UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Effect of molecular structure of liquid and gaseous fuels on the formation and emission of PAHs and soot

Dandajeh, Hamisu Adamu; (2018) Effect of molecular structure of liquid and gaseous fuels on the formation and emission of PAHs and soot. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of PhD Thesis Hamisu Dandajeh (14048758).pdf]
Preview
Text
PhD Thesis Hamisu Dandajeh (14048758).pdf

Download (10MB) | Preview

Abstract

This thesis reports an investigation into the effects of fuel molecular structure on the emission of exhaust PAHs from a tube reactor and from a diesel engine. The study was underpinned by the results of experiments conducted in the pyrolysis tube reactor aimed at understanding the formation processes of PAHs. The PAHs found in the diesel engine exhaust, both in gaseous state and on the soot particles, were also measured and analysed. The thesis focuses on the US EPA 16 priority PAHs formed from fossil diesel, C1 to C7 model hydrocarbon fuels, and blends of C7 binary and tertiary fuels. Particular attention was paid to the B2 subgroup of PAHs which are possible human carcinogens. Particulate and gas phase PAHs were generated and sampled from the exit of the reactor and the exhaust of the diesel engine. The PAHs from the particulate and gas phase samples were then extracted using an accelerated solvent extraction (ASE) system. The PAHs were analysed qualitatively and quantitatively using gas chromatography coupled with mass spectrometry (GC-MS). The experimental results obtained in the laminar flow, oxygen-free conditions of the reactor showed that, depending on the temperature at which a fuel is pyrolysed, the degree of unsaturation, isomerisation, aliphaticity, aromaticity and carbon number of the hydrocarbon fuels played an important role on the identity and concentration of PAHs formed. The identity of PAHs produced, and their concentration influenced the overall carcinogenic potential of the gaseous and particulate effluent. In the diesel engine, the total PAH concentrations of the fuels decreased with increase in ignition delay and proportions of premixed burn fractions while the influence of fuel composition on the exhaust PAHs was greater than the influence of the combustion characteristics such as ignition delay, heat release rate and premixed burnt fraction.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Effect of molecular structure of liquid and gaseous fuels on the formation and emission of PAHs and soot
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Chemical Engineering
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Mechanical Engineering
URI: https://discovery.ucl.ac.uk/id/eprint/10043389
Downloads since deposit
201Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item