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Abstract: 

The hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channel is a voltage-gated 
cation channel that is activated with hyperpolarization. Four subunits, HCN1 -4, have thus far 
been identified. All four subunits are expressed in the central nervous system (CNS), though 
their expression pattern varies considerably. In many CNS neurons, HCN channels are 
localised to somato-dendritic compartments where they regulate the resting membrane 
potential and membrane resistance, and thereby affect synaptic potential shapes and 
integration and neuronal firing patterns. Emerging evidence suggests that HCN channels are 
also present within certain axons and synaptic terminals. Modulation of presynaptic HCN 
channel activity leads to altered synaptic release in a synapse-specific manner. Given that 
HCN channel function can be modified by activity-dependent and neurotransmitter receptor 
activation, HCN channels may diversely affect neuronal and network excitability, thereby 
affecting physiological states such as learning and memory as well as pathophysiological 
conditions such as epilepsy and depression.   

 

Highlights: 

1) Postsynaptic HCN channels affect neuronal intrinsic membrane properties 

2) Postsynaptic HCN channels limit synaptic potential decay, summation and plasticity  

3) HCN channels are located presynaptically too in select axons and synaptic terminals 

4) Presynaptic HCN channels modify synaptic release and neuronal excitability 

5) Ih influences physiological states such as learning and disorders such as epilepsy.   
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Voltage-gated ion channels play a critical role in regulating neuronal intrinsic and synaptic 
excitability. The hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels are 
voltage-gated ion channels that open at potentials more negative to -50 mV and are thus, 
active at the normal neuronal resting membrane potential (RMP). The channels are also 
permeable to both Na+ and K+ ions, forming a depolarizing current at rest that contributes to 
influencing neuronal activity. Further, these channels influence the membrane resistance and 
thereby affect post-synaptic potential shapes and integration (Fig 1). Hence, HCN channels 
play a crucial role in maintaining neuronal activity [1-3]. 

Thus far, four HCN subunits, HCN1-4, have been cloned [4, 5]. These subunits are 
diversely located throughout the central nervous system (CNS), with HCN1 subunits being 
predominantly present in the cortex, hippocampus, cerebellum and brain stem. HCN2 
subunits, on the other hand, are mainly situated in areas such as the thalamus and brain stem. 
HCN3 subunits are expressed at low levels in the CNS whilst HCN4 subunits are highly 
localised to specific regions such as the olfactory bulb [6, 7]. These HCN subunits can form 
homomeric or heteromeric channels when expressed in heterologous systems. Here, the 
HCN1-4 homomeric channels have distinct activation time constants. HCN1 homomeric 
channels have a fast activation time constant whilst HCN4 homomeric channels have a very 
slow activation time constant. HCN2 and HCN3 channels have intermediate activation time 
constants [4, 5]. Further, though cyclic nucleotides modify their activity, the extent to which 
the homomeric HCN channels are regulated varies considerably. Moreover, other 
intracellular signalling molecules such as phosphoinositides and kinases as well as auxiliary 
subunits such as TPR-containing Rab8b interacting protein (TRIP8b) modify the biophysical 
properties and expression profile of HCN subunits in heterologous systems as well as neurons 
[1-3]. The differential modulation of HCN subunits by various intracellular molecules as well 
as their distinct intrinsic biophysical characteristics will contribute to their diverse effects on 
neuronal excitability. In this review, I will discuss the various mechanisms by which HCN 
channels affect neuronal function in the CNS.  

 

Post-synaptic HCN channels and neuronal excitability  

HCN1 channels are located in the somata of many principal neurons and a subset of 
interneurons within the CNS [8-13]. Here, whilst inhibition of these channels augments the 
membrane resistance, the resultant hyperpolarization means that there is little effect on action 
potential firing induced by depolarization potentials [8-10, 12, 13]. Interestingly, in cerebellar 
purkinje neurons, by affecting the neuronal RMP, Ih may influence the switch between tonic 
firing and quiescent states in vivo [13, 14]. The spontaneous firing patterns of purkinje cells 
have a significant impact on other neurons in the deep cerebellar nuclei and may play a 
significant role in motor learning. Indeed, deletion of HCN1 subunits, which encodes Ih in 
these neurons, impairs learning of certain motor behaviours [15]. 

 Intriguingly, immunohistochemical and electrophysiological studies showed that HCN 
channels are located in high densities within pyramidal neuron dendrites in the hippocampus 
and cortex [7, 12, 16-20]. Here, by significantly reducing the membrane resistance, the HCN 
channel current, Ih, limits low threshold Ca2+ channel activity and thereby, excitatory 
postsynaptic potential (EPSP) amplitudes and decay as well as the occurrence of dendritic 
Ca2+ spikes caused by depolarizing potentials [21]. Thus, Ih restricts summation of trains of 
EPSPs and dendritic excitability in these neurons (Fig 1). Hence, inhibition of Ih boosts 
dendritic EPSP summation and EPSP-spike coupling, despite hyperpolarization of the RMP 
[12, 17, 22]. By augmenting EPSP summation, a decrease in Ih also increases the propensity 
for long-term potentiation (LTP) to occur within these neurons [23-27]**. Indeed, LTP and 
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spatial memory is greater in HCN1 null mice in which Ih in hippocampal pyramidal cell 
dendrites is reduced significantly compared with wildtypes [25]. Further, hippocampal place 
cell and entorhinal grid cell firing rate maps are larger in HCN1 null mice than in wildtypes 
[28, 29]. Hence, Ih maintains neuronal and network activity. Certainly, HCN1 null mice are 
more susceptible to chemoconvulsant or kindling-induced seizures and epilepsy [22, 30].  

In addition to changes in EPSP summation, Ih also affects the shapes and integration of 
somato-dendritic inhibitory post-synaptic potentials (IPSPs). As Ih is activated by 
hyperpolarization, the current will be further activated during trains of IPSPs. As Ih is a 
depolarizing current, this will limit further synaptic hyperpolarization [31-33]. In cortical 
neurons, distal dendritic Ih, influenced local dendritic IPSP amplitude and timecourse 
substantially [33]. In contrast, due to the lower density, somatic Ih had little effect on somatic 
IPSPs. Nonetheless, the significant effects of distal Ih on IPSPs restricted axo-somatic 
depolarization [33]. Interestingly, in these neurons, the activation of Ih overlaps with that of 
the persistent Na+ current (INaP), such that inhibition of Ih led to IPSP amplification by INaP. 
This effect, though, appears to be cell-type dependent because in subthalamic neurons, the 
activation of HCN channels during synaptic inhibition constrained de-inactivation of T-type 
Ca2+ channels and rebound action potential firing [31]. Thus, the effects of Ih on synaptic 
integration are likely to be vary depending on the other ion channels located nearby. 

Somato-dendritic Ih also plays a key role in the generation and modulation of intrinsic and 
network oscillations [34-38]. In entorhinal cortical layer II stellate neurons and 
thalamocortical relay neurons, Ih together with other subthreshold-active currents such as the 
INaP generates intrinsic oscillations that modulate neuronal activity [34, 35]. Interestingly, 
intrinsic oscillations in thalamic neurons are enhanced in HCN2 null mice, promoting low 
threshold bursting and associated spike-wave discharges underlying absence epilepsy [37]. 
Further, changes in Ih affect network oscillations, though the underlying cellular mechanisms 
for this phenomenon are unclear [25, 28]. Hence, Ih modulates neural intrinsic and network 
activity in diverse ways. 

 

Post-synaptic HCN channel modulation and plasticity 

As HCN channel function is significantly affected by intracellular signalling molecules, 
changes in the activity of these induced by altered intrinsic neuronal or receptor function may 
result in variations in neuronal Ih. Consequently, neuronal excitability and behaviour will be 
altered. Indeed, variations in Ca2+ influx caused by enhanced synaptic input or intrinsic 
neuronal firing results in activation of various intracellular molecules such as CaMKIIα. This 
in turn gives rise to altered Ih amplitude or kinetics and homeostatic adjustment of neuronal 
excitability [23, 24, 26, 27, 38, 39]. Certainly, receptor-dependent reduction in Ih amplitude 
affects the induction of LTP in hippocampal and prefrontal pyramidal neurons, bringing 
about enhanced working and spatial memory **[27, 40]. Further, modulation of Ih by 
intracellular molecules is likely to be a robust mechanism for altering the periodicity of 
intrinsic neuronal oscillations [11, 41].  

Interestingly, in olfactory bulb mitral cells, synaptic input affects expression of HCN 
channels within individual glomeruli. As Ih affects post-synaptic potential processing, mitral 
cells in different glomeruli with distinct odour receptors will process odour-related 
information differentially [42]*. Activity-dependent modulation of HCN channels is also 
likely to be a critical mechanism for the dysfunction of these channels in principal neurons of 
the anterior cingulate cortex following sciatic nerve injury [43]**. In this case, activation of 
5-hydroxytryptamine (5-HT) receptors rescues the activity-dependent modification in HCN 
channel activity, normalises the response of the neurons and alleviated the associated 
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mechanical pain hypersensitivity in nerve-injured animals [43]**. Thus, receptor-dependent 
alterations in HCN channel activity may be a potential, new mechanism for the treatment of 
some neuronal disorders.   

In addition to modulation by intracellular molecules such as kinases, HCN channels are 
actively trafficked in post-synaptic compartments by binding to chaperone proteins known as 
TPR-containing Rab8b interacting protein (TRIP8b) [44-46]. TRIP8b also shifts the Ih 
activation curve to the left. Moreover, the presence of TRIP8b alters sensitivity of HCN 
channels to cyclic nucleotides [46]. Intriguingly, the absence of TRIP8b not only alters post-
synaptic HCN channel expression and function, it also leads to altered synaptic plasticity in 
hippocampal neurons [47]. Further, by modification of integration of synaptic inputs, the lack 
of TRIP8b and HCN channels in post-synaptic compartments may contribute to pathological 
disorders such as depression and anxiety [48]. Moreover, given that TRIP8b regulates 
expression of both HCN1 and HCN2 subunits, TRIP8b null mice also have absence epilepsy 
[48]. As yet, it is unknown if TRIP8b expression and function is altered by intracellular 
molecules. Nonetheless, activity- and receptor- dependent modifications in Ih in vivo are 
likely to be a significant mechanism for altering neuronal excitability, plasticity and 
physiological states such as learning and memory.  

 

Pre-synaptic HCN channel function and plasticity 

Intriguingly, there is increasing evidence that HCN1 channels are located in axons and 
presynaptic terminals where they regulate action potential firing and synaptic release. 
Presynaptic Ih was initially shown to modulate synaptic strength and promote long-lasting 
facilitation at the crayfish neuromuscular junction [49, 50]. In mammals, Ih was also 
identified in cerebellar basket cell synapses, where it modified inhibitory synaptic release 
[51], and in excitatory synaptic terminals of the auditory brainstem [52]. There has been 
considerable immunohistochemical evidence since, showing that HCN subunits may be 
concentrated in synaptic terminals in a wide variety of brain regions including the retina [53], 
cerebellum [54], globus pallidus [55] and hippocampus [7]. Interestingly, HCN channel 
subunits were predominantly located in inhibitory synaptic terminals in these regions [7]. The 
cellular mechanisms by which presynaptic Ih may alter synaptic transmission from inhibitory 
synapses is still unclear [51, 55, 56]. 

HCN channels are also located in selective excitatory synaptic terminals throughout the 
CNS. In the medial entorhinal cortex (mEC), HCN1 channels restrict glutamatergic release 
from a subset of adult excitatory synaptic terminals predominantly targeted to layer III (LIII) 
pyramidal neurons by limiting Ca2+ influx via T-type Ca2+ channels [57]** (Fig 2). Further, 
two-photon imaging showed that FM1-43 dye release from a subset of terminals within mEC 
LIII was enhanced in the absence of HCN1 channels or by inhibition of Ih, corroborating that 
presynaptic Ih limits release in this region [58]**. Interestingly, whilst post-synaptic HCN1 
subunit expression in the mEC was regulated by TRIP8b, presynaptic HCN1 subunit 
localisation and function were unaffected by TRIP8b [59]. This strongly suggests that pre- 
and post- synaptic HCN1 channels localisation and function are independently regulated, 
raising the exciting possibility that pre- and post- synaptic HCN channels may differentially 
affect neural network excitability. 

  Interestingly, in the calyx of held, HCN channels serve to regulate Na+ concentrations 
within synaptic terminals [60]**. Vesicles within terminals express a Na+/K+ exchanger 
which facilitates glutamate uptake into vesicles. Inhibition of HCN channels results in less 
Na+ influx within the terminal, reduced glutamate uptake into the vesicle and thereby 
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decreased glutamate release [60]**. Hence, the effects of Ih on synaptic release are very 
much dependent upon the type of terminal and the additional ion channels and cellular 
proteins that are present within the terminal. 

In addition to synaptic terminals, HCN channels may also be expressed in axons and axon 
initial segments (AIS). HCN channels expressed in the AIS of mesial superior olive (MSO) 
principal neurons [61]** and dentate gyrus parvalbumin-positive interneurons [62] critically 
influence firing patterns of these neurons. In MSO neurons, modulation of these channels by 
serotonin (5-hydroxytryptamine (5-HT)) acting on 5-HT1A receptors leads to long-lasting 
inhibition of these channels, strongly suggesting that neurotransmitters may modify 
presynaptic HCN channel activity too [61]**. Thus, like in somato-dendritic compartments, 
presynaptic Ih leads to diverse effects throughout the CNS which may have substantial effects 
on neuronal and network excitability. 

 

Concluding Remarks 

To sum up, HCN channels are cation channels that are activated by hyperpolarization. Their 
expression varies throughout the CNS, with many principal neurons expressing these 
channels in somato-dendritic compartments. Here, they influence the RMP and membrane 
resistance. Subsequently, these channels impact synaptic potential shapes and integration, 
neuronal activity as well as synaptic plasticity. In this manner, HCN channels affect 
physiological states such as learning and memory as well as pathophysiological conditions 
such as epilepsy. 

Intriguingly, emerging evidence suggests that HCN channels are also present 
presynaptically in select inhibitory and excitatory neuronal axons and synaptic terminals. 
Here, they regulate neuronal activity and synaptic release in diverse ways in a synapse- and 
cell-specific manner. This together with the receptor-dependent and activity-dependent 
alterations in their function may lead to distinct ways in which these channels may alter 
neuronal and network function in the CNS.   
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Figure Legends 

Fig 1: HCN channels modify intrinsic membrane properties, excitatory postsynaptic potential 
(EPSP) shapes and integration as well as EPSP-spike coupling. (i) Morphology of an 
entorhinal cortical (EC) layer III pyramidal neuron. Scale bar = 50 µm (ii) Typical traces 
obtained when a 100 pA hyperpolarizing pulse was applied to wildtype (wt) and HCN1 null 
(HCN1-/-) EC layer III dendrites from a fixed potential of -70 mV, demonstrating that the 
input resistance of HCN1-/- dendrites is much greater than wildtypes. (iii) Single and trains of 
simulated EPSPs recorded from HCN1-/- and wildtype dendrites at the common potential of -
70 mV in response to alpha waveform injections. (iv) Example recordings obtained from the 
soma of HCN1-/- and Wt neurons at a fixed potential of -75 mV when 5 stimuli were applied 
extracellularly at 50 Hz to distal dendrites in the presence of GABAA receptor inhibitors. The 
stimulus strength was adjusted so that the amplitude of the EPSP generated by the first 
stimulus was 1-2 mV. The panel on the right shows the average somatic membrane potential 
of Wt and HCN1-/- neurons at which a train of 5 EPSPs generated by extracellular stimulation 
produced an action potential. The black and red dotted lines indicate the average normal 
resting membrane potential for Wt and HCN1-/- neurons respectively. The numbers of 
recordings obtained for each point are shown in parenthesis.  Adapted from Huang et al. 
(2009) J. Neurosci., 29, 10979-88. 

Fig 2: HCN1 channels restrict synaptic release at select medial entorhinal cortical synapses. 
Schematic to show that HCN1 channels present in synapses limit glutamate release by 
restricting Ca2+ entry via voltage-gated T-type Ca2+ channels. HCN1 channels are normally 
active at rest and depolarize the synaptic terminal resting membrane potential (RMP). 
Inhibition of these channels hyperpolarizes the RMP and relieves the inactivation of T-type 
Ca2+ channels, thereby enhancing basal Ca2+ influx into the terminals and boosting 
spontaneous release. Adapted from Huang et al. (2011) Nat.Neurosci., 11, 478-86. 
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