis {(y + 1), (y + 1)x, . . . , (y + 1)x2n, Σx}, Σx = 1 + x+ · · ·+ x2n;

� R has Z-basis {(y − 1)(x− 1), (y − 1)(x2 − 1), . . . , (y − 1)(x2n − 1)}.

By counting Z-ranks of P ⊗ L ∼= R ⊕ Λa, we see that a = n, thereby explaining the
number of copies of Λ in (4.6.1).

In Section 4.3 we defined L0 to be the Λ-submodule of L with Z-basis

{(y + 1), (y + 1)x, . . . , (y + 1)x2n}.

Recall that the underlying abelian group of L/L0 is free abelian of rank 1, generated
by the image of Σx upon which x acts trivially and y acts by −1. To reflect this,
write L/L0

∼= Z− and construct the short exact sequence

0 → L0 → L→ Z− → 0.

Tensoring with P yields the following short exact sequence,

0 → L0 ⊗ P → L⊗ P → Z− ⊗ P → 0. (4.6.2)
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To achieve the goal of this section, it is necessary to investigate L0 ⊗ P and Z− ⊗ P ,
which we do by considering their respective representations. Trivially, we have:

Proposition 4.6.3. ρZ−
(x−1) = 1, and ρZ−

(y) = −1.

Corollary 4.6.4. For any module M ,

ρZ−⊗M(x−1) = ρM (x−1) and ρZ−⊗M(y) = −ρM(y).

Proposition 4.6.5. The representation of the x-action on Z− ⊗ P is given by

(ρZ−⊗P (x
−1))ij =





1, j = i− 1, 2 ≤ i ≤ 2n;

−1, j = 2n, 1 ≤ i ≤ 2n;

0, o/w.

Proof. Write ei = πxi, where 1 ≤ i ≤ 2n. Then ei · x = ei+1 for 1 ≤ i ≤ 2n− 1, and
e2n · x = π. Since Σx is central we note πΣx = 0. It follows that π = −πx − πx2 −
· · · − πx2n = −

∑2n
i=1 ei. As x acts trivially on Z−, it therefore follows that

ρZ−⊗P (x
−1) =




0 0 · · · 0 −1
1 0 · · · 0 −1
0 1 · · · 0 −1
...

...
. . .

...
...

0 0 · · · 1 −1




as required.

In what follows, it will be convenient to use the following form for ρZ−⊗P (x
−1):

Proposition 4.6.6.

ρZ−⊗P (x
−1) =

(
P1 P2

P3 P4

)

where P1, P2, P3, P4 are each n× n blocks such that

(P1)ij =

{
1, j = i− 1, 2 ≤ i ≤ n;

0, o/w;
(P2)ij =

{
−1, j = n, 1 ≤ i ≤ n;

0, o/w;

(P3)ij =

{
1, i = 1, j = n;

0, o/w;
(P4)ij =





1, j = i− 1, 2 ≤ i ≤ n;

−1, j = n, 1 ≤ i ≤ n;

0, o/w.

Proof. Both P1, P4 follow in a straightforward manner by simply restricting i, j to
the intervals 1 ≤ i, j ≤ n and n + 1 ≤ i, j ≤ 2n, respectively. For P2, P3 it is worth
saying a bit more. For the former, we restrict ourselves to the interval 1 ≤ i ≤ n and
n+1 ≤ j ≤ 2n. By Proposition 4.6.5, we know we have a non-zero entry in this n×n
block only when j = 2n and 1 ≤ i ≤ n, or when j = i− 1 and 2 ≤ i ≤ n. In the first
instance, this gives the −1 as required. In the latter, we note that when i is at its
largest (i.e. i = n), then j = n − 1, which is not in the interval we are considering.
As such, P2 only has non-zero entries when j = 2n and 1 ≤ i ≤ n.

Similarly for P3, we now restrict ourselves to the intervals n + 1 ≤ i ≤ 2n and
1 ≤ j ≤ n. As before, Proposition 4.6.5 tells us any non-zero entry occurs when
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j = i − 1 and n + 1 ≤ i ≤ 2n. Now, when i is at its smallest (i.e. i = n + 1) then
j = n and is within our block of interest. Beyond that however j must be in the
interval n + 1 ≤ j ≤ 2n and therefore of no interest to us for P3.

Proposition 4.6.7. The representation of the y-action of Z− ⊗ P is given by,

(ρZ−⊗P (y))ij =

{
1, j = 2n+ 1− i, 1 ≤ i ≤ 2n;

0, o/w.

Proof. Consider the y-action on a general basis element of P ,

eiy = πxiy = (xn − 1)(y − 1)yx2n+1−i = −πx2n+1−i = −e2n+1−i

By Corollary 4.6.4 we therefore have the desired representation,

ρP (y) =




0 0 · · · 0 −1
0 0 · · · −1 0
...

... . .
. ...

...
0 −1 · · · 0 0
−1 0 · · · 0 0




= −ρZ−⊗P (y). (4.6.8)

Now repeat the process for the x, y-actions on R.

Proposition 4.6.9. The representation of the x-action on R is given by,

(ρR(x
−1))ij =





1, j = i− 1, 2 ≤ i ≤ 2n;

−1, i = 1, 1 ≤ j ≤ 2n;

0, o/w.

Proof. Set fi = (y − 1)(xi − 1), where 1 ≤ i ≤ 2n. Then,

fi · x = (y − 1)(xi − 1)x = (y − 1)(xi+1 − 1)− (y − 1)(x− 1) = fi+1 − f1

for 1 ≤ i ≤ 2n− 1, and f2n · x = −f1. The result now follows; that is,

ρR(x
−1) =




−1 −1 · · · −1 −1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




A similar proof to that of Proposition 4.6.6 shows:

Proposition 4.6.10.

ρR(x
−1) =

(
R1 R2

R3 R4

)
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where R1, R2, R3, R4 are each n× n blocks such that

(R1)ij =





1, j = i− 1, 2 ≤ i ≤ n;

−1, i = 1, 1 ≤ j ≤ n;

0, o/w;

(R2)ij =

{
−1, i = 1, 1 ≤ j ≤ n;

0, o/w;

(R3)ij =

{
1, i = 1, j = n;

0, o/w;
(R4)ij =

{
1, j = i− 1, 2 ≤ i ≤ n;

0, o/w.

Proposition 4.6.11. The representation of the y-action on R is given by,

ρR(y) =

{
−1, j = 2n+ 1− i;

0, o/w.

In particular, ρR(y) = −ρZ−⊗P (y).

Proof. As before, apply y to a general fi to yield,

fiy = (y − 1)(xi − 1)y = (y − 1)y(x2n+1−i − 1) = −f2n+1−i.

The result now follows.

To show the equivalence of Z−⊗P and R, we define the following (2n)× (2n) matrix
X ,

X =

(
0 −αT

α 0

)
(4.6.12)

where

αij =

{
1, j ≥ i;

0, j < i.

Proposition 4.6.13. With X as defined in (4.6.12), ρZ−⊗P (x
−1)X = XρR(x

−1).

Proof. Using Propositions 4.6.6 and 4.6.10,

ρZ−⊗P (x
−1)X =

(
P2α −P1α

T

P4α −P3α
T

)
, and XρR(x

−1) =

(
−αTR3 −αTR4

αR1 αR2

)
.

We therefore have four calculations to check. First we show P2α = −αTR3. Now,
(P2α)ik =

∑n
j=1(P2)ijαjk 6= 0 only if k ≥ j and j = n, 1 ≤ i ≤ n. In other words,

when k = n and 1 ≤ i ≤ n then (P2α)i, n = −1. For any other entry we get 0.
Now, (αTR3)ik =

∑n
j=1 αji(R3)jk 6= 0 when i ≥ j and j = 1, k = n. So, when

k = n and i ≥ 1 (αTR3)i, n = 1 and zero otherwise. Thus, P2α = −αTR3 as required.

Next, we show P1α
T = αTR4 by first observing (P1α

T )ik =
∑n

j=1(P1)ijαkj 6= 0
when j ≥ k, j = i − 1 and 2 ≤ i ≤ n. Putting this together, we see that for i > k
where 2 ≤ i ≤ n and 1 ≤ k ≤ n− 1 we have (P1α

T )ik = 1, and zero otherwise.
Likewise, (αTR4)ik =

∑n
j=1 αji(R4)jk 6= 0 when i ≥ j, k = j − 1 and 2 ≤ j ≤ n.

So when i > k, 1 ≤ k ≤ n − 1 and 2 ≤ i ≤ n we have (αTR4)ik = 1, and zero
otherwise. In other words, we have the desired equality.

For P4α = αR1 note (P4α)ik =
∑n

j=1(P4)ijαjk 6= 0 when either:
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� k ≥ j, j = i− 1 and 2 ≤ i ≤ n, in which case we have +1; or when

� k ≥ j, j = n and 1 ≤ i ≤ n when we have −1.

Putting the above two cases together we find that when k ≥ i−1 and 2 ≤ i ≤ n, then
(P4α)ik = 1. However if k = n, then (P4α)i, n 6= 0 only when i = 1. This is due to
a cancellation occurring from the +1 and −1 whenever i ≥ 2. Putting this together,
we have

(P4α)ik =





1, i− 1 ≤ k ≤ n− 1, 2 ≤ i ≤ n;

−1, i = 1, k = n;

0, o/w.

Adopting a similar approach shows (αR1)ik =
∑n

j=1 αij(R1)jk 6= 0 when either:

� j ≥ i, k = j − 1 and 2 ≤ j ≤ n, in which case we have +1; or when

� j ≥ i, j = 1 and 1 ≤ k ≤ n when we have −1.

By putting this together we once more get a cancellation between the +1, −1 when
i = 1 and k < n, and so for i = 1, k = n we get a value of −1. When 2 ≤ i ≤ n and
i− 1 ≤ k ≤ n− 1, we get a value of 1. Thus, we conclude P4α = αR1.

Finally, we show −P3α
T = αR2. First, (−P3α

T )ik =
∑n

j=1(−P3)ijαkj 6= 0 only
if j ≥ k, i = 1 and j = n. In other words, we get a value of −1 when i = 1, and
zero otherwise. Likewise, (αR2)ik =

∑n
j=1 αij(R2)jk 6= 0 only when j ≥ i, j = 1 and

1 ≤ k ≤ n, i.e. when i = 1. In this case we get −1, and zero otherwise.

Proposition 4.6.14. With X as defined in (4.6.12), ρZ−⊗P (y)X = XρR(y).

Proof. Now, it is quite clear that ρZ−⊗P (y) may be written in the form

ρZ−⊗P (y) =

(
0 P0

P0 0

)

where P0 is an n× n block such that

(P0)ij =

{
1, j = n+ 1− i, 1 ≤ i ≤ n;

0, o/w.

It is then also clear that

ρR(y) =

(
0 −P0

−P0 0

)
.

As such, it is quite clear that

ρZ−⊗P (y)X =

(
P0α 0
0 −P0α

T

)
, and XρR(y) =

(
αTP0 0
0 −αP0

)
.

It remains to show αP0 = P0α
T and αTP0 = P0α. Observe (αP0)ik =

∑n
j=1 αij(P0)jk

which is non-zero when j ≥ i and k = n+1−j; that is, when k ≤ n+1−i. In this case
we get a value of +1, and zero otherwise. Likewise, (P0α

T )ik =
∑n

j=1(P0)ijαkj 6= 0

when j = n+ 1− i and j ≥ k, i.e. when n+1− i ≥ k. Thus, αP0 = P0α
T . A similar

proof shows αTP0 = P0α.
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Proposition 4.6.15. Z− ⊗ P ∼= R.

Proof. By Propositions 4.6.13 and 4.6.14, it remains to show X is invertible over Z.
Define the n× n matrix β by

βij =





1, i = j;

−1, j = i+ 1;

0, o/w.

Observe (αβ)ik =
∑n

j=1 αijβjk =
∑n

j≥i βjk. Suppose now that i = k, then (αβ)ii = 1
since βji = 0 for any j 6= i in the range i ≤ j ≤ n. If i 6= k then there are two cases
to consider. If k < i then (αβ)ik = 0 since βjk = 0 for any k < i ≤ j ≤ n. If k > i,
then (αβ)ik = βk−1,k + βkk = −1 + 1 = 0. Thus, αβ = In. A similar argument now
shows βα = In, i.e. α

−1 = β. Finally, we define the matrix

Y =

(
0 β

−βT 0

)
,

and a straightforward calculation shows XY = I2n = Y X . In other words, X is
invertible over Z, as required.

Next, we show L0⊗P is free. In particular, by counting Z-ranks, it is necessarily
free of rank n.

Proposition 4.6.16. L0 ⊗ P ∼= Λn.

Proof. Consider j∗(Z) ∼= L0. By Proposition 4.4.3, j∗(P ) ∼= Z[C2]
n. So, by using

Frobenius reciprocity we have:

L0 ⊗ P ∼= j∗(Z)⊗ P
∼= j∗(Z⊗ Z[C2]

n)
∼= j∗(Z[C2]

n)
∼= Λn

From Propositions 4.6.15 and 4.6.16 we can now rewrite (4.6.2) as,

0 → Λn → L⊗ P → R→ 0.

Dualising yields a split short exact sequence and so (L⊗P )∗ ∼= P ⊕Λn. By dualising
once again Proposition 2.1.1 yields the desired conclusion; that is,

Proposition 4.6.17. L⊗ P ∼= R⊕ Λn.

As with the end of Section 4.5 we explicitly calculate the tensor product at the
minimal level of Ω2(Z)⊗ Ω1(Z). We have,

(L⊕ [y+1))⊗(P ⊕ [y−1)) ∼= (L⊗P )⊕(L⊗ [y−1))⊕([y+1)⊗P )⊕([y+1)⊗ [y−1)).
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By Proposition 4.6.17 we know L⊗ P ∼= R ⊕ Λn. Using Frobenius Reciprocity,

[y + 1)⊗ P ∼= j∗(Z⊗ j∗(P ))
∼= j∗(Z[C2]

n)
∼= Λn.

Recall j∗(L) ∼= Z[C2]
n+1 from Proposition 4.4.6. Using this and Frobenius reciprocity,

L⊗ [y − 1) ∼= j∗(Z− ⊗ j∗(L))
∼= j∗(Z[C2]

n+1)
∼= Λn+1.

Finally, we come to [y+1)⊗ [y−1) and proceed much as before. Applying Frobenius
Reciprocity and Proposition 4.5.24, we get

[y + 1)⊗ [y − 1) ∼= j∗(Z⊗ (I2 ⊕ Z[C2]
n))

∼= j∗(I2 ⊕ Z[C2]
n)

∼= j∗(I2)⊕ j∗(Z[C2]
n)

∼= [y − 1)⊕ Λn.

Putting this all together, we finally get the desired isomorphism:

(L⊕ [y + 1))⊗ (P ⊕ [y − 1)) ∼= R⊕ [y − 1)⊕ Λ4n+1.

4.7 R⊗ P ∼ K

To conclude the proof of Theorem B, we construct the isomorphism,

R⊗ P ∼= K ⊕ Λn−1. (4.7.1)

As before, the number of copies of Λ is justified by counting Z-ranks of R⊗ P . It is
clear that we must add on n− 1 copies of Λ to K.

Proposition 4.7.2. R⊗ P ∼= (Z− ⊗ L)⊕ Λn−1.

Proof. In the previous section we showed R ∼= Z− ⊗ P . Using Proposition 4.5.1, we
have

R⊗ P ∼= (Z− ⊗ P )⊗ P
∼= Z− ⊗ (L⊕ Λn−1)
∼= (Z− ⊗ L)⊕ (Z− ⊗ Λn−1) ∼= (Z− ⊗ L)⊕ Λn−1.

It remains to show Z− ⊗ L ∼= K. To this end, recall L has a Z-basis,

{(y + 1), (y + 1)x, . . . , (y + 1)x2n, Σx}.
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and K has Z-basis,

{(y − 1), (y − 1)x, . . . , (y − 1)x2n, Σx}.

Proposition 4.7.3. Define the (2n+ 1)× (2n+ 1) matrix Ψ as before; that is,

Ψij =





1, i = 1, j = 2n+ 1;

1, j = i− 1, 2 ≤ i ≤ 2n+ 1;

0, o/w.

Then ρZ−⊗L(x
−1) =

(
Ψ 0(2n+1)×1

01×(2n+1) 1

)
.

Proof. Set Ei = (y+1)xi−1 for 1 ≤ i ≤ 2n+1, and E2n+2 = Σx. Clearly, Ei ·x = Ei+1

for 1 ≤ i ≤ 2n and E2n+1 ·x = E1. Finally, E2n+2 ·x = E2n+2. The result now follows
since x acts trivially on Z−, i.e ρZ−

(x−1) = 1.

Proposition 4.7.4. Define the (2n+ 1)× (2n+ 1) matrix Φ as before,

Φij =





1, i = j = 1;

1, j = 2n+ 3− i, 2 ≤ i ≤ 2n+ 1;

0, o/w.

Then ρZ−⊗L(y) =

(
−Φ −1(2n+1)×1

01×(2n+1) 1

)
.

Proof. With Ei as above, consider how y acts on the basis elements of L. First
observe,

E1 + E2 + · · ·+ E2n+1 = Σxy + E2n+2.

Now, E1y = E1 and for a general Ei where 2 ≤ i ≤ 2n+ 1,

Eiy = (y + 1)xi−1y = (y + 1)yx2n+2−i = E2n+3−i

E2n+2y = y + xy + · · ·+ x2ny = E1 + E2 + · · ·+ E2n+1 − E2n+2.

Finally, apply Corollary 4.6.4 so that

ρL(y) =




1 0 0 · · · 0 0 1
0 0 0 · · · 0 1 1
0 0 0 · · · 1 0 1
...

...
...

...
...

...
0 0 1 · · · 0 0 1
0 1 0 · · · 0 0 1
0 0 0 · · · 0 0 −1




= −ρZ−⊗L(y) (4.7.5)

Next, we do the same for K.

Proposition 4.7.6. With Ψ as above, ρK(x
−1) =

(
Ψ 0(2n+1)×1

01×(2n+1) 1

)
.
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Proof. Set Fi = (y− 1)xi−1 for 1 ≤ i ≤ 2n+1, and F2n+2 = Σx. As with Proposition
4.7.3, Fi · x = Fi+1 for 1 ≤ i ≤ 2n, F2n+1 · x = F1 and F2n+2 · x = F2n+2.

Proposition 4.7.7. With Φ as above, ρK(y) =

(
−Φ 1(2n+1)×1

01×(2n+1) 1

)
.

Proof. First observe

F1 + F2 + · · ·+ F2n+1 = Σxy − F2n+1.

Now, F1 · y = −F1, and y acts on the other Fi as follows,

Fiy = (y − 1)xi−1y = (y − 1)yx2n+2−i = −F2n+3−i.

Finally
F2n+2 · y = y + xy + · · ·+ x2ny = F1 + · · ·+ F2n+2.

The representation of the y-action for K is therefore

ρK(y) =




−1 0 0 · · · 0 0 1
0 0 0 · · · 0 −1 1
0 0 0 · · · −1 0 1
...

...
... . .

. ...
...

...
0 0 −1 · · · 0 0 1
0 −1 0 · · · 0 0 1
0 0 0 · · · 0 0 1




. (4.7.8)

Proposition 4.7.9. ρZ−⊗L(g) and ρK(g) are equivalent for all g ∈ D4n+2.

Proof. Define

Xij =





1, i = j, 1 ≤ i, j ≤ 2n+ 1;

−1, i = j = 2n+ 2;

0, o/w

i.e. X =

(
I2n+1 0(2n+1)×1

01×(2n+1) −1

)
. We claim Xρk(g) = ρZ−⊗L(g)X for all g ∈ D4n+2.

First, it is straightforward to see the sizes of each block ‘match up’ and,

ρZ−⊗L(x
−1)X =

(
Ψ 0(2n+1)×1

01×(2n+1) −1

)
= XρK(x

−1).

Similarly,

ρZ−⊗L(y)X =

(
−Φ 1(2n+1)×1

01×(2n+1) −1

)
= XρK(y).

Since X is clearly invertible, this completes the proof.

Corollary 4.7.10. Z− ⊗ L ∼= K.

Proposition 4.7.2 and Corollary 4.7.10 therefore imply:

Proposition 4.7.11. R⊗ P ∼= K ⊕ Λn−1.
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Evidently, by combining the main results of Sections 4.5 - 4.7, we have proven
Theorem B. Finally, we explicitly demonstrate Ω3(Z)⊗ Ω1(Z) = Ω4(Z). We proceed
as before and observe

(R⊕ [y−1))⊗(P ⊕ [y−1)) ∼= (R⊗P )⊕(R⊗ [y−1))⊕([y−1)⊗P )⊕([y−1)⊗ [y−1)).

From Proposition 4.7.11, as well as Sections 4.5 and 4.6 we have R⊗ P ∼= K ⊕Λn−1,
[y − 1) ⊗ [y − 1) ∼= [y + 1) ⊕ Λn and [y − 1) ⊗ P ∼= Λn. As P ∗ ∼= R and [y − 1) is
self-dual, it also follows that [y − 1)⊗ R ∼= Λn. Putting this all together, we finally
get

(R⊕ [y − 1))⊗ (P ⊕ [y − 1)) ∼= K ⊕ [y + 1)⊕ Λ4n−1

as required.

4.8 A diagonal resolution for Z[D4n+2]

Using the results of Sections 4.4 - 4.7, we may now construct a free resolution providing
an affirmative answer to the sequencing conjecture discussed in the overview of Section
1. The author stresses that, unlike [24], this sequence is not explicit. Nevertheless,
this does suggest a method which allows the construction of such resolutions in the
case of p, q prime where q|p−1 (provided q is given). This shall be particularly useful
in the next chapter where we consider the case when q = 3. The benefit is that for
q = 3 no explicit diagonal resolution has been found. However, it should be noted
that beyond q = 3, the calculations quickly become unmanageable by hand and so a
general treatment of G(p, q) is likely to depend upon a different method.

Proposition 4.8.1. There exists an exact sequence,

0 P Λ Λ Λ Λ P 0

K L

R (4.8.2)

Proof. Recall that we have the exact sequence,

0 → L→ Λ → P → 0. (4.8.3)

By applying the exact functor −⊗ P we get,

0 → L⊗ P → Λ2n → P ⊗ P → 0

which, by Propositions 4.5.21 and 4.6.17, becomes

0 → R⊕ Λn
j
→ Λ2n → L⊕ Λn−1 → 0.

Evidently, this can be transformed into the exact sequence,

0 → R → Λ2n/j(Λn) → L⊕ Λn−1 → 0.
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Observe that we have the following exact sequence,

0 → Λn
j
→ Λ2n → Λ2n/j(Λn) → 0.

By Johnson’s ‘destabilization theorem’ (Proposition 2.4.2), Λ2n/j(Λn) is projective
and hence the above exact sequence splits. It follows that Λ2n/j(Λn) is stably free of
rank n, and hence free by Swan-Jacobinski. Thus, we have the exact sequence,

0 → R → Λn → L⊕ Λn−1 → 0.

By dualising and once again applying Proposition 2.4.2 we ‘remove’ the Λn−1 from the
right hand module. Dualising a final time and our exact sequence thereby becomes,

0 → R → Λ → L→ 0 (4.8.4)

to which we once more apply the functor −⊗ P . This yields,

0 → K ⊕ Λn−1 → Λ2n → R⊕ Λn → 0

by using Propositions 4.6.17 and 4.7.11. Once again, we use two applications of
Proposition 2.4.2 to ‘remove’ the ‘extra’ free modules, thereby producing the following
exact sequence,

0 → K → Λ → R → 0. (4.8.5)

Applying the functor −⊗ P one final time yields the exact sequence,

0 → P ⊕ Λn → Λ2n → K ⊕ Λn−1 → 0.

Here we have used Propositions 4.4.4 and 4.7.11. As before, we use two applications
of Proposition 2.4.2 to remove the ‘extra’ free module. This yields,

0 → P → Λ → K → 0. (4.8.6)

It is now straightforward to splice the sequences (4.8.3) - (4.8.6) to construct the
desired sequence.

Recall the resolution of the y-strand given in (4.0.3). By combining this with the
resolution of (4.8.1) yields the desired resolution:

0 Z Λ Λ⊕ Λ Λ⊕ Λ Λ Z 0.
ǫ∗

(
∂+3
y − 1

) (
∂+2 0
0 y + 1

) (
∂+1 , y − 1

)
ǫ

(4.8.7)



Chapter 5

The syzygies of G(p, 3)

For this chapter let G = G(p, 3) = Cp ⋊ C3 where p is a prime such that 3|p− 1. In
this way C3 acts on Cp via the natural embedding C3 →֒ Aut(Cp) and we write

Cp ⋊ C3 =< x, y | xp = y3, yx = θ(x)y >

where θ ∈ Aut(Cp). Throughout this chapter, we denote the integral group ring of G
by Λ = Z[G(p, 3)], and write d = (p− 1)/3.

The aim of this chapter shall be to mirror the techniques of Chapter 4. In
particular, we construct a resolution of the form:

0 ĪC Λ Λ Λ Λ Λ Λ ĪC 0

L∗LK

(x− 1)ICĪ∗C

Here, we have once again used the bar notation (such as for ĪC) to represent the
Galois module obtained from the action of C3 (for example, the action of C3 on IC).
We shall define this formally for q = 3 in the next section. To construct the above
resolution we prove Theorems D, E, F and G of Section 1.2; that is,

Theorem D: K⊗? ∼=?⊕ Λr for some r ≥ 0.

Theorem E: K is stably self-dual.

Theorem F: With K,L, L∗ as above, we have:

1. ĪC ⊗ ĪC ∼= L∗ ⊕ Λd−1;

2. ĪC ⊗ L∗ ∼= (x− 1)IC ⊕ Λ2d;

3. ĪC ⊗ (x− 1)IC ∼= L⊕ Λd−1;

4. ĪC ⊗ L ∼= Ī∗C ⊕ Λ2d;

5. ĪC ⊗ Ī∗C
∼= K ⊕ Λd−1.

75
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Whereas the construction of the exact sequence above provides an affirmative
answer to the sequencing conjecture, this suffers from the same shortcomings of the
previous chapter. Namely, this exact sequence is not explicitly calculated. The miss-
ing ingredient is actually to find the specific polynomials that generate the above
(monogenic) modules. Nevertheless, this still represents significant progress in this
area.

5.1 The modules R(1), R(2) and R(3)

We have the following subring of M3(A) consisting of quasi-triangular matrices

T3(A, π) = {X ∈M3(A) | xij ∈ (π) if i > j}

where A = Z[ζp]
θ is the subring of Z[ζp] fixed by θ, and π = (ζp−1)3. As we shall see

in Part II of this thesis (see example 6.2.12), T3(A, π) occurs in the following fibre
square:

Λ −−−→ T3(A, π)y
y

Z[C3] −−−→ Fp[C3]

In particular, if R(i) is the ith row of T3(A, π) considered as a right Λ-module, then
we have the following decomposition of T3(A, π),

T3(A, π) ∼= R(1)⊕ R(2)⊕R(3).

To see this explicitly, we can write

R(1) =







a1 a2 a3
0 0 0
0 0 0


 , ai ∈ A





R(2) =








0 0 0
πa1 a2 a3
0 0 0


 , ai ∈ A





R(3) =








0 0 0
0 0 0
πa1 πa2 a3


 , ai ∈ A



 .

Our initial goal here is to provide a more suitable description for the modules
R(i). Recall once more that Aut(Cp) ∼= Cp−1. Since p is chosen such that 3|p − 1
we define d = (p − 1)/3. We now choose some θ ∈ Aut(Cp) such that ord(θ) = 3.
Provided we are consistent, the actual choice of θ matters little. Thus, we choose
once and for all a θ such that θ(x) = xα where α3 ≡ 1 (mod p), and can therefore
legitimately describe G(p, 3) as,

G = G(p, 3) = Cp ⋊ C3 =< x, y | xp = y3, yx = xαy > .

Henceforth, denote Λ = Z[G(p, 3)]. There are natural inclusions i : Z[Cp] →֒ Λ and
j : Z[C3] →֒ Λ. As we frequently restrict scalars to those over Z[Cp] we shall, for the
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sake of ease, denote Λ0 = Z[Cp]. Additionally, denote the augmentation ideal of Λ0

by IC , and that of Z[C3] by I3. Throughout, we denote the trivial module over any
group ring by Z.

Once again, we transform a Λ0-lattice M into a module over Λ via a Galois
action. To do so first define a Galois structure onM to be an additive automorphism
Θ :M →M such that Θ(m ·x) = Θ(m) ·θ(x) for all m ∈M and such that Θ3 = IdM .
A Galois lattice shall then mean a pair (M, Θ) where M is a lattice over Λ0 and Θ
is a Galois structure on M . We then make a Galois lattice (M, Θ) into a (right)
Λ-lattice via the action,

m · xa = mxa;

m · yb = Θ−b(m), (Θb(m) = my−b).

For us, the significant examples of Galois lattices arise from the ideals of Λ0 which
are invariant under θ. If J ⊂ Λ0 is such an ideal then we put J̄ = (J, ΘJ) where ΘJ

is simply the restriction of θ to J . As such, we obtain the following four modules of
interest

(i) Λ̄0;

(ii) ĪC ;

(iii) (x− 1)IC ;

(iv) Ī∗C .

It is straightforward to show:

Λ̄0
∼= [Σy) = spanZ{Σyx

i | 0 ≤ i ≤ p− 1}. (5.1.1)

Of decidedly more interest, however, is the question of what the modules (ii)-(iv)
represent. First recall our definition of basis elements νi for 1 ≤ i ≤ p− 1, as defined
in Chapter 4. For (iv) we note y acts on νi by y · νi = νθ∗(i). As we are primarily
interested in right actions, we make the usual alteration via the standard involution
to give νi · y = νθ

−1
∗ (i) = νθ

2
∗
(i). As it is often unclear when a module is isomorphic to

Ī∗C , we note the following criteria (see [25]) that characterise the module Ī∗C amongst
Λ-modules.

Proposition 5.1.2. Let M be a Λ-lattice and suppose that the following three condi-
tions are satisfied:

(I) there exists µ ∈M such that µ · y = µ and M = spanZ{µ · xr | 0 ≤ r ≤ p− 1};

(II) rkZ(M) = p− 1;

(III) m · Σx = 0 for each m ∈M .

Then M ∼=Λ Ī∗C and {µ · xr | 0 ≤ r ≤ p− 2} is a Z-basis for M .

Returning to the discussion of the modules R(i), we first note that these are
pairwise isomorphically distinct (see [41] or [25]); that is:

R(i) ∼=Λ R(j) if and only if i = j. (5.1.3)
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Moreover, we note the following duality relation:

R(i)∗ ∼= R(4− i). (5.1.4)

Now that we have an understanding of how the R(i) interact under duality, we relate
this to the modules induced from IC and I∗C . It is straightforward to show R(3)
satisfies conditions (I)-(III) of Proposition 5.1.2 where µ = (0, 0, 1) ∈ R(3) (see [41],
Chapter 4.3 or [25]) and so we therefore have:

R(3) ∼= Ī∗C . (5.1.5)

By (5.1.4), we necessarily have:
R(1) ∼= ĪC . (5.1.6)

We are now left with R(2) and the reader is once more directed to Chapter 4.3 of [41]
to see that, as expected, we have:

R(2) ∼= (x− 1)IC . (5.1.7)

It is therefore a straightforward consequence that ĪC , (x− 1)IC , Ī∗C are all isomorphi-
cally distinct. We conclude by observing the following fact [17], [25]:

The augmentation ideal IG of G(p, 3) decomposes as IG ∼= ĪC ⊕ [y − 1). (5.1.8)

5.2 Indecomposable modules and tree structures

For clarity, we restate Proposition 5.2.1 in the case where q = 3.

Proposition 5.2.1. There are a total of 17 distinct non-isomorphic genera of inde-
composable modules for Λ = Z[G(p, 3)].

In the manner of [41], we list the indecomposable modules as follows:

I. There are three indecomposable modules over Z[C3] that become modules over
Λ via the quotient map G(p, 3) → C3:

(i) The trivial module (rank 1);

(ii) The augmentation ideal, I3 = Ker(Z[C3] → Z) (rank 2);

(iii) The group ring itself Z[C3] (rank 3).

II. There are three distinct indecomposable modules over T3(A, π):

(iv) Ī∗C = Z[ζp] ∼= R(3), where ζp = exp(2πi/p) (rank p− 1);

(v) ĪC = (ζp − 1)Z[ζp] ∼= R(1) (rank p− 1);

(vi) (x− 1)IC = (ζp − 1)2Z[ζp] ∼= R(2) (rank p− 1).

These are distinct Λ-modules via the twisting relation yζrp = ζ
θ∗(r)
p y.
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The above can be thought of as the ‘basic’ indecomposable modules. The remain-
ing genera of indecomposable modules then arise in the form of non-split extensions

0 → X →? → Y → 0

where X is the direct sum of possible combinations of Ī∗C , ĪC , (x− 1)IC (without
repetition), and Y = Z, I3 or Z[C3]. The proof of this can be found in [10], [39] and,
in the form of a specific case, in [41].

III. There is one extension when Y = Z:

(vii) 0 → ĪC → Λ̄0 → Z → 0 (rank p).

IV. There are three indecomposable non-split extensions when Y = I3:

(viii) 0 → ĪC → V1 → I3 → 0 (rkZ(V1) = p+ 1);

(ix) 0 → Ī∗C → V2 → I3 → 0 (rkZ(V2) = p+ 1);

(x) 0 → ĪC ⊕ Ī∗C → [y − 1) → I3 → 0 (rank 2p).

V. There are three indecomposable non-split extensions for Y = Z[C3] and
rkZ(X) = p− 1:

(xi) 0 → ĪC →W1 → Z[C3] → 0, (rkZ(W1) = p+ 2);

(xii) 0 → (x− 1)IC →W2 → Z[C3] → 0, (rkZ(W2) = p+ 2);

(xiii) 0 → Ī∗C →W3 → Z[C3] → 0, (rkZ(W3) = p+ 2).

VI. Set Q(i) = Λ/R(i). There are four indecomposable non-split extensions for
Y = Z[C3] where X is the direct sum of ĪC , (x− 1)IC or Ī∗C :

(xiv) 0 → ĪC ⊕ (x− 1)IC → Q(3) → Z[C3] → 0, (rkZ(Q(3)) = 2p+ 1);

(xv) 0 → ĪC ⊕ Ī∗C → Q(2) → Z[C3] → 0, (rkZ(Q(2)) = 2p+ 1);

(xvi) 0 → (x− 1)IC ⊕ Ī∗C → Q(1) → Z[C3] → 0, (rkZ(Q(1)) = 2p+ 1);

(xvii) 0 → ĪC ⊕ (x− 1)IC ⊕ Ī∗C → Λ → Z[C3] → 0, (rank 3p).

Any other indecomposable module belongs to the non-trivial elements of K̃0(Λ)
and are therefore of no consequence in the context of free resolutions. Using the above
we can now discuss the tree structures of the syzygies Ωr(Z) in some detail. First
note the following result of Remez (see [41], p.79):

Proposition 5.2.2. For any metacyclic group Λ = Z[G(p, 3)], set Q(i) = Λ/R(i).
We describe the syzygies at the minimal level of its free resolution by

Ωr(Z) =

{
R(i+ 1)⊕ [y − 1), when r = 2i+ 1;

Q(i+ 1)⊕ [Σy), when r = 2i.

Recall that the free period of G(p, 3) is 6. Thus, by using Proposition 2.7.4 and
Corollary 2.7.5, we have:

Proposition 5.2.3. Both Ω1(Z) and Ω5(Z) are straight.
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For the third syzygy we note the following result of Remez (see [41], p.83):

Proposition 5.2.4. For Λ = Z[G(p, 3)], Ω3(Z) is straight.

As already observed, the situation for even syzygies is decidedly more complex.
Nevertheless, we do have the following consequence of Proposition 2.7.6:

Proposition 5.2.5. Ω0(Z) = Ω6(Z) is straight.

As we are interested in the decompositions of these syzygies (and in particular the so-
called x-strand) we note the straightness of some of the component parts. A similar
argument to that of Proposition 4.2.1 shows:

Proposition 5.2.6. LetM ∈ Ω1(Z) be a minimal representative; thenM decomposes
as M ∼=M1 ⊕M2, where M1, M2 are non-trivial indecomposable modules.

In the case of G(p, 3), (2.8.2) takes the form:

Proposition 5.2.7. The tree structure of [R(1)] is straight.

Proposition 5.2.8. The tree structure of [R(2)] is straight.

Proposition 5.2.9. The tree structure of [R(3)] is straight.

As with the dihedral case, we have the following result:

Proposition 5.2.10. The stable module Ω0(Z) decomposes as two non-trivial inde-
composable modules

Ω0(Z) = [Z] = [Q(1)]⊕ [y2 + y + 1].

However, unlike the case for the odd syzygies we do not know if there is a suitable
and unique module of rank 2p + 1. Rather, we only know such modules exist in an
exact sequence of the form

0 → (x− 1)IC ⊕ Ī∗C →? → Z[C3] → 0.

As such, we cannot conclude that the tree structure of [Q(1)] is straight. We note
that similar results exist for the other two even syzygies, i.e. both decompose as a
direct sum of two non-trivial indecomposable modules. Once again, this does not
imply the corresponding tree structures of the component parts are straight.

5.3 The sequencing conjecture

Recall the sequencing conjecture discussed in Chapter 1. In [25], the existence of the
following exact sequence was shown,

0 R(1) Λ Λ P (2) Λ P (1) Λ R(1) 0.

K(1)K(2)K(3)

R(2)R(3)
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In the above K(i) = Ker(pi : Λ → R(i)), and P (1), P (2) are projective modules such
that their direct sum is isomorphic to the free module Λ2 of rank 2. The sequencing
conjecture in this case asserts that both P (i) are in fact free. One of the results of
this chapter is to provide an affirmative answer to this conjecture. To do so we first
prove the existence of the so-called ‘basic sequences’:

Theorem H: There exist the following three basic sequences:

(i)

0 R(1) Λ Λ R(3) 0;

K(3)

(B(1))

(ii)

0 R(2) Λ Λ R(1) 0;

K(1)

(B(2))

(iii)

0 R(3) Λ Λ R(2) 0.

K(2)

(B(3))

It is then straightforward to splice the three basic sequences together to provide an
affirmative answer to the sequencing conjecture for q = 3. The author notes that part
(i) of Theorem H has already been shown by Johnson (see [25]) and, as will be seen,
we shall only require part (ii) of Theorem H to prove Theorem I. Nevertheless, in the
process of showing the existence of part (iii) we can say quite a bit more about what
is happening in these syzygies.

5.4 The module K

Define the module K = [y − 1, Σx).

Proposition 5.4.1. K has Z-basis E = {(yi−1)xj |1 ≤ i ≤ 2, 0 ≤ j ≤ p−1}∪{Σx}.

Proof. Start by defining

K0 = {(y − 1)a(x) + (y2 − 1)b(x) | a(x), b(x) ∈ Λ0} ⊂ K.

It is straightforward to see

(y − 1)xiy = (y2 − y)xθ
2
∗
(i) = (y2 − 1)xθ

2
∗
(i) − (y − 1)xθ

2
∗
(i)

and
(y2 − 1)xiy = −(y − 1)xθ

2
∗
(i).
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It follows that K0 is a Λ-submodule of K. Finally, when considering Σx we immedi-
ately observe that for i = 1, 2,

Σxy
i =

p−1∑

j=0

(yi − 1)xj + Σx.

Thus, K is spanned over Z by E . Finally, upon performing elementary basis trans-
formations to the standard Z-basis of Λ, it is evident that

E ∪ {xi | 1 ≤ i ≤ p− 1}

is a Z-basis for Λ. It therefore follows that E is a Z-basis for K, as required.

Proposition 5.4.2. Λ/K ∼= Ī∗C.

Proof. Perform elementary basis transformations so that we have the following Z-
basis for Λ,

{xi | 1 ≤ i ≤ p− 1} ∪ {(yj − 1)xk | 1 ≤ j ≤ 2, 0 ≤ k ≤ p− 1} ∪ {Σx}.

Thus, Λ/K has Z-basis {♮(xi) | 1 ≤ i ≤ p− 1} where ♮ : Λ → Λ/K. In particular, we
note rkZ(Λ/K) = p− 1. Moreover, since Σx = 0 in Λ/K we may write

♮(1) = ♮(1)Σx − ♮(1)x− · · · − ♮(1)xp−1

so that
Λ/K = spanZ{♮(1)x

r | 0 ≤ r ≤ p− 1}.

Since mΣx = 0 for all m ∈ Λ/K, it remains (by the criteria of Proposition 5.1.2)
to show ♮(1)y = ♮(1). However, in Λ we clearly have

1 · y = (y − 1) + 1

and so y acts trivially on ♮(1) as required. The result follows from Proposition 5.1.2.

Recall, we have a surjection pi : Λ → R(i) by composing the obvious projections
Λ → T3(A, π) and T3(A, π) → R(i). We have previously defined K(i) = Ker(pi).

Corollary 5.4.3. K ∼ K(3).

Proof. By Proposition 5.4.2, the module K arises in an exact sequence of the form

0 → K → Λ → Ī∗C → 0

and Ī∗C
∼= R(3) by Proposition 5.1.5. As we also have the exact sequence

0 → K(3) → Λ → R(3) → 0

then the result follows from Schanuel’s Lemma.

Next, we have an exact sequence of the form,

0 → K0 → K → Z → 0
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since y acts trivially on K/K0. We are now in the position to show K acts as the
identity within the stable class when tensoring over Z. Observe that tensoring with
any of the R(i) or K(j) therefore yields the exact sequence

0 → K0⊗? → K⊗? →? → 0.

First, we need two preliminary results:

Proposition 5.4.4. For j : Z[C3] →֒ Λ the canonical injection, j∗(I3) ∼= [y − 1).

Proof. It is straightforward to show

{(yi − 1)xj | 1 ≤ i ≤ 2, 0 ≤ j ≤ p− 1}

is a Z-basis for [y − 1). Now observe j∗(I3) = I3 ⊗Z[C3] Λ has Z-basis

{(y − 1)⊗C3
xs, (y2 − 1)⊗C3

xt | 0 ≤ s, t ≤ p− 1}.

If we define the map ϕ : j∗(I3) → [y − 1) by

ϕ((yi − 1)⊗C3
xs) = (yi − 1)xs

then it is straightforward to check ϕ is a Λ-homomorphism between basis elements,
i.e. a Λ-isomorphism.

Proposition 5.4.5. With j as above, j∗(R(i)) ∼= Z[C3]
d for each 1 ≤ i ≤ 3.

Proof. We proceed much as in the case q = 2. Start with the exact sequence,

0 → R(1)⊕ R(2)⊕R(3) → Λ → Z[C3] → 0.

Upon applying the exact functor j∗(−) we have the split exact sequence,

0 → j∗(R(1)⊕ R(2)⊕ R(3)) → Z[C3]
p → Z[C3] → 0.

It follows that each R(i) is projective as a Z[C3]-module. Now, using a result of Rim

(see [42]), we know K̃0(Z[C3]) = 0 and so any projective module is stably free. Using
Swan-Jacobinski, we therefore conclude j∗(R(i)) ∼= Z[C3]

d.

Proposition 5.4.6. K ⊗ R(i) ∼= R(i)⊕ Λ2d, where 1 ≤ i ≤ 3 and d = (p− 1)/3 as
before.

Proof. Consider the following exact sequence,

0 → K0 ⊗ R(i) → K ⊗ R(i) → R(i) → 0

and recall K0 = [y − 1). By two applications of Frobenius Reciprocity, and Proposi-
tions 5.4.4 and 5.4.5, we therefore have the following isomorphism:

j∗(I3)⊗ R(i) ∼= j∗(I3 ⊗ j∗(R(i)))
∼= j∗(I3 ⊗ Z[C3]

d)
∼= j∗(Z[C3]

2d)
∼= Λ2d.
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Replacing K0 ⊗R(i) with Λ2d in the above exact sequence we therefore get

0 → Λ2d → K ⊗R(i) → R(i) → 0

which splits, yielding K ⊗ R(i) ∼= R(i)⊕ Λ2d, as required.

Proposition 5.4.7. j∗(K(i)) ∼= Z[C3]
p−d for each 1 ≤ i ≤ 3.

Proof. Start with the following exact sequence,

0 → K(i) → Λ → R(i) → 0

and apply j∗(−),
0 → j∗(K(i)) → Z[C3]

p → j∗(R(i)) → 0.

By Proposition 5.4.5, j∗(R(i)) ∼= Z[C3]
d and so the above exact sequence splits,

yielding
j∗(K(i))⊕ Z[C3]

d ∼= Z[C3]
p,

i.e. j∗(K(i)) is stably free of rank p− d. As Z[C3] satisfies the Eichler condition, it
has SFC and so j∗(K(i)) ∼= Z[C3]

p−d.

Proposition 5.4.8. K ⊗K(i) ∼= K(i)⊕ Λ2(p−d) for 1 ≤ i ≤ 3.

Proof. Once again, start with the following exact sequence,

0 → K0 ⊗K(i) → K ⊗K(i) → K(i) → 0.

It therefore remains to consider K0 ⊗K(i). We have

j∗(I3)⊗K(i) ∼= j∗(I3 ⊗ j∗(K(i)))
∼= j∗(I3 ⊗ Z[C3]

(p−d))
∼= j∗(Z[C3]

2(p−d))
∼= Λ2(p−d).

The above exact sequence now splits, yielding

K ⊗K(i) ∼= K(i)⊕ Λ2(p−d)

for each 1 ≤ i ≤ 3.

Theorem D therefore follows immediately from Propositions 5.4.6 and 5.4.8. Now,
recall that dualityM 7→ M∗ induces a one-to-one correspondence Ωr(Z) ↔ Ω−r(Z). It
therefore follows that Q(1)∗ ∼ Q(1), Q(2)∗ ∼ Q(3) and Q(3)∗ ∼ Q(2). In particular,
these exist in exact sequences of the form

0 → Q(i)∗ → Λ → R(4− i) → 0

By Schanuel, we therefore observe Q(1) ∼ K(3) ∼ K, Q(2) ∼ K(1) andQ(3) ∼ K(2).
In particular, we notice

K ∼ K∗ (5.4.9)

thereby proving Theorem E. Thus, K acts as the identity within the stable class for
the x-strand Ωxr (Z) of the syzygy modules Ωr(Z).
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5.5 Theorem F(1)

Recall K(1) = Ker(p1 : Λ → ĪC). We would like to show,

Ī∗C ⊗ Ī∗C
∼= K(1)∗ ⊕ Λd−1. (5.5.1)

Since [Z] is straight, it is a straightforward application of Schanuel’s Lemma to show
this is true over Λ0. To extend this isomorphism to one over Λ we directly show

Ī∗C ⊗ Ī∗C
∼= L⊕ Λd−1,

for some (yet to be defined) module L ∼ K(1)∗. It is then clear that (5.5.1) follows
from the stable equivalence since d ≥ 2. An obvious next question is then whether
K(1) ∼= L∗. At present it is unclear whether this is true, however a related problem
which may provide an affirmative answer (if indeed one exists) is whether or not
[K(1)∗] is straight. Throughout this chapter the straightness (or possible lack thereof)
of the even syzygies will provide complications. Nevertheless, for the most part we
will be able to circumvent these issues when they arise.

To show the result for L we first construct the free part of Ī∗C ⊗ Ī∗C . Recall that
we defined α such that θ(x) = xα and recall νi · y = να

2i and νi · y−1 = ναi. Our goal
is to first show:

V (r) + V (αr) + V (α2r) ∼= Λ for 1 ≤ r ≤ p− 2 (5.5.2)

and where V (r) = spanZ{ν
r+k ⊗ νk | 0 ≤ k ≤ p− 1}, as before. Note that we are in

fact taking αr (modp) and α2r (modp) when defining V (αr) and V (α2r), respectively.
Evidently, (5.5.2) holds as an isomorphism of Λ0-modules.

Proposition 5.5.3. Set Vr = V (r) +V (αr)+V (α2r). The representation of Vr with
respect to the x-action on the defining basis of Vr is given by

ρVr(x
−1) =



Ψ 0 0
0 Ψ 0
0 0 Ψ


 ,

where

(Ψ)ij =





1, i = 1, j = p;

1, j = i− 1, 2 ≤ i ≤ p;

0, o/w.

Proof. Denote the basis elements of Vr by:

ei =

{
νi+r−1 ⊗ νi−1, 1 ≤ i ≤ p− r;

νi+r−1−p ⊗ νi−1, p− r + 1 ≤ i ≤ p;

ei+p =

{
νi+αr−1 ⊗ νi−1, 1 ≤ i ≤ p− αr;

νi+αr−1−p ⊗ νi−1, p− αr + 1 ≤ i ≤ p;

ei+2p =

{
νi+α

2r−1 ⊗ νi−1, 1 ≤ i ≤ p− α2r;

νi+α
2r−1−p ⊗ νi−1, p− α2r + 1 ≤ i ≤ p.
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Thus, V (r), V (αr), V (α2r) have Z-bases {ei | 1 ≤ i ≤ p}, {ei+p | 1 ≤ i ≤ p} and
{ei+2p | 1 ≤ i ≤ p}, respectively. Consider now the x-action on these basis elements.
It is quite clear that ei · x = ei+1 for 1 ≤ i ≤ p − 1, and ep · x = e1. Similarly,
ei+p · x = ep+i+1 for 1 ≤ i ≤ p− 1, and e2p · x = ep+1. Finally, ei+2p · x = e2p+i+1 for
1 ≤ i ≤ p− 1, and e3p · x = e2p+1. The result now follows.

Proposition 5.5.4. With Vr as before, the integral representation of Vr with respect
to the action of y2 is given by

ρVr(y) =




0 0 ΦT

ΦT 0 0
0 ΦT 0




where

ΦTij =

{
1, i = (j − 1)α + 1 (mod p);

0, o/w.

Proof. With the ei, ei+p, ei+2p as before, observe eiy
−1 = ναr+α(i−1) ⊗ να(i−1) where

we have αr+α(i−1)−α(i−1) = αr and 0 ≤ α(i−1) ≤ p−1. Thus, eiy
−1 = ej+p for

some 1 ≤ j ≤ p. Similarly, ej+py
−1 = ek+2p and ek+2py

−1 = ei for some 1 ≤ i, k ≤ p.
Note that the last equality follows since α3 ≡ 1 (mod p). Thus,

ρVr(y) ∼




0 0 Φ3

Φ1 0 0
0 Φ2 0




for some p× p blocks Φ1, Φ2, Φ3.
Clearly, e1y

−1 = e1+p. In general we have eiy
−1 = ναr+α(i−1)⊗να(i−1) = eα(i−1)+1+p,

and so

(Φ1)ij =

{
1, i = (j − 1)α + 1 (mod p);

0, o/w.

Similar arguments now apply to ej+py
−1 and ek+2py

−1 so that

ρVr(y) =




0 0 ΦT

ΦT 0 0
0 ΦT 0




where ΦT = Φ1 = Φ2 = Φ3, as required.

Proposition 5.5.5. The regular representation of the x-action is given by

ρreg(x
−1) =



Ψ 0 0
0 Ψ 0
0 0 Ψ


 .

Proof. Set fi = xi−1, fj+p = yxj−1, fk+2p = y2xk−1 where 1 ≤ i, j, k ≤ p. Then
fi · x = fi+1 for 1 ≤ i ≤ p − 1, and fp · x = f1. Similarly, fj+p · x = fj+p+1 for
1 ≤ i ≤ p− 1, and f2p · x = fp+1. Finally, fk+2p · x = fk+2p+1 for 1 ≤ i ≤ p− 1, and
f3p · x = f2p+1. The result now follows.
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Proposition 5.5.6. The regular representation of the y−1-action is given by

ρreg(y) =




0 ΦT 0
0 0 ΦT

ΦT 0 0




Proof. It is clear that fiy
−1 = fk+2p for some 1 ≤ k ≤ p. Similarly, we see that

fj+py
−1 = fi and fk+2py

−1 = fj+p for some 1 ≤ i, j, k ≤ p. Thus,

ρreg(y) ∼




0 Θ2 0
0 0 Θ3

Θ1 0 0




where Θ1, Θ2, Θ3 are p × p blocks. Now, fiy
−1 = xi−1y2 = y2xα(i−1) = f2p+α(i−1)+1

and so,

(Θ1)ij =

{
1, i = α(j − 1) + 1;

0, o/w.

In other words, Θ1 = ΦT where ΦT is as defined above. Similarly, we consider the
action of y2 on fj+p and fk+2p to show Θ2 = Θ3 = ΦT . Replacing Θ1, Θ2, Θ3 above
with ΦT concludes the proof.

Proposition 5.5.7. V (r) + V (αr) + V (α2r) ∼= Λ for 1 ≤ r ≤ p− 2.

Proof. All that remains is to show there exists an invertible (3p) × (3p) matrix X
such that ρreg(g)X = XρVr(g) for all g ∈ G(p, 3). Set

X =




0 0 Ip
0 Ip 0
Ip 0 0




and observe

ρreg(x
−1)X =




0 0 Ψ
0 Ψ 0
Ψ 0 0


 = XρVr(x

−1)).

and

ρreg(y)X =




0 ΦT 0
ΦT 0 0
0 0 ΦT


 = XρVr(y).

Finally, X is clearly invertible as a series of row permutations transform X into
I3p.

Observe that, as 3|p − 1, then we get d − 1 copies of Λ with two of the V (r)’s
left over. These two V (r)’s along with T will, we hope, represent a module stably
isomorphic to K(1)∗. To see which two V (r)’s are left over (call them V (s), V (t))
we first observe that applying y to an element of V (s) (say) will give an element in
V (t). Applying y to an element of V (t) will then give an element in what we may
think of as ‘V (p− 1)’. Applying y once more gives us an element of V (s). With this
in mind, write V ′ for the sum of the V (i) without V (s) and V (t), i.e. V ′ ∼= Λd−1 and
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V = V ′ + V (s) + V (t). Now let

η : Ī∗C ⊗ Ī∗C → (Ī∗C ⊗ Ī∗C)/V
′

be the natural map. As with the dihedral case, we write the above quotient as
η(T + V (s) + V (t)) to emphasise which elements will span the module we hope is
stably isomorphic to K(1)∗. In particular, we have:

Proposition 5.5.8. Ī∗C ⊗ Ī∗C
∼= η(T + V (α+ 1) + V (p− α))⊕ Λd−1.

Proof. Start by showing α2 + α + 1 = 0 (mod p). Since θ(x) = xα and θ3 = Id, it
follows p|α3 − 1. In particular, p|α − 1 or p|α2 + α + 1. As p 6 |α − 1, the claim is
shown. It therefore follows that the only possible choices for s and t are α + 1 and
p−α. In other words, T + V (α+1)+ V (p−α) is left over when we have introduced
the y-action to T ⊕ V (thought of as a Λ0-module).

Now, (Ī∗C ⊗ Ī∗C)/V
′ is torsion free (Proposition 2.2.7). Furthermore, it is clear

that T · g 6∈ V ′ for any g ∈ G(3, p). Likewise, if ei is an element of the given Z-basis
of V (α + 1) or V (p − α), then ei · g 6∈ V ′ for any g ∈ G(3, p). In other words,
(Ī∗C ⊗ Ī∗C)/V

′ is a Λ-lattice. The result now follows as we have the following split
short exact sequence, 0 → V ′ → Ī∗C ⊗ Ī∗C → η(T + V (α + 1) + V (p − α)) → 0 since
V ′ ∼= Λd−1.

Proposition 5.5.9. Set L = η(T + V (α+1)+V (p−α)). We then have K(1) ∼ L∗.

Proof. Recall that IG ∼= ĪC⊕ [y−1). We can think of [y−1) as j∗(I3) and note [y−1)
is self dual. Consider the following exact sequence,

0 → ĪC ⊕ [y − 1) → Λ → Z → 0

and apply −⊗ ĪC . Using Frobenius Reciprocity on the middle term yields the exact
sequence,

0 → (ĪC ⊗ ĪC)⊕ ([y − 1)⊗ ĪC) → Λ3d → ĪC → 0.

In the proof of Proposition 5.4.6 we have shown ĪC ⊗ [y− 1) ∼= Λ2d. The above exact
sequence therefore becomes

0 → (ĪC ⊗ ĪC)⊕ Λ2d ι
→ Λ3d → ĪC → 0

which becomes
0 → ĪC ⊗ ĪC → Λ3d/ι(Λ2d) → ĪC → 0.

By Johnson’s ‘destabilization theorem’ (Proposition 2.4.2), Λ3d/ι(Λ2d) is projective.
We can therefore construct the the following split exact sequence

0 → Λ2d ι
→ Λ3d → Λ3d/ι(Λ2d) → 0.

As the sequence splits, Λ3d/ι(Λ2d) is stably free of rank d. However, by Swan-
Jacobinski, Λ has SFC and so there are no nontrivial stably free modules. It therefore
follows that we have the exact sequence

0 → ĪC ⊗ ĪC → Λd → ĪC → 0. (5.5.10)
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Now, by Proposition 5.5.8 we have Ī∗C ⊗ Ī∗C
∼= L ⊕ Λd−1. Since Ī∗C is the dual of

ĪC , we have ĪC ⊗ ĪC ∼= L∗⊕Λd−1. Thus, we substitute this back into (5.5.10) to yield
the following

0 → L∗ ⊕ Λd−1 → Λd → ĪC → 0

and by once more using Proposition 2.4.2 we get

0 → L∗ → Λ → ĪC → 0.

Since ĪC ∼= R(1), the result now follows from Schanuel’s Lemma, i.e. L∗ ∼ K(1).

To summarise, we have successfully made the transition from the x-strand of the
first syzygy, to that of the second syzygy. Since (ĪC)

∗ ∼= Ī∗C , this may be shown as:

Proposition 5.5.11. With, L, L∗ as above, we have shown:

� ĪC ⊗ ĪC ∼= L∗ ⊕ Λd−1;

� Ī∗C ⊗ Ī∗C
∼= L⊕ Λd−1.

In the next section we continue in this vein to make the transition into the third
syzygy. A biproduct of this is an affirmative answer to the sequencing conjecture for
q = 3.

5.6 Theorem F(2) and the sequencing conjecture

As a consequence of Section 5.5, we have the following exact sequence

0 → L∗ → Λ → ĪC → 0. (I)

In particular, our work thus far allows us to identify representative elements for the
x-strand of Ωr(Z) when r = 0, 1, 2 and 5(mod6). Now, in [41] (see pp. 78-79) Remez
has shown Ωx3(Z) = [(x− 1)IC ] and Ωx4(Z) = [Q(3)], where Q(3) = Λ/R(3). As such,
we have the following identifications for the x-strand of Ωxr (Z),

Ωxr (Z) ∼





[K], r ≡ 0 (mod 6);

[ĪC ], r ≡ 1 (mod 6);

[L∗], r ≡ 2 (mod 6);

[(x− 1)IC ], r ≡ 3 (mod 6);

[Q(3)], r ≡ 4 (mod 6);

[Ī∗C ], r ≡ 5 (mod 6).

Although (x− 1)IC is useful, Q(3) is not quite as nice as one would like. In particular,
it is unclear whether K(2) ∼= Q(3). Nevertheless, we can say something about [Q(3)].

Proposition 5.6.1. K(2) ∼ Q(3) ∼ L.

Proof. Because of the exact sequence (I) above, it is clear that L ∼ Q(3) by using
the dual form of Schanuel’s Lemma. So, we can take Ωx4(Z) = [L]. Moreover, as we
noted at the end of Section 5.4, Q(3) ∼ K(2). It therefore follows that L ∼ K(2), as
required.
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Proposition 5.6.2. ĪC ⊗ L∗ ∼= (x− 1)IC ⊕ Λ2d.

Proof. Return to (I) and apply −⊗ ĪC ,

0 → L∗ ⊗ ĪC → Λp−1 → ĪC ⊗ ĪC → 0

which, by the result of Proposition 5.5.8, becomes (after dualising)

0 → L⊕ Λd−1 → Λ3d → L⊗ Ī∗C → 0,

where we have once more used 3d = p− 1. To remove the free module on the left we
use Johnson’s ‘destabilization theorem’ (Proposition 2.4.2). Upon dualising again we
have the exact sequence

0 → L∗ ⊗ ĪC → Λ2d+1 → L∗ → 0. (II)

Splicing together (I) and (II) yields the following ‘weak basic sequence’,

0 L∗ ⊗ ĪC Λ2d+1 Λ ĪC 0.

L∗

If L∗ ⊗ ĪC ∼= (x− 1)IC ⊕ Λ2d, then the above becomes a basic sequence in the sense
of Theorem H. A simple check of Z-ranks demonstrates the above is an isomorphism
of abelian groups. It now remains to extend this isomorphism to one over Λ.

Return to the exact sequence defining K(2) and replace R(2) with (x− 1)IC ,

0 → K(2)
ι
→ Λ

p
→ (x− 1)IC → 0. (†)

As shown above, K(2) ∼ L and so K(2) ⊕ Λ ∼= L ⊕ Λ. We can therefore alter (†)
appropriately so that

0 → K(2)⊕ Λ
ι⊕Id
−→ Λ2 p′

−→ (x− 1)IC → 0

is also exact. Note that p′ is simply the composition of p with the projection Λ2 → Λ.
We then have

0 → L⊕ Λ → Λ2 → (x− 1)IC → 0

and by using Proposition 2.4.2 and dualising we get the exact sequence

0 → (x− 1)IC → Λ → L∗ → 0.

Now, compare this with (II) and apply Schanuel’s Lemma; we get

(L⊗ Ī∗C)⊕ Λ ∼= (x− 1)IC ⊕ Λ2d+1.

Recall Proposition 5.2.8 in which [(x− 1)IC ] is seen to be straight. Consequently, we
have cancellation of free modules and can therefore write

L⊗ Ī∗C
∼= (x− 1)IC ⊕ Λ2d.
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The result now follows from the self-duality of (x− 1)IC .

This clearly proves Theorem F(2). Additionally, we can now prove parts (ii) and (iii)
of Theorem H. As part (i) was shown by Johnson [25], this concludes the proof of
Theorem H.

Proof of Theorem H. For part (ii), recall we constructed the ‘weak basic sequence’ in
the previous proof. If we apply the result of Proposition 5.6.2 we obtain the exact
sequence,

0 (x− 1)IC ⊕ Λ2d Λ2d+1 Λ ĪC 0.

L∗

By a final use of Proposition 2.4.2, we therefore build the desired basic sequence

0 (x− 1)IC Λ Λ ĪC 0.

L∗

Finally, a straightforward dualisation argument demonstrates part (iii).

Theorem I now follows from Theorem H by splicing together the basic sequences
B(1)− B(3). However, it may be beneficial to observe that we do not need Theorem
H in its entirety to prove Theorem I. As such, we now provide an alternative proof
to Theorem I.

Proof of Theorem I. Recall (1.1.5) in which Johnson has built the following sequence

0 R(1) Λ Λ P (2) Λ P (1) Λ R(1) 0

K(1)K(2)K(3)

R(2)R(3)

where P (1)⊕ P (2) ∼= Λ2. In our notation,

� K(1) ∼ L∗, K(2) ∼ L and K(3) ∼ K;

� R(1) ∼= ĪC , R(2) ∼= (x− 1)IC and R(3) ∼= Ī∗C .

Now, we have shown that in fact we can construct a sequence such that P (1) ∼= Λ and
so P (2) is necessarily stably free of rank 1. Since Λ satisfies the Eichler condition, it
follows that Λ has SFC by the Swan-Jacobinski Theorem. Consequently, P (2) ∼= Λ.
Using this along with what we have learned of the modules R(i) andK(i), we therefore
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have the following sequence

0 ĪC Λ Λ Λ Λ Λ Λ ĪC 0

L∗LK

(x− 1)ICĪ∗C

thereby providing an affirmative answer to the sequencing conjecture for q = 3.

At this point, it is worthwhile stating the nontrivial fact that each K(i) is nec-
essarily monogenic. While it is still unknown whether each [K(i)] is straight, for our
purposes it is entirely sufficient that each [K(i)] has the structure of a fork.

5.7 Theorem F(5)

The purpose of this section is to prove Theorem F (5). With the Λ-modules Ī∗C ,
ĪC = (x− 1)Ī∗C and K as before, we aim to show

ĪC ⊗ Ī∗C
∼= K ⊕ Λd−1 (5.7.1)

where d = (p− 1)/3. As an initial observation note {(ν − 1)νi⊗ νj | 0 ≤ i, j ≤ p− 2}
forms a Z-basis for ĪC ⊗ Ī∗C where νi is as defined in Chapter 3, and the x, y-actions
as explained in Section 5.1. A simple calculation of Z-ranks justifies the number of
copies of Λ, and so we turn our attention to directly showing the isomorphism. This
can be shown in the following three stages:

Stage 1: Find a useful description for ĪC ⊗ Ī∗C , and find a part of this which is
isomorphic to K;

Stage 2: Of what is left, demonstrate this is free;

Stage 3: Deduce that ĪC ⊗ Ī∗C
∼= K ⊕ Λd−1.

Stage 1: Define the following modules for 1 ≤ r ≤ p− 2:

U(r) = spanZ{(ν − 1)νr+k ⊗ νk | 0 ≤ k ≤ p− 1} ⊂ IC ⊗ I∗C . (5.7.2)

Using essentially the same arguments as Chapter 3, we can show:

Fact 1: For each r ∈ {1, . . . , p− 2}, {(ν − 1)νr+k ⊗ νk | 0 ≤ k ≤ p− 1} is a Z-basis
for U(r). Further, U(r) ∼=Λ0

Λ0 for each r.

Fact 2: U(r) ∩ [U(1) + · · ·+ U(r − 1) + U(r + 1) + · · ·+ U(p− 2)] = {0}.

Fact 3: Set U = U(1)⊕ · · · ⊕ U(p− 2). We have a rank 1 lattice generated by

S = (ν − 1)⊗ 1 + (ν − 1)⊗ ν + (ν − 1)⊗ ν2 + · · · + (ν − 1)⊗ νp−2

+ (ν − 1)ν ⊗ ν + (ν − 1)ν ⊗ ν2 + · · · + (ν − 1)ν ⊗ νp−2

+ (ν − 1)ν2 ⊗ ν2 + · · · + (ν − 1)ν2 ⊗ νp−2

. . .
...

+ (ν − 1)νp−2 ⊗ νp−2.
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In particular, using the fact that (νi− 1) = (ν − 1)νi−1 + · · ·+ (ν − 1)ν + (ν − 1), we
may rewrite S as

S = (ν − 1)⊗ 1 + (ν2 − 1)⊗ ν + · · ·+ (νi − 1)⊗ νi−1 + · · ·+ (νp−1 − 1)⊗ νp−2.

Evidently S 6∈ U , but we also notice that Sx = S since

Sx = S − [(ν − 1)⊗ 1 + · · ·+ (ν − 1)⊗ νp−2] + [(ν − 1)ν ⊗ νp−1 + · · ·+ (ν − 1)νp−1 ⊗ νp−1]

= S + (ν − 1)⊗ νp−1 + (ν − 1)(ν + · · ·+ νp−1)⊗ νp−1

= S + (ν − 1)⊗ νp−1 − (ν − 1)⊗ νp−1

= S

As with Chapter 3, a near identical argument shows (IC ⊗ I∗C)/U is torsion free of
rank 1. It therefore follows IC ⊗ I∗C

∼= Z⊕Λp−20 , in which the module generated by S
is isomorphic to Z, i.e. IC ⊗ I∗C

∼= S ⊕ U .
Upon introducing the y-action, we now need to find the part which represents K,

and that which represents Λd−1. To do this, we first make a number of alterations to
the Z-basis of S ⊕ U . First, we consider the elements of U of the form −⊗ νi. The
left hand side of these looks like (ν − 1)νr where i+ 1 ≤ r ≤ i+ p− 2. In particular,
by summing the first r of these elements, we get

(ν − 1)(νi+r + · · ·+ νi+2 + νi+1) = (ν − 1)(νr−1 + · · ·+ ν + 1)νi+1

= (νr − 1)νi+1.

By elementary basis change, we can therefore replace U(r) by

U(r)′ = spanZ{(ν
r − 1)νi+1 ⊗ νi | 0 ≤ i ≤ p− 1}.

This can clearly be done for each 1 ≤ r ≤ p − 2 in which U(1)′ = U(1). It is
straightforward to show U(r)′ ∼=Λ0

Λ0, and that

U(i)′ ∩ (U(1)′ + · · ·+ U(i− 1)′ + U(i)′ + · · ·+ U(p− 2)′) = {0}.

If we write U ′ = U(1)′ ⊕ · · · ⊕ U(p − 2)′, then we can replace S ⊕ U by S ⊕ U ′, as
Λ0-modules.

By introducing the y-action, we proceed to show S+U(α−1)′+U(α2−1)′ ∼= K. To
do so, we begin by setting Uα := U(α−1)′+U(α2−1)′. By considering representations,
we show Uα ∼= K0.

Proposition 5.7.3. ρUα
(x−1) =

(
Ψ 0
0 Ψ

)
where Ψ is the p× p block given by

Ψij =





1, i = 1, j = p;

1, j = i− 1, 2 ≤ i ≤ p;

0, o/w.

Proof. Label ei = (να−1 − 1)νi ⊗ νi−1 for 1 ≤ i ≤ p, and ep+i = (να
2−1 − 1)νi ⊗ νi−1,

also for 1 ≤ i ≤ p. It is straightforward to see ei · x = ei+1 for 1 ≤ i ≤ p − 1 and
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ep · x = e1. Likewise, ep+i · x = ep+i+1 for 1 ≤ i ≤ p− 1 and e2p · x = ep+1. The result
now follows.

Proposition 5.7.4. ρUα
(y) =

(
−ΦT −ΦT

ΦT 0

)
where ΦT is the p× p block given by

ΦTij =

{
1, i = (j − 1)α + 1 (mod p);

0, o/w.

Proof. With ei, ep+i as defined above, consider the action of y2. Start with e1, then

[(να−1 − 1)ν ⊗ 1]y2 = (να
2−α − 1)να ⊗ 1

= (να
2

− να)⊗ 1

= (να
2

− ν)⊗ 1− (να − ν)⊗ 1

= (να
2−1 − 1)ν ⊗ 1− (να−1 − 1)ν ⊗ 1

= ep+1 − e1.

Likewise, for a general 2 ≤ i ≤ p we have:

[(να−1 − 1)νi ⊗ νi−1]y2 = (να
2−α − 1)ναi ⊗ να(i−1)

= (να
2

− ν + ν − να)να(i−1) ⊗ να(i−1)

= (να
2−1 − 1)να(i−1)+1 ⊗ να(i−1) − (να−1 − 1)να(i−1)+1 ⊗ να(i−1)

= ep+α(i−1)+1 − eα(i−1)+1.

Similarly, when we consider the elements ep+i then, using α
3 = 1 (mod p), we

note:

[(να
2−1 − 1)ν ⊗ 1]y2 = (ν1−α − 1)να ⊗ 1

= (ν − να)⊗ 1

= −(να−1 − 1)ν ⊗ 1

= −e1

and for a general 2 ≤ i ≤ p :

[(να
2−1 − 1)νi ⊗ νi−1]y2 = (ν1−α − 1)ναi ⊗ να(i−1)

= (ν − να)να(i−1) ⊗ να(i−1)

= −eα(i−1)+1.

Proposition 5.7.5. S · y2 = S +
∑p−1

i=0 (ν
α−1 − 1)νi+1 ⊗ νi.

Proof. Write S in the shorter form of S =
∑p−2

i=0 (ν
i+1 − 1) ⊗ νi, and consider those

elements of the form − ⊗ νi. When we apply y2 then we note νi · y2 = νj · y2 if and
only if i = j (mod p). Furthermore we observe αi 6= p − α (mod p), i.e. − ⊗ νp−α

will not appear when we make y2 act on S. To see why, suppose αi = p − α, then
α(i+ 1) = 0 (mod p) and hence p|α or p|i+ 1, which clearly cannot happen.
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Now consider what happens when we apply y2 to an arbitrary element − ⊗ νi.
We get:

[(νi+1 − 1)⊗ νi] · y2 = (να(i+1) − 1)⊗ ναi

= (να(i+1) − ναi+1 + ναi+1 − 1)⊗ ναi

= (να−1 − 1)ναi+1 ⊗ ναi + (ναi+1 − 1)⊗ ναi

= (element of U(α− 1)′) + (part of S).

Thus, we can write

S · y2 = S − (νp−α+1 − 1)⊗ νp−α +
∑

i 6=p−α

(να−1 − 1)νi+1 ⊗ νi.

However, we also note that (νp−α+1−1)⊗νp−α = −(να−1−1)νp−α+1⊗νp−α ∈ U(α−1)′.
The result now follows.

Using Proposition 5.7.3, and the fact that Sx = S, we have:

Proposition 5.7.6. Set K ′ = S + Uα; then

ρK ′(x−1) =




Ψ 0 0p×1
0 Ψ 0p×1

01×p 01×p 11×1


 .

Likewise, using Propositions 5.7.4 and 5.7.5 we have:

Proposition 5.7.7.

ρK ′(y) =



−ΦT −ΦT 1p×1
ΦT 0 0p×1
01×p 01×p 11×1




When considering the basis elements of K0, then we have:

Proposition 5.7.8. ρK0
(x−1) =

(
Ψ 0
0 Ψ

)
where Ψ is the p× p block given above.

Proof. Denote the Z-basis of K0 as follows

fi = (y − 1)xi−1, 1 ≤ i ≤ p;

fp+j = (y2 − 1)xj−1, 1 ≤ j ≤ p.

Consider how x acts on the basis elements of K0. First, fi ·x = fi+1 for 1 ≤ i ≤ p−1,
and fp · x = (y − 1) = f1. Similarly, fp+j · x = fp+j+1 for 1 ≤ j ≤ p − 1, and
f2p · x = (y2 − 1) = fp+1. The result now follows.

Corollary 5.7.9.

ρK(x
−1) =




Ψ 0 0p×1
0 Ψ 0p×1

01×p 01×p 11×1


 .

Proposition 5.7.10. ρK0
(y) =

(
0 ΦT

−ΦT −ΦT

)
where ΦT is the p × p block given

above.
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Proof. With the fi and fp+j as above, consider the right action of y2 on the basis
elements of K0 we note xy2 = y2xα, where θ(x) = xα as before. Consider now the
action of y2 on fi. Evidently, f1 · y

2 = (1− y2) = −fp+1. For 2 ≤ i ≤ p, we have

fi · y
2 = −(y2 − 1)xα(i−1) = −fp+α(i−1)+1.

Likewise, fp+1 · y
2 = (y − y2) = (y − 1)− (y2 − 1) = f1 − fp+1 and, for 2 ≤ i ≤ p, we

have

fp+i · y
2 = (y − 1)xα(i−1) − (y2 − 1)xα(i−1) = fα(i−1)+1 − fp+α(i−1)+1.

It therefore follows that ρK0
(y) =

(
0 ΦT

−ΦT −ΦT

)
.

By recalling Σxy
2 = Σx(y

2 − 1) + Σx, we have:

Corollary 5.7.11.

ρK(y) =




0 ΦT 0p×1
−ΦT −ΦT 1p×1
01×p 01×p 11×1


 .

Proposition 5.7.12. S + Uα ∼= K.

Proof. Set

X =




0 Ip 0p×1
Ip 0 0p×1
01×p 01×p 11×1


 ,

which is clearly invertible over the integers. It is a straightforward observation that




Ψ 0 0p×1
0 Ψ 0p×1

01×p 01×p 11×1






0 Ip 0p×1
Ip 0 0p×1
01×p 01×p 11×1


 =




0 Ψ 0p×1
Ψ 0 0p×1

01×p 01×p 11×1




=




0 Ip 0p×1
Ip 0 0p×1
01×p 01×p 11×1






Ψ 0 0p×1
0 Ψ 0p×1

01×p 01×p 11×1




and


−ΦT −ΦT 1p×1
ΦT 0 0p×1
01×p 01×p 11×1






0 Ip 0p×1
Ip 0 0p×1
01×p 01×p 11×1


 =



−ΦT −ΦT 1p×1
0 ΦT 0p×1

01×p 01×p 11×1




=




0 Ip 0p×1
Ip 0 0p×1
01×p 01×p 11×1






0 ΦT 0p×1
−ΦT −ΦT 1p×1
01×p 01×p 11×1


 .

In other words, ρK ′(g)X = XρK(g) for all g ∈ G(p, 3).

Next, we show that (S + U ′)/(S + Uα) is free. Let ♮ be the natural surjection
♮ : S+U ′ → (S+U ′)/(S+Uα) and set U ′r = U(r)′+U(α(r+1)−1)′+U(α2(r+1)−1)′

for r 6= α− 1, α2 − 1. We claim ♮(U ′r)
∼= Λ for each r 6= α− 1, α2 − 1 in which ♮(U ′r)

represents the image of U ′r under ♮. As before we consider representations. For the
x-action it is clear that:
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Proposition 5.7.13. Set Ur = ♮(U ′r). With Ψ as above, we have

ρUr
(x−1) =



Ψ 0 0
0 Ψ 0
0 0 Ψ


 .

Proposition 5.7.14.

ρUr
(y) =




0 0 ΦT

ΦT 0 0
0 ΦT 0




where ΦT is as above.

Proof. Start by labelling

fi = (νr−1)νi⊗νi−1, fp+j = (να(r+1)−1−1)νj⊗νj−1, f2p+k = (να
2(r+1)−1−1)νk⊗νk−1

for 1 ≤ i, j, k ≤ p. It is clear that ♮(U(r)′+U(α(r+1)− 1)′+U(α2(r+1)− 1)′) has
Z-basis {♮(fi), ♮(fp+j), ♮(f2p+k) | 1 ≤ i, j, k ≤ p}.

First, for f1 we observe

f1 · y
2 = (ναr − 1)να ⊗ 1

= (να(r+1) − να)⊗ 1

= (να(r+1)−1 − 1)ν ⊗ 1− (να−1 − 1)ν ⊗ 1.

It follows that ♮(f1) · y
2 = ♮(fp+1). Likewise, for a general 2 ≤ i ≤ p we have:

fi · y
2 = (ναr − 1)ναi ⊗ να(i−1)

= (να(r+1) − να)να(i−1) ⊗ να(i−1)

= (να(r+1)−1 − 1)να(i−1)+1 ⊗ να(i−1) − (να−1 − 1)να(i−1)+1 ⊗ να(i−1).

Thus, ♮(fi)y
2 = ♮(fp+α(i−1)+1).

By repeating the above argument we can see that:

fp+i · y
2 = (να

2(r+1)−α − 1)ναi ⊗ να(i−1)

= (να
2(r+1) − να)να(i−1) ⊗ να(i−1)

= (να
2(r+1)−1 − 1)να(i−1)+1 ⊗ να(i−1) − (να−1 − 1)να(i−1)+1 ⊗ να(i−1)

and

f2p+i · y
2 = (νr+1−α − 1)ναi ⊗ να(i−1)

= (νr+1 − να)να(i−1) ⊗ να(i−1)

= (νr − 1)να(i−1)+1 ⊗ να(i−1) − (να−1 − 1)να(i−1)+1 ⊗ να(i−1).

It therefore follows that ♮(fp+i)y
2 = ♮(f2p+α(i−1)+1) and ♮(f2p+i)y

2 = ♮(fα(i−1)+1). The
result is now shown.

As has been shown previously, we have the following representations for Λ:
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Proposition 5.7.15.

ρreg(x
−1) =



Ψ 0 0
0 Ψ 0
0 0 Ψ




where Ψ is as above.

Proposition 5.7.16.

ρreg(y) =




0 ΦT 0
0 0 ΦT

ΦT 0 0




where ΦT is as above.

Proposition 5.7.17. ♮(U(r)′ + U(α(r + 1)− 1)′ + U(α2(r + 1)− 1)′) ∼= Λ
for r 6= α− 1, α2 − 1.

Proof. Let X =




0 0 Ip
0 Ip 0
Ip 0 0


 which is clearly seen to be invertible over Z. It is now

straightforward to show



Ψ 0 0
0 Ψ 0
0 0 Ψ






0 0 Ip
0 Ip 0
Ip 0 0


 =




0 0 Ψ
0 Ψ 0
Ψ 0 0


 =




0 0 Ip
0 Ip 0
Ip 0 0





Ψ 0 0
0 Ψ 0
0 0 Ψ




and



0 0 ΦT

ΦT 0 0
0 ΦT 0






0 0 Ip
0 Ip 0
Ip 0 0


 =



ΦT 0 0
0 0 ΦT

0 ΦT 0


 =




0 0 Ip
0 Ip 0
Ip 0 0






0 ΦT 0
0 0 ΦT

ΦT 0 0


 .

Then ρUr
(g)X = Xρreg(g) for all g ∈ G(p, 3).

Corollary 5.7.18. (S + U ′)/(S + Uα) ∼= Λd−1.

Proof. As we are excluding r = α− 1 or r = α2 − 1 when defining Ur, then it is clear
that neither α(r+1)−1 nor α2(r+1)−1 can be equivalent to α−1 or α2−1 (modp).
It therefore remains to show we do not ‘double-count’ in any way. Thus, suppose
α(r+1)−1 ≡ s(modp) for some s 6≡ r. This is equivalent to r ≡ α2(s+1)−1(modp)
and α2(r+1)− 1 ≡ α(s+1)− 1 (mod p). If α(r+1)− 1 ≡ α(s+1)− 1 (mod p) then
this is equivalent to r ≡ s (mod p). Finally, if α(r + 1)− 1 ≡ α2(s + 1) − 1 (mod p)
then this is equivalent to r ≡ α(s + 1) − 1 (mod p) and α2(r + 1) − 1 ≡ s (mod p).
Consequently, we can be assured that each ‘cycle’ of three is distinct from any other.
Thus, the only possibility left is that (S + U ′)/(S + Uα) is free of rank d− 1.

We therefore have the following exact sequence

0 → S + Uα → S + U ′ → Λd−1 → 0.

As this clearly splits, we have S + U ′ ∼=Λ (S + Uα)⊕ Λd−1. Since ĪC ⊗ Ī∗C
∼= S + U ′

(thought of as a Λ-module), we apply Proposition 5.7.12, to conclude:

Proposition 5.7.19. ĪC ⊗ Ī∗C
∼= K ⊕ Λd−1.
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5.8 Theorem F(4)

The aim of this chapter is to show

ĪC ⊗ L ∼= Ī∗C ⊕ Λ2d (5.8.1)

where L is as defined in Section 5.5. As ever, the number of copies of Λ is justified
by a simple calculation of Z-ranks.

Proposition 5.8.2. There exists the following exact sequence of Λ-modules,

0 → K → Λ2d+1 → ĪC ⊗ L→ 0.

Proof. By the results of the sequencing conjecture for q = 3 (see Section 5.6) we have
the following exact sequence

0 → Ī∗C → Λ → L→ 0.

Apply the exact functor ĪC ⊗− to yield the exact sequence,

0 → ĪC ⊗ Ī∗C → Λ3d → ĪC ⊗ L→ 0.

By Theorem F(5) (see Section 5.7), ĪC ⊗ Ī∗C
∼= K ⊕ Λd−1 and so the above exact

sequence becomes
0 → K ⊕ Λd−1 → Λ3d → ĪC ⊗ L→ 0.

As usual, use Johnson’s ‘destabilization theorem’ (Proposition 2.4.2) to form the
required exact sequence,

0 → K → Λ2d+1 → ĪC ⊗ L→ 0.

Proposition 5.8.3. ĪC ⊗ L ∼= Ī∗C ⊕ Λ2d.

Proof. Recall that we have the exact sequence

0 → K → Λ → Ī∗C → 0.

Using this and the exact sequence of Proposition 5.8.2, we apply the dual form of
Schanuel’s Lemma to obtain the following isomorphism

(ĪC ⊗ L)⊕ Λ ∼= ĪC
∗
⊕ Λ2d+1.

Next, we apply Proposition 5.2.9 (i.e. [Ī∗C ] is straight) to ‘cancel’ the free module on
the left; that is, we have the desired isomorphism

ĪC ⊗ L ∼= Ī∗C ⊕ Λ2d.

Evidently, Proposition 5.8.3 proves Theorem F(4).
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5.9 Theorem F(3)

Finally, we show F(3) of Theorem F; that is, we show

ĪC ⊗ (x− 1)IC ∼= L⊕ Λd−1 (5.9.1)

where d = (p−1)/3, as usual. First, observe the following Z-basis for (x− 1)IC⊗ Ī
∗
C ,

{(ν − 1)2νi ⊗ νj | 0 ≤ i, j ≤ p− 2}

where νi are as defined in Chapter 3, and the x, y-actions are as explained in Section
5.1. It will in fact be easier to work with the above Z-basis and then dualise. We
now mirror the techniques of Section 5.5 and proceed in three stages:

Stage 1: Show (x− 1)IC ⊗ I∗C
∼=Λ0

R⊕W ′ for some Λ0-modules R, W ′;

Stage 2: Upon applying the y-action, find the ‘free part’;

Stage 3: Of what remains, demonstrate that this is stably isomorphic to L∗.
Finally, we dualise to reach the desired conclusion.

Stage 1: Define the following modules for 1 ≤ r ≤ p− 2:

W (r) = spanZ{(ν − 1)2νr+k ⊗ νk | 0 ≤ k ≤ p− 1} ⊂ (x− 1)IC ⊗ I∗C . (5.9.2)

As with Chapter 3 and Section 5.7, we can show:

Fact 1: For each 1 ≤ r ≤ p− 2, W (r) ∼=Λ0
Λ0.

Fact 2: W (r) ∩ [W (1) + · · ·+W (r − 1) +W (r + 1) + · · ·+W (p− 2)] = {0}.

Fact 3: SetW = W (1)⊕· · ·⊕W (p−2). As with Chapter 3, a near identical argument
shows ((x−1)IC⊗I

∗
C)/W is torsion free of rank 1. It follows (x−1)IC⊗I

∗
C
∼= R⊕W ,

where R is the rank 1 lattice generated by

R = (ν − 1)2 ⊗ 1 + (ν − 1)2 ⊗ ν + · · · + (ν − 1)2 ⊗ νp−2

+ (ν − 1)2ν ⊗ ν + · · · + (ν − 1)2ν ⊗ νp−2

. . .
...

+ (ν − 1)2νp−2 ⊗ νp−2.

Evidently R 6∈ W , but we also notice that Rx = R. In particular, the module
generated by R is isomorphic to Z. However, when introducing the y-action, we
find that the above description turns out to be less than helpful. Consequently, for
1 ≤ r ≤ p− 2 we define the following modules:

W (r)′ = spanZ{(ν
r − 1)2νr+k ⊗ νk | 0 ≤ k ≤ p− 1}. (5.9.3)

Proposition 5.9.4. For each 1 ≤ r ≤ p− 2, W (r)′ ∼=Λ0
Λ0.

Proof. As before, it is sufficient to show the above set is linearly independent. Con-
sider first the case r = 1. We start with the relation relation,

λ1(ν − 1)2ν ⊗ 1 + · · ·+ λp(ν − 1)2 ⊗ νp−1 = 0 (5.9.5)
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for some λi ∈ Z. Using νp−1 = −1− ν − · · · − νp−2, this becomes

(ν − 1)2(λ1ν − λp)⊗ 1 + · · ·+ (ν − 1)2(λp−1ν
p−1 − λp)⊗ νp−2 = 0. (5.9.6)

It follows that each λi = 0 and so W (1)′ ∼=Λ0
Λ0.

Now, consider the case for a general r ≥ 2 and write

λ1(ν
r − 1)2νr ⊗ 1 + · · ·+ λp(ν

r − 1)2νr−1 ⊗ νp−1 = 0 (5.9.7)

where once again each λi ∈ Z. As before, by rewriting νp−1 we transform this into

(νr− 1)2(λ1ν
r−λpν

r−1)⊗ 1+ · · ·+ (νr− 1)2(λp−1ν
r−2 −λpν

r−1)⊗ νp−2 = 0. (5.9.8)

Clearly, the only way this can be zero, is if each (νr−1)2(λiν
r−1+i−λpν

r−1) = 0. Now,
to show this implies λi = 0 we will have to do a significant amount of work. As such,
it may be useful for the reader to bear in mind a ‘road map’ of the following proof. We
shall focus our attention on the elements of the form −⊗ 1. Our intention will be to
show λp = 0 so that we are left with a number of terms of the form λ1µi(ν−1)2νi⊗1
where 0 ≤ i ≤ p− 2, and µi are integers that are not all zero. As each of these terms
are independent from one another, it follows that λ1µi = 0 and hence λ1 = 0. We
can then repeat this idea to show λi = 0 for all i. That said, a significant amount of
work will be needed to show λp = 0. We shall show this by first considering how r
varies. By dividing r into a number of regions, we will end up with an element of the
form λpµi(ν − 1)2νi ⊗ 1 that does not involve λ1.

With the above in mind, consider the elements of the form (νr − 1)2(−)⊗ 1. We
start by observing (νr − 1)2νr = (ν − 1)2(νr−1+ · · ·+ ν +1)2νr. This motivates us to
split the computation into three ranges for r:

1. 2 ≤ r ≤ d;

2. d+ 1 ≤ r ≤ 2d;

3. 2d+ 1 ≤ r ≤ p− 2.

� If 2 ≤ r ≤ d, then 1 ≤ r − 1 ≤ d− 1.

When we expand (νr−1+· · ·+r+1)2 the largest term is of degree 2(r−1) < 2d < p−1,
and the smallest is of degree 0. In other words, νp−1 will not appear at any point. Now,
the left hand side of −⊗1 has the form (νr−1)2(λ1ν

r−λpν
r−1). Multiplying the above

by νr then the largest term has degree 2(r−1)+r ≤ 2(d−1)+d = 3d−2 = p−3 < p−1,
and so once more we will have no cancellation arising from νp−1. The smallest term
will have degree r.

Next, multiply by νr−1. The largest term will therefore be of degree p − 4, and
smallest term of degree r− 1. Hence, for −⊗ 1 the left hand side will be of the form

(ν − 1)2(λ1ν
3r−2 + (terms involving λ1 and λp)− λpν

r−1).

Therefore, for (νr − 1)2(λ1ν
r − λpν

r−1)⊗ 1 = 0 we have λ1(ν − 1)2ν3r−2 ⊗ 1 = 0 and
λp(ν − 1)2νr−1 ⊗ 1 = 0. Hence, λ1 = λp = 0.

� Now let r vary between d+ 1 ≤ r ≤ 2d.
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Unlike the previous range, we will now have to deal with cancellation in the form of
νp−1. First, we use the following well known expansion of (νr−1 + · · ·+ ν + 1)2; that
is,

(νr−1+ · · ·+ν+1)2 = ν2r−2+2ν2r−3+ · · ·+(r−1)νr+rνr−1+(r−1)νr−2+ · · ·+2ν+1

and so we have

(νr−1 + · · ·+ ν + 1)2νr = ν3r−2 + · · ·+ (r − 1)ν2r + rν2r−1 + (r − 1)ν2r−2 + · · ·+ νr.

Our first observation is that ν2r−1 (i.e. the term with the largest coefficient) cannot be
νp−1. To see this, suppose 2r−1 ≡ p−1(modp). This is equivalent to 2r ≡ 0(modp),
i.e. p|r. However, this is not possible and it therefore follows that the coefficient of
νp−1 (if it appears) is less than r. In particular, this coefficient will pair up with
some other νi, i.e. we get a cancellation. This cancellation will be key to showing
λ1 = λp = 0.

Before proceeding further, return once more to the expansion of (νr−1 + · · ·+1)2

(i.e. before we multiply by νr). By writing r = d+i for 1 ≤ i ≤ d, it is straightforward
to see that ν2r−j = νp−1 (2 ≤ j ≤ 2r) if and only if j ≡ 2i−d (modp). This motivates
us to further divide our region into another two sub-regions: d + 1 ≤ r ≤ d + (d/2)
and d+ (d/2) + 1 ≤ r ≤ 2d.

− Let r vary over d+ 1 ≤ r ≤ d+ (d/2).

Here, νp−1 will not appear until we multiply by νr. Once multiplied, we want
to know when ν3r−j = νp−1 where 2 ≤ j ≤ 2r. This happens precisely when
3r− j− p+1 = mp for some m ∈ Z. We rewrite this as 3(d+ i)− j− 3d = mp,
or as j = 3i (modp). In fact, since 3 ≤ 3i ≤ (3d)/2 = (p−1)/2, the modp turns
out to be superfluous.

It is quite clear that the coefficient in this case is j−1. By symmetry, it follows
that j−1 is a coefficient for some να where r ≤ α ≤ 2r−2. In particular, j−1
is also the coefficient of νr+(3i−2) = νd+4i−2. We conclude, then, that once we
cancel the νp−1, we will certainly not have νd+4i−2. In other words, we will not
have λ1(ν − 1)2νd+4i−2 ⊗ 1.

We now do the same, but for νr−1. We intend to show that νd+4i−2 will appear
once we have cancelled the νp−1. We will then be left with λp (or some integer
multiple of λp) on its own. This will imply that λp = 0, and hence λ1 = 0. So,
we have

(νr−1 + · · ·+ 1)2νr−1 = ν3r−3 + 2ν3r−4 + · · ·

· · ·+ (r − 1)ν2r−1 + rν2r−2+ (r − 1)ν2r−3 + · · ·+ 2νr + νr−1.

By a similar argument to the above, write ν3r−k for 3 ≤ k ≤ 2r + 1 and
observe ν3r−k = νp−1 precisely when k = 3i. The coefficient in this case is
3i−2. By symmetry, this will also be the coefficient of νr−1+3i−3 = νd+4i−4 and,
furthermore, d + 4i − 4 6≡ d + 4i − 2 (mod p). Indeed, it is a straightforward
observation that the coefficient of νd+4i−2 in this expansion is 3i. Therefore, once
we cancel the νp−1 we will be left with, among other terms, 2λp(ν−1)2νd+4i−2⊗1.
It follows then, that 2λp = 0 and hence λp = 0.
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This leaves us with λ1(ν − 1)2(νr−1 + · · · + 1)2νr ⊗ 1. As we have already
observed, νp−1 will appear. However, this will not cancel all the terms, and
those remaining will be of the form λ1µα(ν − 1)2να ⊗ 1, where at least one
integer µα 6= 0 and 0 ≤ α ≤ p− 2. It therefore follows that λ1µα = 0 for all α,
and so λ1 = 0.

− Let r vary over d+ (d/2) + 1 ≤ r ≤ 2d.

Unlike the previous range, νp−1 will appear when we expand (νr−1 + · · ·+ 1)2

(before multiplying by νr). In particular, this occurs when j = 2i− d and with
coefficient 2i− d− 1. We observe 2i− d− 1 6= r = d+ i and so, by symmetry,
ν2i−d−2 also has coefficient 2i − d − 1. So, when we cancel the terms arising
from νp−1 we will eliminate ν2i−d−2. The terms of degree 2i−d−1 ≤ α ≤ p−2
will remain and have a positive coefficient which we shall discuss shortly. For
i = (d/2) + 1, ν2(r−1) = νp−1 and so we have no other terms to worry about.
For d+(d/2)+2 ≤ r ≤ 2d we also have terms of degree 2r− (2i− d)+β where
1 ≤ β ≤ 2i − d − 2 and of degree γ where 0 ≤ γ ≤ 2i − d − 3. We claim that
these latter terms will all cancel with the (2i− d− 1)νp−1.

To see this, observe that the ν2r−(2i−d)+β = νβ−1, and that 0 ≤ β−1 ≤ 2i−d−3.
In other words, the terms ‘before’ (2i−d−1)νp−1 pair up with the terms ‘after’
(2i− d− 1)ν2i−d−2. Furthermore, the coefficient of νβ−1 is (2i− d− 1)− β, and
that of νγ is γ+1. Thus, when νγ = νβ−1, their coefficients add up to 2i−d−1
and are therefore eliminated by (2i− d− 1)νp−1.

Finally, we have the terms of degree 2i− d − 1 ≤ α ≤ p− 2. Clearly, νr−1 has
coefficient r, and so when we cancel this with the term arising from
(2i−d−1)νp−1 we have the coefficient of νr−1 as r−2i+d+1 = 2d− i+1. For
νr−1+α1 where 1 ≤ α1 ≤ 2d − i, the coefficient is seen to be r − α1. When we
cancel with the terms arising from (2i− d− 1)νp−1 the coefficient of νr−1+α1 is
seen to be (2d−i+1)−α1. Similarly, the coefficient of νr−1−α2 (1 ≤ α2 ≤ 2d−i)
is r − α2. When we cancel with the terms arising from (2i − d − 1)νp−1, the
coefficient of νr−1−α2 is seen to be (2d− i + 1)− α2. Putting this all together,
(νr−1 + · · ·+ 1)2 becomes

(νr−1+ · · ·+1)2 = νp−2+2νp−3+ · · ·+(2d− i+1)νr−1 + · · ·+2ν2i−d+ ν2i−d−1.

The rest follows in a similar manner to the range d+ 1 ≤ r ≤ d+ (d/2). First,
we multiply by νr and get

(νr−1+· · ·+1)2νr = νr−2+2νr−3+· · ·+(2d−i+1)ν2r−1+· · ·+2νr+2i−d+νr+2i−d−1.

A straightforward calculation shows νp−1 = ν2r−j if and only if j = 2i − d. In
this case, the coefficient is clearly seen to be 2d− i+ 1− (j − 1) = 3(d− i) + 2.
Since the coefficient of νr−k is k − 1, it follows that the coefficient of νp−1 is
paired with the term νr−3(d−i+1) = ν4i−2d−3. Thus, once we cancel the νp−1, we
can be sure that λ1(ν − 1)2ν4i−2d−3 ⊗ 1 will not appear.

We now multiply (νr−1 + · · ·+ 1)2 by νr−1 to yield

(νr−1+· · ·+1)2νr−1 = νr−3+2νr−4+· · ·+(2d−i+1)ν2r−2+· · ·+2νr+2i−d−1+νr+2i−d−2.
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Our first observation, is that if r = d + (d/2) + 1 then ν2r−2 = νp−1. As
2d−i+1 = (3d)/2 is the largest coefficient, it will not eliminate any of the other
coefficients. In particular, ν4i−2d−3 = ν will appear. Once we have rewritten
νp−1, ν will have coefficient −2. As such, −2λp(ν − 1)2ν ⊗ 1 will appear and
hence λp = 0. It follows that λ1 = 0.

Next, suppose d+ (d/2) + 2 ≤ r ≤ 2d. Once again, it is clear that νr−k 6= νp−1

where 3 ≤ k ≤ p − r + 1. As such, νp−1 = ν2r−j for some 2 ≤ j ≤ 2d − i + 2.
Clearly, j = 2i−d, and the coefficient will be 2d−i+1−(2i−d−2) = 3(d−i+1).
By symmetry, ν2r−2+(2i−d−2) = νd+4(i−1) will have coefficient 3(d − i + 1) also.
Consequently, this will be eliminated by 3(d − i + 1)νp−1. In particular, we
note νd+4(i−1) 6= ν4i−2d−3. Indeed, we observe ν4i−2d−3 = νr−3(d−i+1) and hence
has coefficient 3(d − i + 1) − 2 = 3(d − i) + 1. It therefore follows that, upon
cancelling the terms arising from (3(d−i+1))νp−1 we end up with, among other
terms, −2λp(ν − 1)2ν4i−2d−3 ⊗ 1. It therefore follows that −2λp = 0 and hence
λp = 0, as required. It follows that λ1 = 0.

� Finally, let r vary between 2d+ 1 ≤ r ≤ p− 2.

As with the previous range, we can show (through essentially identical reasoning)
that

(νr−1 + · · ·+ 1)2 = νp−2 + 2νp−3 + · · ·+ (2d− i+ 1)νr−1 + · · ·+ 2ν2i−d + ν2i−d−1.

However, unlike the previous range, we will no longer have νp−1 when we multiply by
νr or νr−1. To see this, first consider

(νr−1+ · · ·+1)2νr = νr−2+2νr−3+ · · ·+(2d− i+1)ν2r−1+ · · ·+2νr+2i−d+νr+2i−d−1.

By considering the largest term, we notice that 2d − 1 ≤ r − 2 ≤ p − 4 = 3(d − 1).
For the ‘smallest’ term we use r = d+ i to first write r + 2i− d− 1 = 3i− 1. Since
d+ 1 ≤ i ≤ 2d− 1, we observe p+ 1 = 3d+ 2 ≤ 3i− 1 ≤ 6d − 4 = 2(p− 3). Hence,
ν3i−1 varies between ν and νp−6. In any case, it is clear that νp−1 will not appear in
the expansion of (νr−1 + · · ·+ 1)2νr. A similar argument shows νp−1 will not appear
when multiplying (νr−1 + · · ·+ 1)2 by νr−1.

It follows that the largest term when multiplying by νr is νr−2, and the largest
term when multiplying by νr−1 is νr−3. Similarly, the smallest term when multiplying
by νr is ν3i−1, and when multiplying by νr−1 is ν3i−2. As such, for − ⊗ 1, the left
hand side will be of the form

(ν − 1)2(λ1ν
r−2 + (terms involding λ1 and λp)− λpν

3i−2).

A straightforward argument now shows λ1 = λp = 0.

In each case we note λ1 = λp = 0. Returning to (5.9.7) we rewrite this as

λ2(ν
r − 1)2νr+1 ⊗ ν + · · ·+ λp−1(ν

r − 1)2νr−2 ⊗ νp−2 = 0. (5.9.9)

By once more expanding (νr−1)2 = (ν−1)(νr−1+· · ·+ν+1)2, then (5.9.9) becomes a
sum of terms, each of the form λi(ν−1)2νj⊗νk for some 0 ≤ j, k ≤ p−2. Since these
terms are linearly independent, we therefore conclude that each λi = 0. It therefore
follows that W (r)′ ∼=Λ0

Λ0, as required.
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As with Theorems F(1) and F(5), a similar proof to that of Proposition 3.1.4
(and using similar reasoning to that of Proposition 5.9.4) shows

W (r)′ ∩ (W (1)′ + · · ·+W (r − 1)′ +W (r + 1)′ + · · ·+W (p− 2)′) = {0}.

So we define W ′ = W (1)′ ⊕ · · · ⊕W (p − 2)′ ⊂ (x − 1)IC ⊗ I∗C . In particular, it is
straightforward to show W ∼=Λ0

W ′. Thus, we can therefore conclude that

(x− 1)IC ⊗ I∗C
∼=Λ0

R⊕W ′.

Stage 2: Upon extending the action of Cp to an action of G(3, p), we show
Wr = W (r)′ + W (αr)′ + W (α2r)′ ∼=Λ Λ for 1 ≤ r ≤ p − 2. By repeating the
arguments of Propositions 5.5.3 - 5.5.4 and (with only minor notational differences
to account for the (νr − 1)2), we therefore have the following results:

Proposition 5.9.10. Set Wr = W (r)′ +W (αr)′ +W (α2r)′. Then

ρWr
(x−1) =



Ψ 0 0
0 Ψ 0
0 0 Ψ


 ,

where

(Ψ)ij =





1, i = 1, j = p;

1, j = i− 1, 2 ≤ i ≤ p;

0, o/w.

Proposition 5.9.11. The integral representation of Wr with respect to the y-action
is given by

ρWr
(y) =




0 0 ΦT

ΦT 0 0
0 ΦT 0




where

ΦT =

{
1, i = (j − 1)α+ 1 (mod p);

0, o/w.

As with Sections 5.5 and 5.7, a straightforward calculation shows ρreg(x
−1) = ρWr

(x−1)
and

ρreg(y) =




0 ΦT 0
0 0 ΦT

ΦT 0 0




where ΦT is as defined above. By once more taking the invertible matrix

X =




0 0 Ip
0 Ip 0
Ip 0 0




it may be shown ρreg(g)X = XρWr
(g) for all g ∈ G(p, 3). In other words:

Proposition 5.9.12. W (r)′ +W (αr)′ +W (α2r)′ ∼= Λ for 1 ≤ r ≤ p− 2.
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As 3|p− 1 we get d − 1 copies of Λ, each arising as Wr, for some r. Left over is

R+W (α+1)′+W (p−α)′ (by the same argument as Proposition 5.5.8). Let W̃ be the

sum of theW (i)′ without W (α+1)′ andW (p−α)′, i.eW ′ = W̃+W (α+1)′+W (p−α)′

and W̃ ∼= Λd−1. Now let κ be the natural surjection

κ : (x− 1)IC ⊗ Ī∗C → ((x− 1)IC ⊗ Ī∗C)/W̃ .

If we set Y = κ(R+W (α+1)′+W (p−α)′), the image of R+W (α+1)′+W (p−α)′

under κ, then:

Proposition 5.9.13. (x− 1)IC ⊗ Ī∗C
∼= Y ⊕ Λd−1.

Stage 3: Finally, we demonstrate that what remains is stably isomorphic to L∗.
The result of Theorem F(3) is then an immediate consequence of dualisation.

Proposition 5.9.14. Y ∼ L∗

Proof. As we saw in Section 5.6, we have the short exact sequence,

0 → (x− 1)IC → Λ → L∗ → 0.

Applying the exact functor −⊗ Ī∗C this becomes,

0 → (x− 1)IC ⊗ Ī∗C → Λ3d → L∗ ⊗ Ī∗C → 0.

By the dual form of Proposition 5.8.3 we have L∗⊗ Ī∗C
∼= ĪC⊕Λ2d, and by Proposition

5.9.13 we have (x− 1)IC⊗ Ī
∗
C
∼= Y ⊕Λd−1. Replacing this in the above exact sequence

yields
0 → Y ⊕ Λd−1 → Λ3d → ĪC ⊕ Λ2d → 0.

As we have done many times throughout this chapter, we use Proposition 2.4.2 to
‘cancel’ the free modules. We are left with the following short exact sequence,

0 → Y → Λ → ĪC → 0.

Finally, recall the short exact sequence (also seen in Section 5.6),

0 → L∗ → Λ → ĪC → 0.

The result is now a consequence of Schanuel’s Lemma; that is Y ∼ L∗.

Corollary 5.9.15. (x− 1)IC ⊗ Ī∗C
∼= L∗ ⊕ Λd−1.

Evidently, (5.9.1) and hence Theorem F(3) follows from the dual statement of
Corollary 5.9.15. Combining this result with those of Sections 5.5-5.8 concludes the
proof of Theorem F.

We conclude this section with a brief discussion of a possible next step in the
research of syzygy modules over G(p, 3). First, and most obvious, is to better un-
derstand the difficult descriptions of L, L∗. However, as we saw with K, which has
a much nicer description than either L or L∗, the going is still tough. Indeed, this
stems from the fact that at present it is unknown whether there is any branching at
the minimal level of the respective tree diagrams of the even syzygies. It is for this
reason that the author believes any future research into this area for G(p, 3) should
begin by an attempt to tackle this question.
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5.10 The module K: a general case

We conclude this chapter with a generalisation of our methods in Section 5.4. In
this section, let p be prime, and q any prime such that q|p − 1, and in which x, y
are generators of Cp, Cq, respectively. As before, we write d = (p− 1)/q and choose
θ ∈ Aut(Cp) such that ord(θ) = q. We can then construct the semi-direct product
G(p, q) = Cp ⋊h Cq, where h : Cq → Aut(Cp) is the homomorphism given by
h(y)(x) = θ(x) = xα for some 2 ≤ α ≤ p− 1. In particular, we can write this as

G(p, q) = 〈x, y | xp = yq = 1, yxy−1 = xα〉.

Once more, we set Λ = Z[G(p, q)] and observe the following fibre square decomposi-
tion for Λ (see [25], [41] or Example 6.2.12):

Λ −−−→ Tq(A, π)y
y

Z[Cq] −−−→ Fp[Cq]

where A = Z[ζp]
θ is the subring of Z[ζp], fixed by θ. It is of note that θ acts on Z[ζp]

via the isomorphism Gal(Q(ζp)/Q) ∼= Cp−1.
Now, if R(i) is the ith row of Tq(A, π), then Tq(A, π) decomposes as a direct sum

of right Λ-modules thus

Tq(A, π) ∼= R(1)⊕ · · · ⊕ R(q).

In particular, the R(i) are pairwise isomorphically distinct and we have the following
duality relation

R(i)∗ ∼= R(q + 1− i). (5.10.1)

By composing the projections Λ ։ Tq(A, π) and Tq(A, π) ։ R(i) it follows that each
R(i) is monogenic. Hence, for each i ∈ {1, . . . , q} there is an exact sequence

X (i) = (0 → K(i) → Λ → R(i) → 0).

Moreover, in [25] it was shown for i ∈ {1, . . . , q − 1} that there exists an exact
sequence

W(i) = (0 → R(i+ 1) → P (i) → K(i) → 0),

in which each P (i) is projective of rank 1 over Λ, and
⊕q−1

i=1 P (i)
∼= Λq−1. For i = q

there is an exact sequence,

W(q) = (0 → R(1) → Λ → K(q) → 0).

Finally, we relate this to the stable syzygies Ωi(Z) for 0 ≤ r ≤ 2q − 1. In [41] it
was shown that the minimal level of Ωr(Z) can be described as

Ωr(Z) =

{
R(i+ 1)⊕ [y − 1), r = 2i+ 1;

Q(i+ 1)⊕ [Σy), r = 2i.

Above, Σy = yq−1 + · · ·+ y + 1 and Q(i) = Λ/R(i).
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Proposition 5.10.2. Q(1) ∼ K(q) and Q(i+ 1) ∼ K(i) for 1 ≤ i ≤ q − 1.

Proof. Begin with Q(1), which is defined by the exact sequence

0 → R(1) → Λ → Q(1) → 0.

By dualising, and using (5.10.1), we have

0 → Q(1)∗ → Λ → R(q) → 0.

By Schanuel’s Lemma, it therefore follows that Q(1)∗ ⊕ Λ ∼= K(q) ⊕ Λ. However,
by the duality relation Ωr(Z)

∗ ∼= Ω2q−r(Z), a straightforward argument now shows
Q(1)∗ ∼ Q(1). Thus, Q(1) ∼ K(q), as required. In particular, since even syzygies
have a fork structure (Proposition 2.7.6), Q(1)⊕ Λ ∼= K(q)⊕ Λ.

For a general i, start with the exact sequence

0 → K(i) → Λ → R(i) → 0.

Dualising and using (5.10.1) gives the exact sequence

0 → R(q + 1− i) → Λ → K(i)∗ → 0

and so K(i)∗ ∼ Q(q + 1 − i) by Schanuel. However, Q(q + 1 − i) is a minimal
representative of the x-strand of Ω2(q−i)(Z). Since Ω2(q−i)(Z)

∗ = Ω2i(Z), it follows
that Q(q + 1− i)∗ ∼ Q(i+ 1). Thus, K(i) ∼ Q(i+ 1).

Corollary 5.10.3. K(q)∗ ∼ K(q) and K(i)∗ ∼ K(q − i) for 1 ≤ i ≤ q − 1.

Now, we define the module K = [yq−1 − 1, . . . , y2 − 1, y − 1, Σx). Both the
statement and result of Proposition 5.1.2 extends to a general prime q. As such, the
proofs of Propositions 5.4.1 and 5.4.2 may be easily modified to show:

Proposition 5.10.4. K has Z-basis

E = {(yi − 1)xj | 1 ≤ i ≤ q − 1, 0 ≤ j ≤ p− 1} ∪ {Σx}.

Proposition 5.10.5. Λ/K ∼= Ī∗C.

Corollary 5.10.6. K ∼ K(q).

Recalling that K(q)∗ ∼ K(q), we now have:

Corollary 5.10.7. K∗ ∼ K.

Finally, as with the case q = 3 we have the following exact sequence,

0 → K0 → K → Z → 0

as x, y act trivially on K/K0. It to this exact sequence that we shall turn to when
proving K ⊗ X ∼= X ⊕ Λa, where a ≥ 1 and X = R(i) or K(i) for some 1 ≤ i ≤ q.

However, unlike Section 5.4, it is not true in general that K̃0(Z[Cq]) = 0. We therefore
adopt a different strategy. First, observe the following result concerning R(1) (see [25],
Corollary 1.9):
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Proposition 5.10.8. R(1)⊗ [y − 1) ∼= Λd(q−1).

Corollary 5.10.9. K(1)⊗ [y − 1) ∼= Λ(q−1)(p−d).

Proof. Consider first the exact sequence

0 → K(1) → Λ → R(1) → 0.

As [y − 1) is free as an additive group, then − ⊗Z [y − 1) is an exact functor on
underlying abelian groups. In particular,

0 → K(1)⊗ [y − 1) → Λ(q−1)p → Λd(q−1) → 0

is also exact. Note we have used Frobenius Reciprocity and rkZ([y − 1)) = (q − 1)p
in the above exact sequence. Moreover, the exact sequence clearly splits and so
K(1)⊗ [y− 1) is stably free of rank (q− 1)(p− d). However, stably free modules over
Λ are free and so the result follows.

As both [y − 1) and Λd(q−1) are self-dual then:

Corollary 5.10.10. R(q)⊗ [y − 1) ∼= Λd(q−1).

A similar proof to that of Corollary 5.10.9 now shows:

Corollary 5.10.11. K(q)⊗ [y − 1) ∼= Λ(q−1)(p−d).

For each 1 ≤ i ≤ q let T (i) be the statement:

T (i) : R(i)⊗[y−1) ∼= Λd(q−1), K(i)⊗[y−1) ∼= Λ(q−1)(p−d) and P (i)⊗[y−1) ∼= Λ(q−1)p.

First, we have the following:

Proposition 5.10.12. T (i) =⇒ T (i+ 1) for 1 ≤ i ≤ q − 1.

Proof. Suppose T (i) is true. Using the fact that [y − 1) and Λ are self-dual, we have
R(q+1− i)⊗ [y− 1) ∼= Λd(q−1). Furthermore, K(i)∗⊕Λ ∼= K(q− i)⊕Λ by Corollary
5.10.3. As such,

(K(q − i)⊗ [y − 1))⊕ Λ(q−1)p ∼= (K(i)⊗ [y − 1))∗ ⊕ Λ(q−1)p

and so K(q − i)⊗ [y − 1) is stably free (and hence free by Swan-Jacobinski) of rank
(q − 1)(p− d).

Now, for K(q − i) we have the exact sequence

0 → K(q − i) → Λ → R(q − i) → 0.

By once more tensoring with [y − 1) this becomes

0 → Λ(q−1)(p−d) → Λ(q−1)p → R(q − i)⊗ [y − 1) → 0

which clearly splits. As such, R(q − i) ⊗ [y − 1) is stably free (hence free) of rank
d(q−1). Dualising therefore yields R(i+1)⊗ [y−1) ∼= Λd(q−1), as required. Moreover,
utilising the exact sequence

0 → K(i+ 1) → Λ → R(i+ 1) → 0
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a similar argument now shows K(i+ 1)⊗ [y − 1) ∼= Λ(q−1)(p−d).
It therefore remains to show P (i + 1) ⊗ [y − 1) ∼= Λ(q−1)p. Begin by dualising

K(i + 1). A similar argument as above shows K(q − i − 1) ⊗ [y − 1) ∼= Λ(q−1)(p−d).
Using the exact sequence X (q−i−1) we again apply similar reasoning to above to show
R(q− i−1)⊗ [y−1) ∼= Λd(q−1). Dualising therefore yields R(i+2)⊗ [y−1) ∼= Λd(q−1).
Finally, consider the exact sequence W(i+ 1),

0 → R(i+ 2) → P (i+ 1) → K(i+ 1) → 0

and apply the exact functor −⊗ [y − 1). We therefore get the split exact sequence

0 → R(i+ 2)⊗ [y − 1) → P (i+ 1)⊗ [y − 1) → K(i+ 1)⊗ [y − 1) → 0.

We therefore conclude P (i+ 1)⊗ [y − 1) ∼= Λ(q−1)p, as required.

Proposition 5.10.13. T (i) is true for all i ∈ {1, . . . , q}.

Proof. First observe that T (q) is true by Corollaries 5.10.10 and 5.10.11. Due to
Proposition 5.10.12, it suffices to show T (1). However, by Proposition 5.10.8 and
Corollary 5.10.9, it only remains to show P (1)⊗ [y − 1) ∼= Λ(q−1)p.

To do so, observe K(q − 1) ⊗ [y − 1) ∼= Λ(q−1)(p−d). Using similar arguments to
those of Proposition 5.10.12 we therefore deduce R(q − 1) ⊗ [y − 1) ∼= Λd(q−1) and
hence so is its dual; that is, R(2)⊗ [y − 1) ∼= Λd(q−1). We therefore apply the exact
functor −⊗ [y − 1) to the exact sequence W(2) to yield the split exact sequence,

0 → R(2)⊗ [y − 1) → P (1)⊗ [y − 1) → K(1)⊗ [y − 1) → 0.

The result now follows.

Proof of Theorem J. By Corollary 5.10.7, we know K is stably self-dual. It therefore
remains to show K ⊗ R(i) ∼= Λa and K ⊗ K(i) ∼= Λb for some a, b ≥ 1. To do so,
return to the exact sequence

0 → K0 → K → Z → 0.

and recall K0 = [y − 1). We now apply the exact functor −⊗R(i) so that

0 → K0 ⊗ R(i) → K ⊗ R(i) → R(i) → 0

is exact. By Proposition 5.10.13, this sequence splits and so K⊗R(i) ∼= R(i)⊕Λd(q−1).
Next, we apply the exact functor −⊗K(i) so that

0 → K0 ⊗K(i) → K ⊗K(i) → K(i) → 0

is exact. Once more, we use Proposition 5.10.13 to deduce that the above sequence
splits. We therefore conclude K ⊗K(i) ∼= K(i)⊕ Λ(q−1)(p−d).
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Chapter 6

Preliminaries

Recall that in Chapter 2 we defined a finitely generated module S to be stably free
if it is stably equivalent to a free module. Such modules will be the main discussion
of this latter part of the thesis. In particular, we discuss a class of rings that satisfy
the SFC condition discussed in Section 2.6. This class is of the form Z[G(p, q)×Fn],
where Fn is the free group of rank n ≥ 1. This may be seen as an attempt to generalise
the results of Swan from Z[G] to A[G], where A = Z[Fn] and continues the work of
Johnson (see [20], [21], [22]) discussed in Chapter 1.

It is therefore the aim of this chapter to introduce the necessary results that will
allow us to discuss stably free modules in detail. Roughly, the strategy will be to
formalise a technique originating with Bass and Milnor whereby we break up the
ring in question into smaller chunks that we know satisfy SFC. If we can then ‘glue’
these pieces together in such a way that any stably free module is lifted from the
decomposed rings, then we can show that there are no nontrivial stably free modules.
The next chapter will then utilise this material to consider the stably free modules
over Z[G(p, q)× Fn], demonstrating that they are necessarily trivial.

6.1 The general and restricted linear groups

Let Λ be some ring with unit group U(Λ). For n ≥ 2, the matrix ring Mn(Λ) has
the canonical Λ-basis {ǫ(i, j) | 1 ≤ i, j ≤ n}, where we write (ǫ(i, j))r, s = δirδjs. Let
λ ∈ Λ and δ ∈ U(Λ), and recall the elementary row and column operations expressed
using the elementary invertible matrices

E(i, j;λ) = In + λǫ(i, j) (i 6= j);

D(i, δ) = In + (δ − 1)ǫ(i, i).

We denote the set of invertible n×n matrices over Λ by GLn(Λ) and, whenever n ≥ 2,
we denote the subgroup generated by the matrices E(i, j;λ) by En(Λ). Likewise, we
have the subgroup Dn(Λ) of GLn(Λ) defined by Dn(Λ) = {D(1, δ) | δ ∈ U(Λ)}. In
particular, we may confuse Dn(Λ) with U(Λ) in a natural way.

As is well known (see [20], [28]), Dn(Λ) normalises En(Λ). Consequently we define
the restricted linear group GEn(Λ) to be the subgroup of GLn(Λ) given as the internal
product

GEn(Λ) = Dn(Λ) · En(Λ).

112



Chapter 6. Preliminaries 113

In general GEn(Λ) is a proper subgroup of GLn(Λ). However, there are significant
instances in which GLn(Λ) = GEn(Λ). When this is the case we say that Λ is weakly
Euclidean. Clearly, this condition implies any invertible n×n matrix may be reduced
to a diagonal matrix D(1, δ) by performing a series of elementary row and column
operations E(i, j;λ). In other words, each X ∈ GLn(Λ) has a Smith Normal Form.

A useful generalisation of this is that of weakly m-Euclidean. When m ≤ n we
embed GLm(Λ) into GLm+1(Λ) by identifying X ∈ GLm(Λ) with its ‘suspension’,

(
X 0
0 1

)
∈ GLm+1(Λ).

This has the obvious generalisation of embedding of GLm(Λ) into GLn(Λ), and that of
GL(−) = lim→GLn(−) and E(−) = lim→En(−). Furthermore, En(Λ) is normalised
by GLm(Λ) and so we have the subgroup GLm(Λ) · En(Λ) of GLn(Λ). We then say
that Λ is weakly m-Euclidean when GLn(Λ) = GLm(Λ) · En(Λ) for m ≤ n.

To conclude, observe that En and GEn are functorial under ring homomorphism.
If we let ϕ : A → B be a surjective ring homomorphism then it is well known that
the induced map ϕ∗ : En(A) → En(B) is also surjective. Unfortunately, this property
does not hold in general for Dn(−), GEn(−) or GLn(−). Clearly, if such a property
holds for Dn(−) then it also holds for GEn(−). We say that the ring homomorphism
ϕ has the lifting property for units when the induced map on units ϕ∗ : U(A) → U(B)
is surjective. If this is the case then the induced maps on Dn(−) and hence GEn(−)
are clearly surjective also.

6.2 Fibre square decompositions for finitely gen-

erated modules

The techniques introduced in the next two sections have their genesis in the work
of Milnor [31] and were further developed by Swan in [56] to understand stably free
modules over group rings. The aim is to analyse the structure of projective mod-
ules (and in particular stably free modules) via the decomposition of rings into fibre
squares.

We start by considering a corner of rings and ring homomorphisms. Suppose
we have a trio of rings A = (A+, A−A0), along with a pair of ring homomorphisms
ϕ+ : A+ → A0 and ϕ− : A− → A0. This gives rise to what we call a corner, denoted
by A:

A =





A−yϕ−
A+

ϕ+
−→ A0

We ‘complete the square’ by taking a ‘twisted product’ of A+ and A− over A0. We
call this the fibre product and define it by,

A+ ×A0
A− = {(a+, a−) ∈ A+ × A− | ϕ+(a+) = ϕ−(a−)}

where addition and multiplication are defined component wise. Set A = A+ ×A0
A−

and construct the following canonical fibre square, denoted by Â:
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Â =





A
π−
−→ A−yπ+

yϕ−
A+

ϕ+
−→ A0

(6.2.1)

where π+ and π− are the projections from A onto A+ and A−, respectively. In general,
any such square is called a fibre square if A is mapped isomorphically onto to the fibre
product given above by π+×π−. It is straightforward to verify that this is equivalent
to requiring the following sequence is exact,

0 → A





π+
π−





−→ A+ ⊕A−
(ϕ+,−ϕ−)
−→ A0. (6.2.2)

Consequently, we note the following:

Proposition 6.2.3. Let F : Rings→ Rings be a left exact functor; that is, a functor
which is left exact when considered as a functor on the underlying additive groups. If
Â is a fibre square as in (6.2.1), then so is F(Â):

F(A)
F(π−)
−−−→ F(A−)yF(π+)

yF(ϕ−)

F(A+)
F(ϕ+)
−−−−→ F(A0)

(6.2.4)

Corollary 6.2.5. Let Â be a fibre square as in (6.2.1). Then

A⊗ Z[G]
π−⊗Id
−−−−→ A− ⊗ Z[G]yπ+⊗Id

yϕ−⊗Id

A+ ⊗ Z[G]
ϕ+⊗Id
−−−−→ A0 ⊗ Z[G]

is also a fibre square.

Proof. Any group algebra Z[G] is free as an additive group; thus −⊗ZZ[G] is a functor
Rings → Rings, which is exact as a functor on the underlying additive groups. We
may therefore apply Proposition 6.2.3.

Proposition 6.2.6. Suppose

(A, θ; α)
π−

−−−→ (A−, θ−; α−)yπ+
yϕ−

(A+, θ+; α+)
ϕ+

−−−→ (A0, θ0; α0)
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is a fibre square of pointed n-rings in which A = A+ ×A0
A−. Then

Cn(A, θ; α)
Cn(π−)
−−−−→ Cn(A−, θ−; α−)yCn(π+)

yCn(ϕ−)

Cn(A+, θ+; α+)
Cn(ϕ+)
−−−−→ Cn(A0, θ0; α0)

is also a fibre square, where Cn(−) is the cyclic algebraic construction discussed in
Section 2.3.

Using the above we may construct fibre squares for more complicated group rings
starting from simpler rings that we, hopefully, better understand. As would be ex-
pected, this starting point is most useful when it is from a group ring of a cyclic
group.

Proposition 6.2.7. Let I be an ideal in a ring Λ, and suppose f : Λ → Γ is a ring
homomorphism such that f |I : I → f(I) is bijective. Then,

Λ
♮

−−−→ Λ/Iyf
yf∗

Γ
♮

−−−→ Γ/f(I)

(6.2.8)

is a fibre square.

Proof. It is sufficient to show the following sequence is exact:

0 → Λ





f
♮





−→ Γ⊕ (Λ/I)

(

♮, −f∗
)

−→ Γ/f(I).

For exactness at Λ, suppose λ ∈ Ker

(
f
♮

)
. Then ♮(λ) = 0 and hence λ ∈ I. As f

is bijective on I, and since f(λ) = 0, we conclude λ = 0. Therefore, the sequence is
exact at Λ.

Next we consider exactness at Γ⊕ (Λ/I). First, suppose (γ, µ)T ∈ Im

(
f
♮

)
, then

there is some λ ∈ Λ such that f(λ) = γ and ♮(λ) = µ. Now,

(
♮, −f∗

)(f(λ)
♮(λ)

)
= ♮(f(λ))− f∗(♮(λ)) = 0

and therefore Im

(
f
♮

)
⊂ Ker

(
♮, −f∗

)
. For the reverse inclusion, we let

(
γ
♮(λ)

)
∈ Ker

(
♮, −f∗

)
; that is,

(
♮, −f∗

)( γ
♮(λ)

)
= 0. Since ♮(γ) − f∗(♮(λ)) = 0,
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by commutativity we have ♮(γ)− ♮(f(λ)) = 0, i.e. γ− f(λ) ∈ f(I). We can therefore
choose some (unique) δ ∈ I such that f(δ) = f(λ)− γ. Finally, then,

(
f
♮

)
(λ− δ) =

(
f(λ− δ)
♮(λ− δ)

)
=

(
γ
♮(λ)

)

and Ker
(
♮, −f∗

)
⊂ Im

(
f
♮

)
thus showing exactness at Γ⊕ (Λ/I).

Corollary 6.2.9. Let G be a finite group and let H be a normal subgroup of G. Then
the following is a fibre square:

Z[G]
♮

−−−→ Z[G]/(ΣH)

f

y
y

Z[G/H ] −−−→ (Z/|H|)[G/H ]

where ΣH =
∑

h∈H h.

Proof. Let f : Z[G] → Z[G/H ] be given by,

f

(∑

g∈G

agg

)
=
∑

g∈G

ag♮(g)

and let I = (ΣH) · Z[G]. Hence f(I) = |H| · Z[G/H ]. To apply Proposition 6.2.7, it
remains to show f |I : I → f(I) is bijective.

Clearly, f |I is surjective and so it suffices to show injectivity. To this end we
suppose

f

(
ΣH
∑

g∈G

agg

)
= |H|

∑

g∈G

ag♮(g) = 0.

It follows that
∑

g∈G agg ∈ Ker(f). Since Ker(f) = Im(h1 − 1, . . . , hm − 1), where
h1, . . . , hm generate H, we may write

∑
g∈G agg = (h1−1)λ1+· · ·+(hm−1)λm for some

λ1, . . . , λm ∈ Z[G]. However, from this we clearly observe that ΣH ·
∑

g∈G agg = 0,
and thus conclude f is bijective on I. The result now follows.

Example 6.2.10 (Cyclic group of order p). Let p be a prime number and consider
the cyclic group of order p, Cp. By Lagrange, we have only two subgroups, the trivial
subgroup and the whole group. If we apply Corollary 6.2.9 with H = Cp then we have
the following fibre Square

Z[Cp] −−−→ Z[Cp]/(Σ)yε
y

Z −−−→ Fp

where Σ =
∑

g∈Cp
g and ε : Z[G] → Z is the augmentation map. The kernel of

this map is the augmentation ideal and in the case of cyclic groups only we have an
isomorphism Z[Cp]/(Σ) ∼= I∗C

∼= IC, the augmentation ideal.
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Example 6.2.11 (Dihedral group of order 2p). Start with the fibre square decompo-
sition of Z[Cp]:

Z[Cp] −−−→ Z[Cp]/(Σ)yε
y

Z −−−→ Fp

Take θ(x) = x−1, the canonical involution for x ∈ Z[Cp]. Clearly θ2 = Id and
1 ∈ (Z[Cp])

θ. We can therefore apply the cyclic algebraic construction C2(−) to
the above fibre square and identify C2(Z[Cp], θ; 1) = Z[D2p], C2(Z, θ) = Z[C2] and
C2(Fp, θ) = Fp[C2]. We therefore have the following fibre square decomposition for
the dihedral group of order 2p, D2p:

Z[D2p] −−−→ C2(Z[Cp]/(Σ), θ)yε
y

Z[C2] −−−→ Fp[C2]

Example 6.2.12 (Metacyclic group of infinite type). We proceed in two stages. First
we build a fibre square model for the metacyclic group G(p, q) of order pq. Next, we
apply the exact functor − ⊗ Z[Fn], where Fn is the free group of rank n ≥ 1. As
before, consider the canonical fibre square model for Z[Cp] (p prime), and identify
Z[Cp] with Z[x]/(xp − 1). Observe that xp − 1 = (x − 1)(xp−1 + · · · + x + 1) and
Z[x]/(xp−1 + · · · + x + 1) ∼= Z[ζp] where ζp = exp(2πi/p). We therefore have the
following fibre square,

Z[Cp] −−−→ Z[ζp]y
y

Z −−−→ Fp

(†)

in line with the conclusion of Example 6.2.10. Now, let α : Cp → Cp be a generator of
Aut(Cp). In particular, ord(α) = p−1 as Aut(Cp) ∼= Cp−1 ∼= Gal(Q(ζp) : Q). Choose
a prime q such that q|p− 1 and put θ such that θ = α(p−1)/q. Clearly, ord(θ) = q.

Now, θ induces a ring automorphism of order q on Z[Cp]. In particular, θ fixes
Σx and so θ induces a ring automorphism on I∗C = Z[Cp]/(Σx), the integral duel of
the augmentation ideal. Likewise, IC is stable under θ and so θ induces the identity
automorphisms on Z and Fp = Z/p. As such, we may apply Cq(−, θ; 1) to (†) to
obtain another fibre square:

Cq(Z[Cp], θ) −−−→ Cq(Z[ζp], θ)y
y

Cq(Z, θ) −−−→ Cq(Fp, θ)

(‡)

We identify Cq(Z[Cp], θ) with Z[Cp ⋊Cq]. Moreover, as θ acts trivially on Z and Fp,
we make the identifications Cq(Z, θ) = Z[Cq] and Cq(Fp, θ) = Fp[Cq]. Thus, (‡) may
be rewritten as:
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Z[Cp ⋊ Cq] −−−→ Cq(Z[ζp], θ)y
y

Z[Cq] −−−→ Fp[Cq]

(‡′)

Evidently, the biggest obstacle to utilising the above fibre square lies in the top right
corner. The key to resolving the issue is a decomposition of Cq(Z[ζp], θ) into ideals
due to Rosen [43], although a more accessible treatment is given in the thesis of
Remez [41]. We give the statement here in a format most of use to us.

Proposition 6.2.13 (Rosen). Let A be the fixed ring of Z[ζp] under θ and consider
the ring of quasi-triangular matrices,

Tq(A, π) = {X ∈Mq(A) | xrs ∈ (π) if r > s},

where π = (ζp − 1)q. Then there is an isomorphism,

Cq(Z[ζp], θ) ∼= Tq(A, π).

The proof of this is omitted in favour of succinctness. Nevertheless, with this result
we now apply the functor −⊗Z Z[Fn] to (‡′) thus obtaining the following fibre square:

Z[(Cp ⋊ Cq)× Fn] −−−→ Tq(A, π)[Fn]y
y

Z[Cq × Fn] −−−→ Fp[Cq × Fn]

(♥)

It is to ♥ that we will be interested in for the final chapter of this thesis.

6.3 Projective modules over fibre squares

Consider the canonical fibre square Â, as given in (6.2.1). When Milnor first discussed
the construction of projective modules over fibre squares (see [31]), there were two
conditions imposed upon the square:

� Hypothesis 1: Suppose A = A1 ×ϕ A2 is the fibre product. In particular, there
is one, and only one, element a ∈ A such that π+(a) = a+ and π−(a) = a−;

� Hypothesis 2: At least one of the two homomorphisms ϕ+, ϕ− is surjective.

This section can be seen as an attempt to discuss and extend these two conditions to
suit our purposes. This will allow us to naturally progress to the question of whether
A can have nontrivial stably frees.

Suppose M is a module over A, then this determines a triple

(M+, M− ;α(M))

where M+ =M ⊗π+A+ andM− =M⊗π− A− are modules over A+, A−, respectively.
Moreover, α(M) is the canonical A0-isomorphism such that the following commutes:
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(M ⊗π+ A+)⊗ϕ+
A0

α(M)
−−−→ (M ⊗π− A−)⊗ϕ−

A0yν+
yν−

M ⊗ϕ+π+ A0
Id

−−−→ M ⊗ϕ−π− A0

(6.3.1)

where νσ : (M⊗πσAσ)⊗A0 →M⊗ϕσπσA0 is the canonical isomorphism for σ = +, −.
Now suppose the converse; i.e. that we have a triple (M+, M−;α), whereM+, M−

are modules over A+, A− respectively such that α :M− ⊗ϕ−
A0

≃
−→ M+ ⊗ϕ+

A0 is a
specific A0-isomorphism. We then obtain an A-module 〈M+, M−;α〉 given by

〈M+, M−;α〉 = {(m+, m−) ∈M+ ×M− | α(m− ⊗ 1) = m+ ⊗ 1}

with the A-action given by

(m+, m−) · λ = (m+ · π+(λ), m− · π−(λ)).

In particular, observe that

α(m− · π−(λ)⊗ 1) = α(m− ⊗ ϕ−π−(λ))

= m+ ⊗ ϕ+π+(λ)

= m+π+(λ)⊗ 1

and so (m+, m−) · λ ∈ 〈M+, M−;α〉. This action then forms a right A-module.
Now, the key point to note is that every finitely generated projective A-module

arises in this way. See [22] for a proof of this.

Proposition 6.3.2. Let P be a finitely generated projective module over A; then

P ∼= 〈P+, P−;α(P )〉.

An obvious special case to observe is when we are looking at a free module of rank n
over A. By the above, this may be written

〈An+, A
n
− : α(An)〉.

In particular, we note that there is a canonical isomorphism ♮ : A+⊗A0
≃

−→ A−⊗A0

which can be confused with Id : A0 → A0. Thus, for each n ≥ 1, we say the globally
free module of rank n over A has the form

Fn(A) = 〈An+, A
n
−; Idn〉.

A finitely generated module P is said to be globally projective if there is another
module Q such that P ⊕Q ∼= Fn(A).

An A-module M is said to be locally projective (resp. locally free) if Mσ is
projective (resp. free) for σ = +, −. Quite clearly, any globally projective module
is locally projective, but the converse need not be true. In fact, for this converse to
hold we need to be careful as to how we ‘patch’ these modules together. We therefore
consider an added condition:
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� Patch: For each n ≥ 1 and each α ∈ GLn(A0) there exists a k ≥ 1 and
β ∈ GLk(A0) such that α ⊕ β = [h+][h−] for some h+ ∈ GLn+k(A+) and
h− ∈ GLn+k(A−), and where [hσ] = hσ ⊗ IdA0

.

The following is essentially due to Bass and Milnor, although the present formulation
is due to Johnson [22].

Proposition 6.3.3. Consider a fibre square of the form (6.2.1) which satisfies Patch,
then a finitely generated A-module P is globally projective if and only if it is locally
projective.

The next issue becomes one of actually understanding when a fibre square satisfies
Patch. There are two cases of note which guarantees we have this patching property.
We say that a fibre square Â of the form (6.2.1) is Ē-trivial when the double coset

E(Â) = E(A+)\E(A0)/E(A−) = {∗}.

In other words, any [X ] ∈ E(A0) can be written [X ] = [ϕ+(X+)][ϕ−(X−)] for some
X+ ∈ En(A+) and X− ∈ Em(A−) (for some m, n). We have the following relationship
between Patch, and Ē-triviality. A proof can be found in Chapter 3 of [22].

Proposition 6.3.4. Let Â be a fibre square of the form 6.2.1. If Â is Ē-trivial, then
Â satisfies Patch.

There is an obvious generalisation of Ē-triviality. For n ≥ 2 we say that Â is
Ēn-trivial if

Ek(Â) = Ek(A+)\Ek(A0)/Ek(A−) = {∗}

whenever k ≥ n. Trivially, if Â is Ēn-trivial and n ≤ N , then A is ĒN -trivial. Evi-
dently, this means that Ē2-triviality is the strongest of these conditions. A straight-
forward stabilisation argument shows:

Proposition 6.3.5. If Â is Ēn-trivial for some n, then Â is Ē-trivial.

The second patching condition of note is a much simpler condition to check, and
was the original patching condition considered by Milnor. We say that a fibre square
Â of the form (6.2.1) is Milnor when:

� Milnor: At least one of ϕ+, ϕ− is surjective.

Proposition 6.3.6. Suppose Â is a fibre square satisfying Milnor’s condition; then
Â is Ē2-trivial.

Proof. Without loss of generality suppose ϕ+ : A+ → A0 is surjective; then for each
k ≥ 2 the induced homomorphism

ϕ+ : Ek(A+) → Ek(A0)

is surjective. Thus, Ek(A+)\Ek(A0) consists of a single point. It follows trivially that
Ek(A+)\Ek(A0)/Ek(A−) consists of a single point.

Corollary 6.3.7. If Â is a fibre square satisfying Milnor’s condition, then Â satisfies
Patch.

Consequently, whenever Â is a Milnor square, a locally free module over A is
necessarily projective. The issue is now to decide when it is stably free. As we will
see in the next section, this is a far more delicate matter.
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6.4 Recognition criteria for stably free cancella-

tion

As before, we work over fibre squares of the form (6.2.1). The aim will now be
to understand when the trivial stably free modules (i.e. free modules) survive the
transition from A+, A− to A. Start by imposing the condition of Ē-triviality on our
fibre square. Denote the set of isomorphism classes of finitely generated locally free
modules of rank n over A by LFn(Â). Likewise, denote the set of isomorphism classes
of stably free modules of rank n over A by SFn(A). We then have the following (see
pp. 52-55 of [22]):

Proposition 6.4.1. Let the fibre square (6.2.1) be Ē-trivial such that the corner ring
A0 is weakly m-Euclidean. Let S+, S− be stably free modules of rank n ≥ m over
A+, A− respectively such that

S+ ⊗ A0
∼= S− ⊗A0

∼= An0 ;

then there exists a stably free module S over A such that π+(S) ∼= S+ and π−(S) ∼= S−.
In particular, if A0 has SFC, then

π+ × π− : SFn(A) → SFn(A+)× SFn(A−)

is surjective.

This tells us when nontrivial stably free modules over A+, A− survive to be
nontrivial over A. If we now take the stably free modules over A+, A− to be trivial,
we would like to know when the stably free modules over A are trivial. In [22] (p.
41), it was shown:

Proposition 6.4.2. There is a bijection,

νn : GLn(Â) = GLn(A+)\GLn(A0)/GLn(A−)
≃

−→ LFn(Â).

We now define two stabilisation operators. First, sn, k : GLn(Â) → GLn+k(Â) is
defined where sn, k([α]) = [α⊕Ik], for some k ≥ 1. Second, we define the stabilisation

operator on LFn(Â) induced from the correspondence P 7→ P ⊕ (Ak+, A
k
−; Ik) by,

σn, k : LFn(Â) → LFn+k(Â).

We then have the following commutative diagram

GLn(Â)
sn, k

−−−→ GLn+k(Â)yνn
yνn+k

LFn(Â)
σn, k

−−−→ LFn+k(Â)

(6.4.3)

where νn, νn+k are bijections due to Proposition 6.4.2.
Now, write ∗ for the class of An+k in LFn+k(Â) and observe that for a locally

free A-module S of rank n we have:

S is stably free if and only if σn, k([S]) = ∗ for some k ≥ 0. (6.4.4)



Chapter 6. Preliminaries 122

Alternatively, we can think of this as requiring sn, k([α]) = [In+k]. This observation

motivates us to define the set Zn(A) = {η ∈ GLn(Â) | sn, k(η) = ∗ for some k ≥ 1},
and put

Z(Â) =
∐

n≥1

Zn(Â).

We call Z(Â) the singular set. From (6.4.4) it follows that

νn : Zn(Â)
≃

−→ SFn(A) ∩ LFn(Â) is bijective. (6.4.5)

We say that Â is locally n-free when SFn(A+) = SFn(A−) = {∗}, and of locally

free type when it is locally n-free for all n. Suppose Â is locally n-free, then every
stably free A-module of rank n is locally free. Thus, SFn(A) = SFn(A) ∩ LFn(Â)
and (6.4.5) becomes

νn : Zn(A)
≃

−→ SFn(A) is a bijection when A is locally n-free. (6.4.6)

It follows that to understand when a stably free module over A is necessarily trivial,
it is enough to consider when Zn(Â) is trivial. An obvious condition to guarantee
this is for sn, k to be injective for all k ≥ 1; that is:

Proposition 6.4.7. If Â is locally n-free and each sn, k : GLn(Â) → GLn+k(Â) is
injective for k ≥ 1, then SFn(A) = {∗}.

Corollary 6.4.8. Suppose that, for each k ≥ 0, Â is locally (n + k)-free, and that
each sn, k is bijective; then A has no nontrivial stably free modules of rank ≥ n.

Proof. For 1 ≤ k < m, note that sn,m = sn+k,m−k ◦ sn, k. Therefore, if sn, k and sn,m
are both bijective, then so too is sn+k,m−k. So if A is locally (n + k)-free, it follows
that SFn+k(A) = {∗}, as required.

This observation will be sufficient for the majority of our purposes in Chapter 7.
Nevertheless, we still have use for the following ‘recognition criteria’ for the component
corners. We say Â is pointlike in dimension one when

GL1(Â) = U(A+)\U(A0)/U(A−)

is a singleton; that is, we can ‘lift’ the units in such a way that any unit u0 ∈ U(A0)
can be written u0 = ϕ−(u−)ϕ+(u+), where uσ ∈ U(Aσ) (σ = ±). We therefore have
the following result [22]:

Proposition 6.4.9 (Recognition Criterion). Let Â be of locally free type that is point-
like in dimension one and satisfies Milnor’s patching condition. If A0 is weakly Eu-
clidean, then A has SFC.

6.5 Stably free cancellation

The results of the previous section mean that we can reduce the situation of stably
free modules over A to those over the component corner rings. To understand these
it may become necessary to decompose these into yet simpler rings. This process
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may be continued until we are left with understanding stably free modules over the
‘simplest’ constituent rings. The aim of this section, and the next two, will be to
understand these base rings and the properties they possess.

For completeness, we include a stronger property than SFC. We say that a ring Λ
is projective free when any finitely generated projective Λ-module is free. Evidently,
a stably free module S is projective but the converse need not be true. For consider
the 2 × 2 matrices over the complex numbers, R = M2(C). By Wedderburn this is
semisimple and we may consider the simple modules,

P =

[
C 0
C 0

]
, Q =

[
0 C
0 C

]

thereby decomposing M2(C) as M2(C) ∼= P ⊕ Q. Now, if P is stably free, then
P ⊕Rm ∼= Rn, and so 2 + 4m = 4n, i.e. 1 + 2m = 2n.

Thus, we see that projective freeness is a stronger property than SFC. It should
also be noted that Gabel’s theorem regarding infinitely generated stably free modules
does not work in the wider realm of projective modules. As such, it is necessary to
include the ‘finitely generated’ hypothesis in statements concerning projective mod-
ules. However these considerations are not especially pertinent to us and the above
discussion is more than ample for our purposes. We conclude by simply noting a
theorem of Kaplansky [27] which tells us that projective modules cannot be ‘too big’;
specifically, any projective module is a direct sum of countably generated modules.

With this in mind, consider now which rings have SFC (or indeed, projective
freeness). Quite clearly, any field is projective free since any vector space has a basis.
More generally, it is well known that if Λ is a PID, then every submodule of a free Λ-
mod is itself free (for instance, see Lang [29]). Consequently, every projective module
over a PID is itself free and therefore:

Proposition 6.5.1. If Λ is a PID, then Λ is projective free, and hence has SFC.

For the noncommutative analogue of a PID, often referred to in the literature as a
free ideal ring, the reader is directed to [7], [8] for more details in relation to projective
freeness. In the next section, we will discuss a further generalisation, namely that of
Dedekind domains. We will see that these too have SFC and will be of particular use
in our later discussions.

Before that, we discuss some more general properties that will be directly appli-
cable to our concerns. First, observe the following result for abelian groups. For a
proof, the reader is directed to [23].

Proposition 6.5.2. Let G be a finitely generated abelian group; then the group ring
Z[G] has SFC.

As we shall often ‘build’ more complex rings from, hopefully simpler, rings we
provide a brief exposition of some standard constructions which preserve SFC. The
reader is directed to [22] for proofs of these. Recall that an idealm of Λ is radical when
m ⊂ rad(Λ), the Jacobson radical of Λ. Moreover, if Λ/rad(Λ) is a division algebra
then we say that Λ is local. From Nakayama’s Lemma and a result of Bourbaki [4],
we have the following:
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Proposition 6.5.3. Let m be a two-sided radical ideal in a ring Λ and let M be a
finitely presented flat Λ-module; then,

M ⊗Λ (Λ/m) is free over Λ/m =⇒ M is free over Λ.

Clearly, any finitely generated projective module P satisfies the hypotheses of
Proposition 6.5.3. Further, if S is a stably free module, then the extension S⊗Λ(Λ/m)
is stably free over Λ/m. We therefore have the following:

Proposition 6.5.4. Let m be a two-sided radical ideal in a ring Λ; then,

Λ/m has SFC =⇒ Λ has SFC.

A special case of Proposition 6.5.4 is when m = rad(Λ) and Λ is a local ring.
We therefore conclude that if Λ is a local ring, then it necessarily has SFC. In fact,
it is a result of Kaplansky’s (see [27]) that any projective module over a local ring is
necessarily free. Another useful property follows from Morita equivalence.

Proposition 6.5.5. If Λ has SFC, then Mn(Λ) has SFC.

Finally, we consider products of rings.

Proposition 6.5.6.

Λ1 × Λ2 has SFC if and only if Λi has SFC for i = 1, 2.

6.6 Dedekind domains and free groups

A Dedekind domain Λ is a commutative integral domain for which every nonzero
proper ideal factors into primes. Equivalently, any pair of ideals a ⊂ b, there exists
an ideal c such that a = bc. It is straightforward to see that in a Dedekind domain,
any nonzero prime ideal is necessarily maximal. A classical example of a Dedekind
domain, and one we shall frequently use, is the ring of algebraic integers in a number
field. For a proof of this, the reader is directed to [31]. In particular, we have:

Proposition 6.6.1. Any Dedekind domain Λ has SFC.

This is essentially a consequence of a classification due to Steinitz (c.1911) for
finitely generated torsion free modules over Dedekind domains (see [4], [49], [50]). In
particular, this result will be useful alongside the theory of free groups.

Consider a ring Λ and a set X . Denote by Λ〈X〉 the free algebra over Λ on the
set X . By letting Fn be the free group on the set X = {x1, . . . , xn}, we may describe
the group algebra Λ[Fn] as the localisation Λ〈X, X−1〉 of Λ〈X〉 by formally inverting
each xi ∈ X . Moreover, Λ[Fn] is isomorphic to the free product,

Λ[Fn] = Λ[x1, x
−1
1 ] ∗ · · · ∗ Λ[xn, x

−1
n ]

where the coefficients Λ are identified in the various copies. In particular, we note
the special case when |X| = 1. This allows us to represent the group algebra Λ[C∞],
where C∞ is the infinite cyclic group, as the ring Λ[x, x−1] of Laurent polynomials in
the variable x and with coefficients in Λ.
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Following [21], we see that when Λ is a (possibly noncommutative) PID, then
both Λ[x] and Λ[x, x−1] are left and right Noetherian domains of global dimension at
most 2. It can be shown that,

Λ[x] is projective free ⇐⇒ Λ[x, x−1] is projective free. (6.6.2)

Using 6.6.2, along with Seshadri’s result that Λ[x] is projective free [46] (for Λ a com-
mutative PID), we conclude that Λ[x, x−1] is also projective free. This was extended
by Bass [1] to show:

Proposition 6.6.3. Let Λ be a commutative PID and X = {x1, . . . , xn}; then
Λ[Fn] = Λ〈X, X−1〉 is projective free.

However, it should be noted that this does not extend to noncommutative PIDs.
For we can consider the integral quaternion algebra

(
−1,−1

Z

)
. For any odd prime p, the

localisation Ω(p) is a PID. However, in [22] Johnson has shown Ω(p)[C∞] has infinitely
many isomorphically distinct stably free modules of rank 1.

If we now restrict ourselves to stably free modules, then Bass’ generalisation of
Seshadri’s argument shows [2]:

Proposition 6.6.4. If Λ is a Dedekind domain, then Λ〈X, X−1〉 has SFC.

Next, we consider the special case where Λ = D division ring. We may write,

D[Fn] = D[x1, x
−1
1 ] ∗ · · · ∗ D[xn, x

−1
n ]

in which each D[xi, x
−1
i ] is a (left and right) PID (see [22], p. 170). By Proposition

6.5.1 D[xi, x
−1
i ] is therefore seen to be projective free. A result of Dicks and Sontag

[12] now shows:

Proposition 6.6.5. If D is a division ring, then D[Fn] is projective free.

For completeness, we briefly discuss the corresponding situation for free abelian
algebras. Now, the situation is entirely different and decidedly ill-behaved. If we
define the set X as before, then for n ≥ 1, we let Cn

∞ denote the free abelian group
on the set X . For a ring Λ, the group algebra Λ[Cn

∞] is isomorphic to the ring of
Laurent polynomials,

Λ[Cn
∞] = Λ[x1, x

−1
1 , . . . , xn, x

−1
n ].

If Λ is a Dedekind domain, then Λ[Cn
∞] has SFC (see [28], p.189). Next, observe

that Fn and Cn
∞ coincide when n = 1. As such, when D is a division ring, D[C∞]

has SFC. However, it has been shown in [28] that requiring D[Cn
∞] (n > 1) to have

SFC is equivalent to requiring that D is commutative. Indeed, by generalizing the
arguments of Dicks-Sontag [12], Ojurangen-Sridharan [34] and Parimala-Sridharan
[36], we observe that whenever D is a noncommutative division ring and n ≥ 2, then
D[Cn

∞] possesses nontrivial stably free modules.
Nevertheless, if k is a field such that char(k) > 0, then k[Cn

∞ × Φ] has SFC for
any finite group Φ (see [21]). When dealing with a field of characteristic zero, we
need to be more careful. If n ≥ 2 and char(k) = 0, then for k[Cn

∞ × Φ] to have SFC,
it is necessary that Φ satisfies the generalized Eichler property1. However, it should

1As this is of no further use to us in this thesis, the reader is directed to [21] for a definition of
this.
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be noted that the converse of this statement is not true in general. In spite of this,
Johnson points out [21] that as a consequence of Stafford (see [48]) the converse does
hold when we consider polynomials, rather than Laurent polynomials.

We conclude this section by considering a property shared by free groups which
will be of use in the next section. We begin by considering a group G and two subsets
of G, denoted by X and Y . We say that g ∈ G is represented as a product in X
and Y when g = xy for some x ∈ X and y ∈ Y . Further, we say that g is uniquely
represented as a product in X and Y when, in addition, we require that if g = x′y′

with x′ ∈ X and y′ ∈ Y , then x = x′ and y = y′. Now, we say that G satisfies the two
unique products condition (abbreviated to T UP) when, given finite subsets X, Y of
G with |X| ≥ 2 and |Y | ≥ 2, at least two elements of G are uniquely represented as
products in X, Y .

It is a straightforward observation that no nontrivial finite group can satisfy T UP .
In particular, we note that every T UP group is torsion free. Moreover, from the work
of Higman [18], we note that free groups have the T UP property.

Now, we say that a group ring Λ[G] over Λ has only trivial units when every
λ ∈ U(Λ[G]) has the form λ = ug for u ∈ U(Λ) and g ∈ G. We then have the
following result due to Passman [38]:

Proposition 6.6.6. Let G be a T UP group; then for any (possibly noncommutative)
integral domain Λ, Λ[G] has only trivial units.

6.7 Weakly Euclidean

We conclude the required legwork by discussing what sort of ring is weakly Euclidean.
Recall that a ring Λ is said to be weakly Euclidean when

GLn(Λ) = GEn(Λ) = Dn(Λ) ·En(Λ)

for all n ≥ 2. A ring homomorphism π : A → B is said to have the lifting property
for units when the induced map on units π∗ : U(A) → U(B) is a surjection. Further,
we say that π has the strong lifting property for units when, in addition, we have the
following:

a ∈ U(A) ⇐⇒ π(a) ∈ U(B).

With this, we now have the following Recognition Criterion, see [22].

Proposition 6.7.1. Let π : A → B be a surjective ring homomorphism with the
strong lifting property for units. If B is weakly Euclidean, then so too is A.

Now, it is quite clear that any division ring, being a PID is weakly Euclidean.
More generally, from [47], we see that any commutative Euclidean domain is weakly
Euclidean. If we now consider a (possibly noncommutative) local ring Λ, then we
have the canonical homomorphism π : Λ → Λ/rad(Λ). It is straightforward to see
that π has the strong lifting property for units and since Λ/rad(Λ) is a division ring,
we have:

Proposition 6.7.2. If Λ is a (possibly noncommutative) local ring, then Λ is weakly
Euclidean.

Similar to our results of Section 6.5, we observe the following two results [22]:
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Proposition 6.7.3. If Λ1, . . . , Λn are weakly Euclidean rings, then so too is
Λ1 × · · · × Λn.

Proposition 6.7.4. Let Λ be a weakly Euclidean ring. Then Mn(Λ) is also weakly
Euclidean.

Moreover, by considering the free groups of the previous section, we note the
following theorem of Cohn [7]:

Proposition 6.7.5. For any division ring D, the group ring D[Fn] is weakly Eu-
clidean.

The following is proved in [22]:

Proposition 6.7.6. Let π : A → B be a surjective ring homomorphism with the
strong lifting property for units and suppose that the ideal Ker(π) is nilpotent; if G
is a group such that B[G] has only trivial units, then the induced homomorphism
π∗ : A[G] → B[G] has the strong lifting property for units.

As already noted, the free group Fn satisfies the T UP condition and therefore
for a division ring D the group ring D[Fn] has only trivial units. If we now consider
a local ring Λ, then we may set D = Λ/rad(Λ) where rad(Λ) is nilpotent. This
clearly satisfies the hypotheses of Proposition 6.7.6 and so we conclude that the
induced homomorphism Λ[Fn] → D[Fn] has the strong lifting property for units. By
Propositions 6.7.1 and 6.7.5 we conclude:

Proposition 6.7.7. If Λ is a local ring for which rad(Λ) is nilpotent, then the group
ring Λ[Fn] is weakly Euclidean.

6.8 The cancellation properties of the modules R(i)

We conclude this chapter by tying up a loose end from Part I of this thesis. For this
section, write Λ = Z[G(p, q)] for the integral group ring of the metacyclic group given
in Example 6.2.12, and recall Tq(A, π) decomposes as a direct sum of right ideals

Tq(A, π) ∼= R(1)⊕ · · ·R(q),

where R(i) is the ith row of Tq(A, π). By considering R(i) as a Λ-module, we write
[R(i)] for the stable class of R(i). In particular, we note that R(i) is a minimal
element of [R(i)]. At various points throughout Chapters 4 and 5 we used the fact
that [R(i)] is straight for each i ∈ {1, . . . , q}. The following proof was shown to the
author by Prof. F. E. A. Johnson, and has the benefit being much clearer than that
of [41], albeit at the cost of a bit more work.

Let R be a ring, and denote by P(R), the set of isomorphism classes of finitely
generated projective R-modules. As previously noted, this is a commutative monoid
under direct sum

P(R)× P(R) → P(R)

(P , Q) 7→ P ⊕Q.
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For q ≥ 2, define Rq(R) = {(r1, . . . , rq) | ri ∈ R}, which is a R-Mq(R) bimodule.
If Q is a right R-module, we define

Q̃ = Q⊗R Rq(R)

so that Q̃ is a right Mq(R)-module. We then have the following form of Morita’s
Theorem:

For any q ≥ 2 the correspondence Q 7→ Q̃ gives an isomorphism (6.8.1)

of monoids P(R)
≃

−→ P(Mq(R)).

If we specialise R to the case of a commutative PID, then we can describe P(R):

If R is a commutative principal ideal domain, then P(R) ∼= N. (6.8.2)

Furthermore, if we write Rq = R× · · · × R︸ ︷︷ ︸
q

, then:

If R is a commutative principal ideal domain, then P(Rq) ∼= Nq. (6.8.3)

In the isomorphism of (6.8.3), the generators of P(Rq) correspond to the primitive
idempotents of Rq.

Next, for a commutative principal ideal domain A such that (π) ⊳A is a maximal
ideal, we have the quasi-triangular subring of Mq(A),

Tq(A, π) = {(xrs ∈Mq(A) | xrs ∈ (π) if r > s}.

We then have the following fibre square decomposition of Tq(A, π) (see Proposition
7.2.1):

Tq(A, π) −−−→ Mq(A)y
yν

Tq(A/π)
j

−−−→ Mq(A/π).

(6.8.4)

Note that Tq(A, π) decomposes as a direct sum of right ideals

Tq(A, π) = R(1)⊕ · · · ⊕R(q),

where R(i) is the ith row of Tq(A, π). Evidently, each R(i) is projective over Tq(A, π).
In the special case where π = {0} we write Tq(A) which decomposes as

Tq(A) = R(1)⊕ · · · ⊕ R(q).

For R a commutative principal ideal domain, observe that there is an obvious
surjective ring homomorphism δ : Tq(R) → Rq given by δ(X) = (X11, . . . , Xqq).
The kernel of this homomorphism is the nilpotent ideal of strictly upper triangular
matrices and is contained in the Jacobson radical of Tq(R) (see the proof of Proposition
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7.2.2). It then follows from (6.8.3) and Nakayama’s Lemma that:

If R is a commutative PID, then P(Tq(R)) ∼= Nq with generators (6.8.5)

R(1), . . . , R(q). .

Proposition 6.8.6. Let A be a commutative principal ideal domain, and let π ∈ A
generate a maximal ideal in A. Then P(Tq(A, π)) ∼= Nq with generators R(1), . . . , R(q).

Proof. Return once more to the fibre square given in (6.8.4). If P is a finitely gen-
erated projective module over Tq(A, π), then by Milnor’s classification P can be
described as a triple P ∼= (P+, P−; α) in which P+ ∈ P(Tq(A/π)), P− ∈ P(Mq(A))

and α : j∗(P+)
≃

−→ ν∗(P−) is an isomorphism over Mq(A/π).
Now, let c = (c1, . . . , cq) ∈ Nq and write

P+(c) =

q⊕

i=1

R(i)ci and P−(c) = Ã|c|

where |c| =
∑q

i=1 ci. In particular, we observe j∗(P+(c)) ∼= ν∗(P−(c)). In this case, we
refer to c as the type of P . It now follows from (6.8.1) and (6.8.2) that P(Mq(A)) ∼= N.
Likewise, since A/π is a field, it follows from (6.8.5) that P(Tq(A/π)) ∼= Nq. Thus,
by Milnor’s classification, any P ∈ P(Tq(A, π)) is of type c for some c ∈ Nq. In
particular,

q⊕

i=1

R(i)ci is of type c. (6.8.7)

It therefore suffices to show that, up to isomorphism,
⊕q

i=1R(i)
ci is the unique pro-

jective module over Tq(A, π) of type c.
To show this, first note that by Milnor’s classification, we may write

q⊕

i=1

R(i)ci = (P+(c), P−(c); γ)

where we regard γ : j∗(P+(c))
≃

−→ ν∗(P−(c)) as a ‘basepoint isomorphism’. Next,
suppose (P+(c), P−(c); α) is also of type c. Relative to γ, α can be described as an
element of GLq((A/π)

|c|) ∼= GL|c|q(A/π). However, as A/π is a field, then it is weakly
Euclidean. As such, α can be expressed as a product α = ∆ ·E, where ∆ is a diagonal
matrix with entries ∆ii ∈ U(A/π) and E = E1 · · ·EN is a product of transvections
with det(Er) = 1 for each r ∈ {1, . . . , N}.

Now, each ∆ii is located in the automorphism group of the corresponding R(i)
so that ∆ ∈ Im(Aut(P+(c)) → Gl|c|q(A)). Furthermore, since A→ A/π is surjective,
then so too is E|c|q(A) → E|c|q(A/π). Hence, E ∈ Im(GL|c|q(A) → GL|c|q(A/π)).
Therefore, by Milnor (P+(c), P−(c); α) ∼= (P+(c), P−(c); γ), i.e P ∼=

⊕q
i=1R(i)

ci . So⊕q
i=1R(i)

ci is the unique projective module of type c, as required.

Let P be a finitely generated projective module over Tq(A, π). As already seen,
P can be described as a triple (P+, P−; α) where P+ ∈ P(Tq(A/π)), P− ∈ P(Mq(A))

and α : j∗(P+)
≃

−→ ν∗(P−) is an isomorphism over Mq(A/π). We say that P is of
type (s, Q) when

P+
∼=Tq(A/π) R(s) and P− ∼=Mq(A) Q̃
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where Q is a projective module over A. Of primary concern to us will be modules of
type (s, A), where we consider A as an ideal in its own right.

Proposition 6.8.8. Let A be a Dedekind domain, π ∈ A a prime and 1 ≤ s ≤ q;
then, up to isomorphism, R(s) is the unique projective module over Tq(A, π) of type
(s, A).

Proof. As R(s) is of type (s, A), we write R(s) = (R(s), Ã; β), where we regard the

isomorphism β : j∗(R(s))
≃

−→ ν∗(Ã) describing R(s) as a ‘basepoint isomorphism’.

Next, let P = (R(s), Ã; α) be another module of type (s, A). Relative to β, α
can be described as a element of GLq(A/π). However, A/π is a field, and so we
can write α as a product α = ∆ · E. Here, ∆ is a diagonal matrix with entries
∆ii ∈ U(A/π) and E = E1 · · ·EN is a product of transvections with determinant
det(Er) = 1. Evidently, ∆ ∈ Im(U(Tq(A/π)) → GLq(A/π)), and since A → A/π
is a surjection, then E ∈ Im(GLq(A) → GLq(A/π)). From Milnor’s ‘isomorphism

criterion’, it follows that (R(s), Ã; α) ∼= (R(s), Ã; β), i.e. P ∼= R(s).

Corollary 6.8.9. Let A be a Dedekind domain, and π ∈ A be prime; then each stable
class [R(s)] is straight over Tq(A, π).

Proof. Let E be the field of fractions of A. As Tq(A, π) is an order in the simple
E-algebra Mq(E) it suffices, by Swan-Jacobinski, to show

X ⊕ Tq(A, π) ∼=Tq(A, π) R(s)⊕ Tq(A, π) ⇒ X ∼=Tq(A,π) R(s).

First, observe thatX is necessarily a finitely generated projective module over Tq(A, π).
Furthermore, both P(Tq(A/π)) and P(Mq(A)) ∼= P(A) are cancellation monoids, iso-

morphic to Nq and N⊕ K̃0(A), respectively. Thus X has the same local type as R(s)
and so X ∼=Tq(A,π) R(s) by Proposition 6.8.8.

Now, let p, q be primes such that q|p−1 and let Λ = Z[G(p, q)]. We now restrict
A to the fixed ring A = Z[ζp]

θ, and π = (ζp − 1)q, as with Example 6.2.12. We then
have the following fibre square decomposition of Λ:

Z[Cp ⋊ Cq] −−−→ Tq(A, π)y
y

Z[Cq] −−−→ Fp[Cq].

(‡′)

Evidently, Tq(A, π), and hence each R(s), acquires the structure of a Λ-module by co-
induction from the homomorphism Λ ։ Tq(A, π). We can now finally prove (2.8.2);
that is:

Proposition 6.8.10. Each stable class [R(s)] is straight over Λ.

Proof. For any Λ-module M , we put MQ = M ⊗Z Q so that MQ is a module over
the semisimple ring ΛQ = Q[G(p, q)]. By Swan-Jacobinski, it is sufficient to prove,

X ⊕ Λ ∼=Λ R(s)⊕ Λ ⇒ X ∼=Λ R(s),
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for some Λ-module X . As XQ⊕ΛQ
∼=ΛQ

R(s)Q⊕ΛQ, then by Wedderburn’s Theorem
we see that XQ

∼=ΛQ
R(s)Q. It now follows easily that

HomΛ(X, Z[Cq]) = 0.

Next, let h : X ⊕ Λ
≃

−→ R(s)⊕ Λ be a Λ-isomorphism and consider the diagram

0 −−−→ X ⊕ Tq(A, π)
i

−−−→ X ⊕ Λ
p

−−−→ Z[Cq] −−−→ 0

h

y

0 −−−→ R(s)⊕ Tq(A, π)
i′

−−−→ R(s)⊕ Λ
p′

−−−→ Z[Cq] −−−→ 0.

Since HomΛ(X, Z[Cq]) = 0, we can complete the above to a commutative diagram

0 −−−→ X ⊕ Tq(A, π)
i

−−−→ X ⊕ Λ
p

−−−→ Z[Cq] −−−→ 0yh−
yh

yh+

0 −−−→ R(s)⊕ Tq(A, π)
i′

−−−→ R(s)⊕ Λ
p′

−−−→ Z[Cq] −−−→ 0.

in which h+ is necessarily surjective. Furthermore, as Z[Cq] is a free abelian group of
finite rank, it follows that h+ is a Λ-isomorphism. Hence, so too is h−.

Now, as the Λ-module structure on R(s)⊕ Tq(A, π) is coinduced from Tq(A, π),
it follows that the Λ-module X is coinduced from a Tq(A, π)-module which we denote

by X̂ . Then h− defines an isomorphism of Tq(A, π)-modules,

h− : X̂ ⊕ Tq(A, π) → R(s)⊕ Tq(A, π).

By Corollary 6.8.9, X̂ ∼=Tq(A, π) R(s). As the Λ-module structures on X and R(s) are
coinduced from Tq(A, π) then X ∼=Λ R(s).



Chapter 7

Stably free modules over
Z[G(p, q)× Fn]

With the preliminary work of Chapter 6 done, we now discuss the stably free modules
over Z[G(p, q) × Fn] where p, q are primes such that q|p − 1. In particular, it is
shown that Z[G(p, q)× Fn] admits no nontrivial stably free module. Recall that we
constructed a fibre model for Z[G(p, q)× Fn] in Section 6.2

Z[(Cp ⋊ Cq)× Fn] −−−→ Tq(A, π)[Fn]y
y

Z[Cq × Fn] −−−→ Fp[Cq × Fn]

(♥)

which clearly satisfies Milnor Patching. Our focus now becomes that of understanding
each of the corners in turn in the hope that ♥ is locally free. Of use to us throughout
this chapter will be the following result:

Proposition 7.0.1. Fp[Cq] ∼= Fp × · · ·Fp︸ ︷︷ ︸
q

.

Proof. First, Fp[Cq] is isomorphic to the ring Fp[x]/(x
q−1). If we write f(x) = xq−1,

then f ′(x) = qxq−1 and we observe gcd(f, f ′) = 1 as gcd(p, q) = 1. As such, f has
no repeated roots and the factorisation of f in Fp[x] is

f(x) =
∏

i

fi(x)

in which each fi(x) is a distinct irreducible factor. By the Chinese Remainder Theo-
rem, we therefore have an isomorphism of rings

Fp[Cq] ∼=
⊕

i

Fp[x]/(fi(x)).

The result now follows since xq−1 splits completely in Fp[x] (it has q distinct roots).
This is a direct consequence of the fact that U(Fp) is a cyclic group of order p − 1.
Since q|p−1, there are precisely q elements a whose order divides q. As each of these
satisfy aq = 1, there are q roots of xq − 1.

132
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Corollary 7.0.2. Fp[Cq × Fn] ∼= Fp[Fn]× · · ·Fp[Fn]︸ ︷︷ ︸
q

.

Corollary 7.0.3. Fp[Cq × Fn] is weakly Euclidean; that is,

GLn(Fp[Cq × Fn]) = U(Fp[Cq × Fn])En(Fp[Cq × Fn])

for each n ≥ 2.

Proof. By Corollary 7.0.2, we may write Fp[Cq × Fn] as q copies of Fp[Fn]. By
Proposition 6.7.5, each of these copies is weakly Euclidean. The result now follows
from Proposition 6.7.3.

Proposition 7.0.4. Let

R
π−

−−−→ R−

π+

y ϕ−

y
R+

ϕ+

−−−→ R0

be a fibre square, and let G be a group. If R+[G], R−[G] have only trivial units, then
so also does R[G].

Proof. Suppose α ∈ U(R[G]) and write α =
∑

g∈G agg. Observe π+(α) ∈ U(R+[G]).
Since R+[G] has only trivial units, there exists h ∈ G such that π+(α) = π+(ah)h.
Similarly, π−(α) ∈ U(R−[G]) and the same argument shows there exists some k ∈ G
such that π−(α) = π−(ak)k.

Now, ϕ+π+(α) ∈ U(R0[G]) so that ϕ+π+(α) 6= 0. Hence ϕ+π+(ah) 6= 0. Likewise
ϕ−π−(α) 6= 0 and so ϕ−π−(ak) 6= 0. Since ϕ+π+(α) = ϕ−π−(α), we can rewrite
this as ϕ+π+(ah)h = ϕ−π−(ak)k. As {g | g ∈ G} is a basis for R0[G], and as both
ϕ+π+(ah) 6= 0, ϕ−π−(ak) 6= 0, it follows that h = k.

Next, put α′ = ahh so that π+(α
′) = π+(α) and π−(α

′) = π−(α). Using the fact
that π+ × π− : R[G] → R+[G] × R−[G] is injective, it follows that α = α′. Hence
supp(α) = {h}, i.e. |supp(α)| = 1. We conclude α is a trivial unit, as required.

Corollary 7.0.5. U(Z[Cq × Fn]) ∼= U(Z[Cq])× Fn.

Proof. First, decompose Z[Cq] into the following fibre square model,

Z[Cq]
π−

−−−→ Z[ζq]

π+

y
y

Z −−−→ Fq

where ζq = exp(2πi/q). Since Z, Z[ζq] are integral domains, Z[Fn], Z[ζq][Fn] have
only trivial units (Proposition 6.6.6). The result follows from Proposition 7.0.4.

It should be noted, however, that the argument of Proposition 7.0.4 fails if R0 is
allowed to be the zero ring. In this instance A ∼= A+ × A− and we can always find
nontrivial units for any nontrivial group G. For if g, h ∈ G such that g 6= h, we can
simply choose α = (1, 0)g + (0, 1)h and β = (1, 0)g−1 + (0, 1)h−1. It is quite clear
that αβ = βα = (1, 1) but neither is trivial.

Proposition 7.0.6. U(Fp[Cq × Fn]) ∼= U(Fp[Cq])× F q
n .
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Proof. By Proposition 6.6.6 U(Fp[Fn]) ∼= U(Fp) × Fn. The result now follows from
Corollary 7.0.2.

Corollary 7.0.7. U(Fp[Cq × Fn])/U(Tq(A, π)[Fn]) is finite; in fact

|U(Fp[Cq × Fn])/U(Tq(A, π)[Fn])| ≤ |U(Fp[Cq])/U(Tq(A, π))|.

Proof. Write Tq = Tq(A, π) and observe U(Tq[Fn]) contains a copy of F q
n , namely the

diagonal matrices

∆(γ1, . . . , γq) =




γ1
γ2

. . .

γq




where γi ∈ Fn. Combining this with the obvious inclusion U(Tq) ⊂ U(Tq[Fn]) gives
an injection U(Tq)× F q

n →֒ U(Tq[Fn]). Hence, we have a surjection

U(Fp[Cq × Fn])/U(Tq)× F q
n ։ U(Fp[Cq × Fn])/U(Tq[Fn]). (7.0.8)

It follows from Proposition 7.0.6 that we have bijections

U(Fp[Cq × Fn])/U(Tq)× F q
n ↔ U(Fp[Cq])× F q

n/U(Tq)× F q
n ↔ U(Fp[Cq])/U(Tq).

(7.0.9)
Combining this with the surjection of (7.0.8) we conclude that we have a surjection
U(Fp[Cq])/U(Tq) ։ U(Fp[Cq × Fn])/U(Tq[Fn]). The result now follows as
U(Fp[Cq])/U(Tq) is finite.

7.1 Z[Cq × Fn] has SFC

We now demonstrate that the stably free modules over Z[Cq × Fn] are trivial. The
results of this section can be found in Chapter 10 of [22]. Nevertheless, we include
the details here for completeness. Start by decomposing Z[Cq] in the usual way:

Z[Cq] −−−→ Z[ζq]y
y

Z −−−→ Fq

On applying the functor − ⊗Z Z[Fn] and Corollary 6.2.5 we obtain another Milnor
square:

Z[Cq × Fn] −−−→ (Z[ζq])[Fn]y
y

Z[Fn] −−−→ Fq[Fn]

(♣)

Our intention will now be to apply Proposition 6.4.9. First, Z is a Dedekind
domain and so Z[Fn] has SFC by Proposition 6.6.4. Similarly, if we regard Z[ζq] as the
ring of integers in the cyclotomic field Q(ζq) then it is seen to be a Dedekind domain
also, and so Z[ζq][Fn] has SFC by the same reasoning. Consequently, Z[Cq × Fn] is
locally free.
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Now, Fq is a finite field and so it follows that Fq[Fn] is weakly Euclidean (by
Proposition 6.7.5). It remains to lift the units. By Proposition 6.6.6, Fq[Fn] has
only trivial units, i.e. any unit u ∈ U(Fq[Fn]) can be written u = λg for λ ∈ U(Fq)
and g ∈ Fn. As has been seen, this latter property is one shared both by Z[Fn] and
Z[ζ∗q ][Fn].

Proposition 7.1.1. There exists a surjective map on units,

ϕ : U(Z[ζq][Fn]) ։ U(Fq[Fn]).

Proof. Note that Z[ζq] is a Z-lattice of rank q−1 in Q(ζq), and (ζq−1)Z[ζq] has index
q in Z[ζq]. Moreover, (ζq − 1)q−1 = qu for some unit u ∈ U(Z[ζq]). If 2 ≤ k ≤ q − 1,
then ζkq is also a primitive qth root of unity so that (ζkq − 1)q−1 = qw, for some
w ∈ U(Z[ζq]). As such, we have:

(ζkq − 1)

(ζq − 1)
= 1 + ζq + · · ·+ ζk−1q ∈ U(Z[ζq])

Further, as ζq has order q, and |U(Fq)| = q − 1, it follows that the canonical homo-
morphism Z[ζq] → Fq sends ζq 7→ 1. In particular, 1 + ζq + · · · ζk−1q 7→ k ∈ U(Fq), i.e.
Z[ζq] → Fq induces a surjection on the units U(Z[ζq]) ։ U(Fq). It follows that the
induced map on units U(Z[ζq][Fn]) ։ U(Fq[Fn]) is surjective.

Corollary 7.1.2. Z[Cq × Fn] has SFC.

Proof. By Proposition 7.1.1, ♣ is pointlike in dimension one. As Fq[Fn] is weakly
Euclidean, and Z[Fn], (Z[ζq])[Fn] have SFC, the hypotheses of Proposition 6.4.9 are
satisfied. The result follows.

It is possible to somewhat generalize the result of this section to encompass a
cyclic group of order m, where m is not necessarily prime. It has been shown by
Bass and Murthy [3] that Z[Cm × C∞] has SFC for m ≥ 2, although a more direct
proof can be found in [22]. However, if one tries to fully generalize this section, that
is to consider Cm × Fn, then the arguments breaks down. To this end, O’Shea [35]
has shown that Z[Cm × Fn] has infinitely many non-isomorphic stably free modules
of rank 1 provided that n ≥ 2 and m ≡ 0 (mod p2) for some prime p.

7.2 Top right corner of ♥ has SFC

Next we consider the top right corner, i.e. Tq(A, π)[Fn]. Consider the following
decomposition,

Tq(A, π)
j

−−−→ Mq(A)

ϕ

y ψ

y

Tq(A/π)
i

−−−→ Mq(A/π)

(∗)

where i and j are injections into the respective matrix rings.

Proposition 7.2.1. The commutative square ∗ is a fibre square.
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Proof. Consider X ∈ Tq(A/π) and Y ∈ Mq(A) such that i(X) = ψ(Y ). As ϕ is
a surjection, there is an X̄ ∈ Tq(A, π) such that ϕ(X̄) = X and which we may
inject into Mq(A). By the commutativity of ∗ it is clear that ψ(j(X̄)) = i(X), i.e.
(X, j(X̄)) ∈ Tq(A/π) ×i, ψ Mq(A). In particular, j(X̄) − Y ∈ Ker(ψ) and so there
exists some Z ∈ Tq(A, π) such that j(Z) = j(X̄)− Y , i.e. Y = j(X̄ − Z). Moreover,
ϕ(X̄ − Z) = ϕ(X̄).

Furthermore, if we suppose there exist X̄, X̄ ′ ∈ Tq(A, π) such that
(ϕ× j)(X̄) = (ϕ× j)(X̄ ′), then it follows that j(X̄) = j(X̄ ′). As j is an injection, it
is necessary that X̄ = X̄ ′ and ∗ is therefore a fibre square.

Tensoring the above commutative square with − ⊗Z Z[Fn] now yields another
fibre square:

Tq(A, π)[Fn]
j

−−−→ Mq(A[Fn])

ϕ

y ψ

y

Tq((A/π)[Fn])
i

−−−→ Mq((A/π)[Fn])

(♦)

Observe A = Z[ζp]
θ is the ring of algebraic integers in the fixed field Q(ζp)

θ, and
therefore a Dedekind domain. It follows that A[Fn] has SFC by Proposition 6.6.4,
and therefore so does Mq(A[Fn]) by Proposition 6.5.5.

Now, as π is the unique prime in A over p, and as A is a Dedekind domain, it
follows that A/π is the finite field Fp. Consequently, we observe that (A/π)[Fn] is
weakly Euclidean (by Proposition 6.7.5), and so too is Mq((A/π)[Fn]).

Proposition 7.2.2. Tq((A/π)[Fn]) has SFC.

Proof. Consider the obvious surjection,

ψ : Tq((A/π)[Fn]) ։ (A/π)[Fn]× · · · × (A/π)[Fn]︸ ︷︷ ︸
q

in which ψ(X) = (X11, . . . , Xqq). In particular, we observe that each (A/π)[Fn] has
SFC and hence so does any finite product of these. To deduce that Tq((A/π)[Fn]) has
SFC we seek to apply Bourbaki-Nakayama (Proposition 6.5.4) and need show Ker(ψ)
is radical. If X ∈ Ker(ψ), then X is strictly upper triangular, i.e.

X ∼



0 ∗

. . .

0 0


 .

Evidently, for any T1, T2 ∈ Tq((A/π)[Fn]), we have (T1XT2)
m = 0 for some m. Thus,

Iq + T1XT2 is a unit and so X ∈ rad(Tq((A/π)[Fn])). Hence Ker(ψ) is radical and
we apply Bourbaki-Nakayama to show Tq((A/π)[Fn]) has SFC, as claimed.

Corollary 7.2.3. Tq(A, π)[Fn] has SFC.

Proof. By Propositions 7.2.1 and 7.2.2, as well as the discussion in between, it suffices
to show ♦ is pointlike in dimension one. To this end we considerX ∈ GLq((A/π)[Fn]).
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As (A/π)[Fn] is weakly Euclidean, we write X = ∆E for E ∈ Eq((A/π)[Fn]), and

∆ =




δ 0
1

. . .

0 1




where δ ∈ U((A/π)[Fn]). Clearly, ∆ ∈ Tq((A/π)[Fn]) and since ♮ is surjective, it fol-

lows that there exists an Ẽ ∈ Eq(A[Fn]) such that ♮(Ẽ) = E. As such, X = i(∆)♮(Ẽ),
i.e. ♦ is pointlike in dimension one. We therefore conclude by the Recognition Cri-
terion (Proposition 6.4.9) that Tq(A, π)[Fn] has SFC.

7.3 Z[G(p, q)× Fn] has SFC

It follows from Sections 7.1 - 7.2 that ♥ is of locally free type. As such, for all k ≥ 1
we have Zk(♥) ∼= SFk(Z[G(p, q) × Fn]). Our aim will now be to show Zk(♥) is
trivial for each k ≥ 1. In the interest of a succinct notation, we relabel A = Z[Cq],
B = Fp[Cq] and Tq = Tq(A, π).

Start by observing Z[G(p, q)] is a retract of Z[G(p, q) × Fn], i.e. there are ring
homomorphisms i : Z[G(p, q)] → Z[G(p, q)×Fn] and r : Z[G(p, q)×Fn] → Z[G(p, q)]
such that r ◦ i = 1. We therefore have the following collection of mappings,

LF1(‡
′)

σ1, 1
−−−→ LF2(‡

′)
σ2, 1

−−−→ LF3(‡
′)

σ3, 1
−−−→ LF4(‡

′)
σ4, 1

−−−→ · · ·

i1

y i2

y i3

y i4

y

LF1(♥)
σ1, 1

−−−→ LF2(♥)
σ2, 1

−−−→ LF3(♥)
σ3, 1

−−−→ LF4(♥)
σ4, 1

−−−→ · · ·

r1

y r2

y r3

y r4

y

LF1(‡
′)

σ1, 1
−−−→ LF2(‡

′)
σ2, 1

−−−→ LF3(‡
′)

σ3, 1
−−−→ LF4(‡

′)
σ4, 1

−−−→ · · ·

where ‡′ is the fibre square defined in Example 6.2.12, and ik, rk are the maps induced
from i, r, respectively. Since r ◦ i = 1, it follows that each rk is surjective. Moreover,
by Swan-Jacobinski LFk(‡

′) ≡ LFk+1(‡
′) for each k ≥ 1. In particular,

|LF1(‡
′)| = |U(Z[Cq])\U(Fp[Cq])/U(Tq)| = N (7.3.1)

for some finite N . We now compare this to the size of LFk(♥) for which, we recall,

there is a bijection νn : GLk(♥)
≃

−→ LFk(♥).

Proposition 7.3.2. For each k ≥ 1, LFk(♥) is finite. In particular,
LFk(♥) ≡ LFk(‡

′).

Proof. From Corollary 7.0.3, B[Fn] = Fp[Cq × Fn] is weakly Euclidean, i.e.

GLk(B[Fn]) = GEk(B[Fn]) = U(B[Fn])Ek(B[Fn]). (7.3.3)
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Now, it is clear that U(Tq[Fn])Ek(Tq[Fn]) ⊂ GLk(Tq[Fn]) and so there is a natural
surjection

GLk(B[Fn])/U(Tq[Fn])Ek(Tq[Fn]) ։ GLk(B[Fn])/GLk(Tq[Fn]).

Next, the surjection ♮ : Tq[Fn] → B[Fn] induces a surjection

♮∗ : Ek(Tq[Fn]) → Ek(B[Fn]).

Combining this with (7.3.3) we therefore have the surjection

U(B[Fn])/U(Tq[Fn]) ։ GLk(B[Fn])/GLk(Tq[Fn]). (7.3.4)

Now, recall that U(B)/U(Tq) is finite. Furthermore, from Corollary 7.0.7 there is a
surjection U(B)/U(Tq) ։ U(B[Fn])/U(Tq[Fn]). As such, we combine this with (7.3.4)
to deduce

|GLk(B[Fn])/GLk(Tq[Fn])| ≤ |U(B)/U(Tq)|

and hence

|GLk(♥)| = |GLk(A[Fn])\GLk(B[Fn])/GLk(Tq[Fn])| ≤ |U(A)\U(B)/U(Tq)| = |LF1(‡
′)|.

Finally, we know rk : LFk(♥) → LFk(‡
′) is surjective. However,

|LFk(♥)| = |GLk(♥)| ≤ |LF1(‡
′)| = |LFk(‡

′)| = N

from which it follows that rk is an isomorphism, as required.

Corollary 7.3.5. For each k ≥ 1, LFk(♥) ≡ LFk+1(♥).

Theorem K: For p, q prime numbers such that q|p− 1, the integral group ring
Z[(Cp ⋊ Cq)× Fn] has no non-trivial stably free modules; that is, it has SFC.

Proof. By Corollary 7.3.5 we have LFk(♥) ≡ LFk+1(♥) for each k ≥ 1. By (6.4.3)
sn, k is therefore bijective for each k ≥ 1. By Corollary 6.4.8, Zk(♥) = {∗} for each
k ≥ 1.
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[58] H. Zassenhaus. Über endliche Fastkörper. Abhandlungen aus dem Mathematis-
chen Seminar der Universität Hamburg, 11(1):187–220, dec 1935.


	Declaration of Authorship
	Abstract
	Acknowledgements
	I Finite metacyclic groups
	1 Overview
	1.1 Motivation
	1.2 Structure of thesis

	2 Preamble
	2.1 Dual modules
	2.2 Integral representation theory
	2.3 Cyclic Algebras
	2.4 The Ext1 functor
	2.5 Free resolutions and syzygies
	2.6 Stably free modules
	2.7 The tree structure of stable syzygies
	2.8 Indecomposable modules

	3 The syzygies of Z[Cn]
	3.1 The isomorphism II.5-.5.5-.5.5-.5.5-.5Zfree

	4 The syzygies of Z[D4n+2]
	4.1 The modules P and R
	4.2 The tree structures of the odd syzygies
	4.3 The modules K and L
	4.4 K??
	4.5 PPL
	4.6 LPR
	4.7 RPK
	4.8 A diagonal resolution for Z[D4n+2]

	5 The syzygies of G(p,3)
	5.1 The modules R(1),R(2) and R(3)
	5.2 Indecomposable modules and tree structures
	5.3 The sequencing conjecture
	5.4 The module K
	5.5 Theorem F(1)
	5.6 Theorem F(2) and the sequencing conjecture
	5.7 Theorem F(5)
	5.8 Theorem F(4)
	5.9 Theorem F(3)
	5.10 The module K: a general case


	II Metacyclic groups of infinite type
	6 Preliminaries
	6.1 The general and restricted linear groups
	6.2 Fibre square decompositions for finitely generated modules
	6.3 Projective modules over fibre squares
	6.4 Recognition criteria for stably free cancellation
	6.5 Stably free cancellation
	6.6 Dedekind domains and free groups
	6.7 Weakly Euclidean
	6.8 The cancellation properties of the modules R(i)

	7 Stably free modules over Z[G(p,q)Fn]
	7.1 Z[CqFn] has SFC
	7.2 Top right corner of  has SFC
	7.3 Z[G(p,q)Fn] has SFC

	Bibliography


