
A physiology–based parametric imaging method for

FDG–PET data.

Mara Scussolini

1
, Sara Garbarino

2
, Gianmario Sambuceti

3
,

Giacomo Caviglia

1
and Michele Piana

4

1 Dipartimento di Matematica, Università di Genova, Genova, Italy
2 Centre for Medical Image Computing, Department of Computer Science, University
College London, UK
3 Dipartimento di Medicina Nucleare, IRCCS-IST San Martino, and Dipartimento di
Scienze della Salute, Università di Genova, Genova, Italy.
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Abstract. Parametric imaging is a compartmental approach that processes nuclear
imaging data to estimate the spatial distribution of the kinetic parameters governing
tracer flow. The present paper proposes a novel and e�cient computational method for
parametric imaging which is potentially applicable to several compartmental models of
diverse complexity and which is e↵ective in the determination of the parametric maps
of all kinetic coe�cients. We consider applications to [18F]-fluorodeoxyglucose Positron
Emission Tomography (FDG–PET) data and analyze the two–compartment catenary
model describing the standard FDG metabolization by an homogeneous tissue and
the three–compartment non–catenary model representing the renal physiology. We
show uniqueness theorems for both models. The proposed imaging method starts
from the reconstructed FDG–PET images of tracer concentration and preliminarily
applies image processing algorithms for noise reduction and image segmentation. The
optimization procedure solves pixel–wise the non–linear inverse problem of determining
the kinetic parameters from dynamic concentration data through a regularized Gauss–
Newton iterative algorithm. The reliability of the method is validated against synthetic
data, for the two–compartment system, and experimental real data of murine models,
for the renal three–compartment system.

1. Introduction

Nuclear Medicine analyzes dynamic data of functional processes related to a specific

metabolic activity. Nuclear medicine imaging data are acquired by means of devices

that detect the product of the decay of radioisotopes in a radioactive tracer, which is

bound to molecules with known biological properties and di↵used in the living organism.

Positron Emission Tomography (PET) [2, 30] is the most modern nuclear medicine
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modality and FDG–PET is the PET modality in which the radiopharmaceutical [18F]-

fluorodeoxyglucose (FDG) is used as a tracer to evaluate glucose metabolism [18]. FDG–

PET dynamic images of tracer distribution, obtained from the measured radioactivity

by applying an appropriate reconstruction algorithm, are a reliable estimate of the

functional behavior of glucose into tissues. Therefore, FDG–PET experiments allow

clinicians to detect and stage diseases related to the pathological glucose consumption,

such as cancer [1, 6, 48] or diabetes [3, 19].

Compartmental analysis [15, 38] is a powerful tool for processing dynamic PET

data and estimating physiological kinetic parameters explaining the tracer metabolism.

This kind of analysis relies on (I) the construction of a forward model (typically in the

form of a Cauchy problem) for tracer concentration, in which the di↵erential equations’

coe�cients are the kinetic parameters, and on (II) the application of an inversion

technique to retrieve such kinetic parameters from measurements of the dynamic tracer

concentration.

Compartmental analysis can be mainly subdivided in two classes: Region Of

Interest (ROI) kinetic modeling and parametric imaging. ROI–based methods [8, 11, 12,

45] return a single set of kinetic parameters for a homogeneous region of tissue, whose

Time Activity Curve (TAC) is obtained averaging the PET activity over the region

at each time frame. On the other hand, parametric imaging [33] aims at evaluating

the set of kinetic parameters for every pixel of the PET images, thus providing the

spatial distribution of each model parameter. This approach is particularly useful when

the tissue under examination cannot be e↵ectively segmented into homogeneous regions

that could be modeled with a single kinetic parameter set. There exist indirect and

direct approaches to parametric imaging. Indirect methods work by first reconstructing

the dynamic PET images and then estimating the kinetic parameters at each pixel

[53, 54]. Direct methods estimate directly the space-varying kinetic parameters from

the measured PET sinogram [47]. The direct approach has been proved to reduce the

Signal to Noise Ratio (SNR) with respect to indirect techniques [31], although strongly

relies on the implementation of an e�cient inversion algorithm capable of reconstructing

the parameters on a dense set of pixels [17]. However, most parametric imaging methods

(both direct and indirect) rely on linearized compartmental models and/or provide

parametric images of algebraic combinations of the kinetic coe�cients [23, 24, 32, 42, 44].

Rather few methods are able to reconstruct maps of each single parameter, and most of

them consider simple one– and two–compartment models [7, 16, 17, 22].

In this paper, we want to exploit recent advances in ROI–based analysis [11, 12, 45,

49] in order to realize a novel, computationally e�cient imaging procedure that can be

used for parametric imaging in the case of complex physiological systems. The novelties

of our approach can be summarized as follows.

• The method can address non–standard multi–compartment physiologies on a large

set of pixels, can do this by exploiting complex physiological information and

can realize the analysis in a parametric imaging framework. At this stage, the

overall approach requires the use of reconstructed dynamic images but, di↵erently
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than most (if not all) direct methods, which consider just one ore two catenary

compartments, here more complex physiological systems can be considered.

• From a mathematical perspective, specific physiological conditions assure the

identifiability of the compartmental inverse problem. To the best of our knowledge,

the uniqueness result given in this paper for a non–catenary three–compartment

model is the most general one currently available in compartmental analysis.

• From a technological viewpoint, the paper introduces an overall automatic pipeline

that comprises both pre-processing and inversion, whereby automation has been

realized also thanks to an implementation of the Gauss–Newton algorithm that

works pixel–wise, with an optimized choice of the regularization parameter based

on Generalized Cross Validation. Such pipeline takes as input the dynamic PET

images, gives the user the possibility to select the organ and the related physiological

compartmental model, realizes a standard but reliable image pre-processing for

noise-reduction and image segmentation, and finally computes the values of a

notable number of kinetic parameters, pixel–wise.

What we obtain is a method general enough to work for both two- and three–

compartment models, e↵ective enough to provide maps of all the kinetic coe�cients

involved, and that therefore can be in principle extended to envisage more than

one model for a single PET image and physiologies described by more than three

compartments. The proposed pipeline is validated on synthetic data mimicking a

standard two–compartment system for a generic homogeneous tissue and is applied

against experimental measurements concerning the renal system of mouse models. For

this latest case, we also provide, for the first time, proof of identifiability valid for

non–catenary models, as the one describing the renal system.

The scheme of the paper is as follows. In Section 2 the two–compartment and three–

compartment models are presented and the related forward problems are described.

Section 3 deals with the formalization of the respective inverse problems and with

the discussion of identifiability of the models. Section 4 describes the computational

parametric imaging method. Section 5 provides the numerical validation of the

computational method in the case of the two–compartment catenary model and then

applies the method against experimental murine data for the analysis of the three–

compartment non–catenary model of the renal system. Our conclusions are o↵ered in

Section 6.

2. Mathematical models

Compartmental analysis [15, 38] identifies di↵erent functional compartments in the

physiological system of interest, each one associated with a specific metabolic state of

the tracer. The tracer typically is injected into the blood and the tracer concentration in

the blood is mathematically modeled by the Input Function (IF) of the compartmental

system. In this work, the IF is assumed to be known as it can be obtained by
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drawing ROIs on reconstructed PET images at di↵erent time points, in correspondence

with the left ventricle. When the IF is not given, suitable reference tissue models

have to be taken into account [21, 38, 52, 55]. The time dependent concentrations

of tracer in each compartment constitute the state variables of the model and can

be determined from PET data. The time evolution of the state variables, i.e. the

kinetics of the system, is here modeled by a linear system of Ordinary Di↵erential

Equations (ODEs) with constant coe�cients, expressing the conservation of tracer

during the flow between compartments. The coe�cients define the input/output rate

of tracer for each compartment and represent the physiological parameters describing

the metabolism of the system. The forward problem is constructed by assuming that

the tracer coe�cients are known and by solving the system of ODEs for the unknown

concentrations. We are aware that recent works [34] take into account macroscopic flow

conditions (especially to model cardiac perfusion), introducing a PDE–based framework.

However, the simplifying assumptions of time independence of parameters and of no

spatial exchange between compartments are well established for FDG–PET analysis

[50], and are the conditions assumed to hold throughout this paper.

This section is devoted to the description of the standard two–compartment

catenary model and a three–compartment non–catenary model developed for the renal

physiology and to the discussion of the related forward problems. In the following

analysis, we denote with capital C (kBq ml�1) the concentrations and with the related

su�xes the corresponding compartment; we use the notation k

yx

(min�1) for the

kinetic parameter describing the tracer exchange to the target compartment y from

the source compartment x. The kinetic parameters (also known as rate constants or

exchange coe�cients) are real positive numbers and the plus or minus signs against

them characterize incoming and outgoing fluxes, respectively. Notice that the spatial

dependence on the pixel index (i, j) in the compartment concentrations and in the

kinetic parameters is omitted but implied. We indicate a generic ROI compartment

concentration with the apex ROI.

2.1. Two–compartment catenary system

The compartmental model describing the FDG metabolism of phosphorylation–de-

phosphorylation is the two–compartment catenary model shown in Figure 1 [9, 39].

Figure 1. The compartmental model for the two–compartment catenary system
describing the FDG metabolization in a generic tissue.
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The two–compartment catenary model consists of:

• the blood compartment b;

• two functional compartments: compartment f , accounting for free FDG, and

compartment m, accounting for metabolized FDG;

• four exchange coe�cients: k
fb

and k

bf

between the blood and the free compartment,

k

mf

and k

fm

between the free and the metabolized ones.

Balance of tracer concentrations leads to the following system of ODEs:

dC

dt

(t) = Ċ(t) = MC(t) +w(t) (1)

where

C =

✓
C

f

C

m

◆
, M =

✓
�(k

bf

+ k

mf

) k

fm

k

mf

�k

fm

◆
,

w = k

fb

C

ROI
b

e1 =

✓
k

fb

C

ROI
b

0

◆
, and e1 =

✓
1

0

◆
.

The initial condition is C
f

(0) = C

m

(0) = 0, i.e. C(0) = 0. The blood ROI compartment

concentration C

ROI
b

plays the role of the given IF of the two–compartment model.

The analytical solution C(t) of (1), formally expressing the forward problem of

evaluating the concentrations from the kinetic parameters k = (k
fb

, k

bf

, k

mf

, k

fm

)T , is

given by

C(t) =

Z
t

0

e

(t�⌧)M
w(⌧) d⌧ = k

fb

Z
t

0

e

(t�⌧)M
C

ROI
b

(⌧)e1 d⌧ , (2)

with the time variable t 2 R+.

2.2. Three–compartment non–catenary system

Once injected into the system, the tracer reaches the kidneys and infuses the

organs via the blood stream through the renal artery (a), in Figure 2. Here, we

consider the usual two–compartment model describing the FDG phosphorylation–de-

phosphorylation processes, obtaining the free tracer (f) and the metabolized tracer

(m), both located in the extravascular kidney tissue. However, in order to study

the role of the mechanisms transporting glucose back to the metabolism, we need to

include the reabsorption compartment (t), anatomically identified with the renal tubule.

Moreover, we add the external urine compartment u, anatomically identified with the

bladder, accounting for the tracer there accumulated, thanks to the excretion mechanism

(di↵erently from glucose, FDG is poorly absorbed in the renal tubule and is largely

excreted in the urine, with accumulation in the bladder [41]).

The resulting three–compartment non–catenary model represented in Figure 2

[11, 35] has the following kinetic parameters:

• k

fa

and k

af

between the arterial IF and the free FDG compartment;

• k

ma

from the arterial compartment to the metabolized FDG one (filtration process);
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Figure 2. The compartmental model for the three–compartment non–catenary system
describing the FDG kinetics inside the kidney.

• k

fm

and k

mf

between the free FDG and the metabolized FDG compartments

(phosphorylation and de-phosphorylation processes);

• k

tm

from the metabolized FDG compartment to the tubule (reabsorption process);

• k

ut

from the tubule compartment to the bladder pool (excretion process).

The resulting system of ODEs is
(
Ċ(t) = MC(t) +w(t)

C(0) = 0
, (3)

where

C =

0

@
C

f

C

m

C

t

1

A
, M =

0

@
�(k

af

+ k

mf

) k

fm

0

k

mf

�(k
fm

+ k

tm

) 0

0 k

tm

�k

ut

1

A
,

w = k

fa

C

ROI
a

e1 + k

ma

C

ROI
a

e2 =

0

@
k

fa

C

ROI
a

k

ma

C

ROI
a

0

1

A
,

and e1 =

0

@
1

0

0

1

A
, and e2 =

0

@
0

1

0

1

A
.

The analytical solution for C, in terms of the kinetic coe�cients k =

(k
fa

, k

ma

, k

af

, k

mf

, k

fm

, k

tm

, k

ut

)T , is given by

C(t) =

Z
t

0

e

(t�⌧)M
w(⌧) d⌧ = (4)

= k

fa

Z
t

0

e

(t�⌧)M
C

ROI
a

(⌧)e1 d⌧ + k

ma

Z
t

0

e

(t�⌧)M
C

ROI
a

(⌧)e2 d⌧ , (5)

with the time variable t 2 R+ and the arterial IF C

ROI
a

a known function.
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2.2.1. Conditions from physiology. We expect that in general the three–compartment

system described in 2.2 is not identifiable in that it is a non–catenary model involving

seven unknown rate constants. Identifiability is achieved by reducing the number of

unknowns through the introduction of constraints coming from renal physiology. It is

shown in the course of the discussion that the constraints are used e↵ectively in the

discussion of uniqueness but they cannot be applied in the procedure for the solution of

the inverse problem.

To introduce the restrictions, we first consider tracer kinetics within the ROI–based

framework, by looking at the overall bulk flow of tracer between the ROI compartments

tubule and bladder. The pertinent properties are then extended to the pixel framework,

in analogy with the extension of ROI based features of other compartments, e.g. the

dynamical system of tracer exchange between model compartments. Specifically, we

have to reconsider the role of the bladder, which accumulates urine and tracer in the

course of the experiment. The bladder is connected to the kidneys but is not part of the

kidneys, and is related to a strictly global behavior of the renal system. The influence

of bladder in tracer kinetics has to be inserted into the description of the characteristic

features of the pixel constituents of the renal compartment system, although pixels are

not physically connected to the bladder. The following points describe a few aspects of

bladder involvement in tracer kinetics that are relevant to parametric modeling and are

applied in the subsequent analysis of identifiability. We assume that the volume and

the activity of bladder are known, although we do not need the corresponding explicit

values.

(i) The bladder compartment of tracer density C

ROI
u

is the only compartment whose

volume significally changes (specifically increases) in time. The condition of tracer

balance for bladder is expressed by equation
d

dt

(V
u

C

ROI
u

) = F

ROI
ut

C

ROI
t

with C

ROI
u

(0) = 0 , (6)

where V

u

(ml) indicates the bladder volume, and F

ROI
ut

(ml min�1) is the bulk flow

entering the bladder from the tubule region. In words, equation (6) states that the

(positive) time rate of the tracer content of bladder equals the amount of tracer

carried inward by the flux of urine.

(ii) We assume that the accumulation rate of urine is constant, consistently with the

assumption of stationarity and the condition of resting state of the subject during

PET acquisition. Therefore, the growth of the bladder volume V

u

during time is

linear and hence the flux rate of urine into bladder satisfies [11]

F

ROI
ut

=
V

u

(t
f

)� V

u

(t̄)

t

f

� t̄

, (7)

where t

f

is the end time point and t̄ is a generic time instant. In principle, an

estimate of FROI
ut

is obtained from experimental values of V
u

at di↵erent time points.

As a consequence we find that

C

ROI
t

=
1

F

ROI
ut

d

dt

(V
u

C

ROI
u

) , (8)



A physiology–based parametric imaging method for FDG–PET data. 8

showing that CROI
t

can be estimated from measurements performed on bladder.

(iii) Consider the renal tubule ROI compartment. We regard as a result from physiology

the existence of a direct proportionality between the bulk ingoing flow F

ROI
tm

(ml

min�1), entering the renal tubule system from the metabolized compartment, and

the bulk outgoing flow F

ROI
ut

, directed towards bladder. Accordingly, we can write

F

ROI
tm

= �F

ROI
ut

, (9)

where � is a constant factor establishing the order of magnitude of the bulk quantity

passing from the tubule to the bladder. For example, for the mouse model the value

of � is typically equal to 102 [27]. Substitution of (7) into (9) provides FROI
tm

in terms

of data.

(iv) The balance of tracer flow inside the overall tubule system is given by [11]

d

dt

(V
K

V

t

C

ROI
t

) = F

ROI
tm

C

ROI
m

� F

ROI
ut

C

ROI
t

, (10)

where V

K

(ml) is the renal volume, V
t

the fraction of the tubule volume, and thus

V

K

V

t

(ml) is the total volume of the tubule. Equation (10) may be written in the

equivalent form

Ċ

ROI
t

= k

ROI
tm

C

ROI
m

� k

ROI
ut

C

ROI
t

, (11)

where the ROI parameters kROI
tm

and k

ROI
ut

are defined by

k

ROI
tm

=
F

ROI
tm

V

K

V

t

, k

ROI
ut

=
F

ROI
ut

V

K

V

t

, (12)

with

k

ROI
tm

= �k

ROI
ut

. (13)

The last equality follows from equation (9). Also k

ROI
tm

and k

ROI
ut

are determined by

data through F

ROI
tm

, FROI
ut

, V
K

, and V

t

.

We now come to the parametric formulation. As already observed, we reproduce

at the pixel level a few relevant features of the ROI approach; in particular, each pixel

is regarded as capable interchanging carrier fluid and tracer with bladder. In line with

equation (8), we assume that, at each pixel,

C

t

=
1

F

ut

d

dt

(V
u

C

ROI
u

) , (14)

where F

ut

describes the contribution to bladder volume change per unit time arising

from the flux of fluid through the single pixel. The coe�cient F
ut

is dependent on the

position within the renal tissue and is considered as fixed, in analogy with (8). The

correspondent of equation (11) is postulated as

Ċ

t

= k

tm

C

m

� k

ut

C

t

, (15)

accounting for the dynamic of the pixel tubule compartment. As expected, equation

(15) coincides with the third di↵erential equation of the system of ODEs (3). The rate

coe�cient k
tm

and k

ut

are position dependent, as in (3), and are regarded as fixed.
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To summarize, for the pixel dependent tubule concentration and rate coe�cients,

we have obtained from physiology the conditions that C
t

(t), k
tm

, k
ut

are fixed, and that

k

tm

= �k

ut

. Such conditions are applied in the proof of uniqueness. It is important to

remark that, although C

t

, k
tm

, and k

ut

are fixed by physiology, the corresponding time

dependence and values are not known explicitly. This means that they are still to be

determined through optimization.

3. Inverse problem: data and solution

The forward model equation, as the analytical solution to the system of ODEs, describes

the time behavior of the tracer concentration given the TAC for tracer concentration

in blood and the exchange coe�cients. Given such equation, compartmental analysis

requires the determination of the parameters by utilizing measurements of the tracer

concentrations provided by PET imaging and applying an optimization scheme for the

solution of the inverse problem. The reconstructed PET images of tracer concentration

supply information on the IF and provide an estimate of a weighted sum of the

concentrations of the di↵erent compartments considered, at each time point of the

acquisition. In this work, we make use of the Gauss–Newton method supplied with

a regularizing term [4, 10, 29, 46], to estimate the exchange parameters. It has

been shown in [10] that Gauss–Newton regularization in the compartmental framework

provides reconstructions of the kinetic parameters that are more stable with respect

to Levenberg–Marquardt method (see Tables 1-3 in that paper). Further, the matrix

di↵erentiation step required at some stage of the optimization analysis is in this method

performed analytically, thus avoiding time consuming numerical di↵erentiation, and

tackling one standard drawback of Newton methods. Also, by searching for zeroes of

non–linear functionals, Newton methods do not need to a priori select a topology in

the data space, as in the case of least–squares approaches. On the other hand, this class

of methods, as compared to standard optimization-through-minimization techniques,

may lack in convergence if the starting point is taken too far away from the ground

truth. In the cases we consider, thanks to the identifiability results, we can have good

expectations of robustness and accuracy even if the initial guess is not carefully chosen,

as applications can prove.

Let us denote by C̃ the PET experimental concentration in a specific tissue, by C

ROI
b

the IF, and by V

b

the volume fraction occupied by blood. In principle, V
b

may depend

on the position within the tissue but, with a good approximation, it can be considered

constant since the blood perfusion, under physiological conditions, is homogeneous inside

the same organ. Consider a compartmental model with m compartments 1, . . . ,m and

an arbitrary number p of exchange coe�cients k1, . . . , kp. Then C̃ can be expressed as

C̃(t) = (1� V

b

)
mX

i=1

C

i

(t) + V

b

C

ROI
b

(t) 8t 2 R+ . (16)
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Equivalently, we can write

C̃(t)� V

b

C

ROI
b

(t) = ↵

T

C(t) , (17)

where

↵ =

0

BB@

1� V

b

1� V

b

...

1� V

b

1

CCA and C =

0

BB@

C1

C2
...

C

m

1

CCA ,

and where we assembled the available experimental data at the left-hand side. In

particular, the inverse problem equations for the two compartmental models considered

in this paper are the following.

• Two–compartment catenary system:

C̃(t)� V

b

C

ROI
b

(t) = ↵

T

C(t) with ↵ =

✓
1� V

b

1� V

b

◆
and C =

✓
C

f

C

m

◆
, (18)

where C is given by equation (2).

• Three–compartment non–catenary system:

C̃(t)�V

b

C

ROI
a

(t) = ↵

T

C(t) with ↵ =

0

@
1� V

b

1� V

b

1� V

b

1

A and C =

0

@
C

f

C

m

C

t

1

A
, (19)

where C is given by equation (5).

We re-write equation (17) for the unknown vector parameter k = (k1, . . . , kp) in

the form

↵

T

C(t) + V

b

C

ROI
b

(t)� C̃(t) := F
t

(k) = 0 , (20)

where F
t

:Rp

+ ! C

1(R+,R) is a non–linear operator parameterized by the time variable

t 2 R+, whose dependence on the unknown vector k is made explicit. The non–linear

zero–finding problem of equation (20) is solved by means of the Gauss–Newton method,

that reads
h
dF

t

dk

(k(0); �(0))
i
(t) = �F

t

(k(0)) , (21)

with unknown step–size �(0) 2 Rp, initial guess k(0) 2 Rp

+ and for t 2 R+. The operator

F
t

is di↵erentiable and even analytic, therefore it is possible to compute analytically its

Fréchet derivative, which is the bounded and linear operator

dF
t

dk

:Rp ! C

1(R+,R)

� 7!
h
t 7! rkFt

(k) · �
i
.

In real applications, only noisy versions of C̃(t) and C

ROI
b

for a finite number of

sampling time points t1, . . . , tT 2 R+ are available. Therefore, equation (21) becomes

the discretized linear system

F

(0)
�

(0) = Y

(0)
, (22)
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where

F

(0) =

0

@
rkFt1(k

(0))T
...

rkFtT (k
(0))T

1

A
, Y

(0) =

0

@
C̃(t1)� V

b

C

ROI
b

(t1)�↵

T

C(t1)
...

C̃(t
T

)� V

b

C

ROI
b

(t
T

)�↵

T

C(t
T

)

1

A
.

The system (22), with the step–size vector �(0) as unknown, constitutes a classic linear

ill–posed inverse problem, since the solution may not exist, may not be unique, and

may not be stable. Regularization is needed in order to find a unique stable solution of

(22). We consider a Tikhonov–type regularization [43], with the Tikhonov penalty on

the step–size vector, which leads to the regularized system

(r(0)I [p] + F

(0)T
F

(0))�(0) = F

(0)T
Y

(0)
, (23)

where r(0) is the regularization parameter, which is allowed to change at every iteration,

and I [p] is the p ⇥ p identity matrix. The step–size �

(0) is the least–square solution

of (23). The optimization algorithm performs an iterative scheme which increases the

values of the exchange coe�cients by letting k

(1) = k

(0) + �

(0), and iterates the process

until a selected stopping criterion is satisfied. Notice that solving the problem by means

of Tikhonov regularization is equivalent to asking for the solution of the original system

(22) with a small norm, i.e. limiting the step–size length. This property allows to

avoid divergence of the iterative algorithm. The role of the regularization parameter is

crucial, since in general it supervises the importance of the regularization term, and in

particular it defines the direction along which look for the solution. For example, for

large values of the regularization parameter the step–size is taken approximately in the

direction of the gradient.

The implementation details of the pixel–wise regularized Gauss–Newton algorithm

are given in the forthcoming description of the parametric imaging method.

3.1. Uniqueness theorems

The identifiability analysis [28, 51] of compartmental models is a necessary step in the

solution process, since the uniqueness of the reconstructed parameters is an essential

property which makes the model e↵ective in the description of the physiological processes

under investigation.

As shown in [9], the two–compartment catenary systems describing the FDG

cellular metabolism is always identifiable, i.e. the following theorem holds.

Theorem 3.1. The inverse problem for the two–compartment catenary system of

equation (18) has a unique solution k = (k
fb

, k

bf

, k

mf

, k

fm

)T 2 R4⇤
+ determined from

the PET experimental measurements C

ROI
b

and C̃.

We show here that the three–compartment non–catenary model for the renal system

is also identifiable. The proof follows the idea presented in [9] of using the Laplace

transform of the compartmental system of ODEs as the key mathematical tool, but

here we consider a non–catenary model in a pixel–wise framework. The main novelty is

in the key role of the modeling assumptions that C
t

(t), k
tm

, k
ut

are fixed, which were
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obtained in 2.2.1 by extension to single pixels of physiological properties holding for the

compartmental model of the entire renal system. These assumptions are essential for

uniqueness.

Theorem 3.2. Let the concentration C

t

(t) and parameters k

tm

and k

ut

be fixed. By

assuming that the polynomials

P (s) = k

ma

(s+ k

af

+ k

mf

) + k

fa

k

mf

and

Q(s) = k

fa

(s+ k

fm

+ k

tm

) + k

ma

k

fm

are both coprime with the polynomial

D(s) = (s+ k

af

+ k

mf

)(s+ k

fm

+ k

tm

)� k

mf

k

fm

,

the inverse problem for the three–compartment non–catenary system of equation (19)

has a unique solution k = (k
fa

, k

ma

, k

af

, k

mf

, k

fm

, k

tm

, k

ut

)T 2 R7⇤
+ determined from the

PET experimental measurements C

ROI
a

and C̃.

Proof. To simplify notations we let

k

tm

= ↵ , k

ut

= � ,

k

fa

= a , k

ma

= b , k

af

= c , k

mf

= d , k

fm

= e .

Since k

tm

and k

ut

, i.e. ↵ and �, are assumed to be fixed, we have to prove uniqueness

of the remaining five coe�cients a, b, c, d, e. In the new notations the system of ODEs

(3) takes the form
8
><

>:

Ċ

f

= �(c+ d)C
f

+ eC

m

+ aC

ROI
a

Ċ

m

= dC

f

� (e+ ↵)C
m

+ bC

ROI
a

Ċ

t

= ↵C

m

� �C

t

. (24)

Assuming that the concentrations are su�ciently regular, we take the Laplace

transform of the di↵erential equations (24):
8
><

>:

(s+ c+ d)L(C
f

)� eL(C
m

) = aL(CROI
a

)

�dL(C
f

) + (s+ e+ ↵)L(C
m

) = bL(CROI
a

)

(s+ �)L(C
t

)� ↵L(C
m

) = 0

, (25)

where L(f) denotes the Laplace transform of the function f . Solving (25) with respect

to L(C
f

), L(C
m

), and L(C
t

), we get

L(C
f

) =
a(s+ e+ ↵) + be

D

L(CROI
a

) , (26a)

L(C
m

) =
b(s+ c+ d) + ad

D

L(CROI
a

) , (26b)

L(C
t

) =
↵

s+ �

L(C
m

) , (26c)
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where D = (s+ c+ d)(s+ e+↵)� de. Moreover, by comparing (26b) and (26c), we get

L(C
t

) =
↵

s+ �

b(s+ c+ d) + ad

D

L(CROI
a

) . (27)

Then, we take the Laplace transform of equation (19):

L(C̃)� V

b

L(CROI
a

)

1� V

b

= L(C
f

) + L(C
m

) + L(C
t

) , (28)

where the left-hand side is a known function of s, independent of the constants a, b, c, d, e.

Now, suppose (a0, b0, c0, d0, e0) is an alternative choice of rate coe�cients consistent

with the data of the problem. We denote by f

0 the correspondent of any function

f(a, b, c, d, e), with argument (a, b, c, d, e) replaced by (a0, b0, c0, d0, e0). The condition C

t

fixed implies that C
t

= C

0
t

, whence it follows that

L(C
t

) = L(C 0
t

) . (29)

Equation (26c) implies

L(C
m

) =
s+ �

↵

L(C
t

) ,

and, since ↵ and � are fixed, and equation (29) holds, it follows also that

L(C
m

) = L(C 0
m

) . (30)

From equation (28), it is found that

L(C
f

) + L(C
m

) + L(C
t

) = L(C 0
f

) + L(C 0
m

) + L(C 0
t

) . (31)

Therefore, because of (29) and (30), equation (31) reduces to

L(C
f

) = L(C 0
f

) . (32)

Now, substitution of (27) into (29) leads to

b(s+ c+ d) + ad

D

=
b

0(s+ c

0 + d

0) + a

0
d

0

D

0 , (33)

and substitution of (26a) into (32) gives

a(s+ e+ ↵) + be

D

=
a

0(s+ e

0 + ↵) + b

0
e

0

D

0 . (34)

Assuming that the two rational fractions (33) and (34) are irreducible, i.e. the

polynomials P (s) = b(s + c + d) + ad and Q(s) = a(s + e + ↵) + be are both coprime

with D(s), we obtain the links between the two sets of parameters, i.e. the system
8
>>>>>>>>><

>>>>>>>>>:

b = b

0

b(c+ d) + ad = b

0(c0 + d

0) + a

0
d

0

c+ d+ e+ ↵ = c

0 + d

0 + e

0 + ↵

ce+ (c+ d)↵ = c

0
e

0 + (c0 + d

0)↵

a = a

0

a(e+ ↵) + be = a

0(e0 + ↵) + b

0
e

0
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which holds if and only if

a = a

0
, b = b

0
, c = c

0
, d = d

0
, e = e

0
.

4. The imaging method

In this section we present a parametric imaging method, which relies upon the

application of image pre–processing algorithms and of a rather general optimization

scheme based on the regularized Gauss–Newton method, presented in Section 3, able

to solve the compartmental inverse problem pixel–wise. We remark that our method

is potentially applicable to any generic compartmental model, provided an ad hoc

identifiability study and taking into account the compartment–dependent increase of

the computational cost.

We start from the set of N reconstructed dynamic FDG–PET images:

(f (t)
1 ,f

(t)
2 , . . . ,f

(t)
N

) for t = 1, . . . , T , (35)

where f

(t)
n

is the n�th PET image at t�th time point of tracer concentration C̃, i.e.

f

(t)
n

(i, j) = C̃(i,j)(t) for i = 1, . . . , I, j = 1, . . . , J , (36)

and I, J are the image dimensions.

We select the tissue of interest and the compartmental model reliable for its

functional description. For each dynamic PET image (f (1)
n̄

, . . . ,f

(T )
n̄

), n̄ 2 {1, . . . , N},
i.e. a PET slice, our imaging method follows the steps described below.

Step 1. Gaussian smoothing. In order to reduce the noise due to data acquisition, we apply

a truncated Gaussian smoothing filter through the convolution operation

f̃

(t)

n̄

= f

(t)
n̄

⇤G0,� 8t = 1, . . . , T , (37)

where

G0,�(i, j) =
1

2⇡�2
e

�x(i,j)2+y(i,j)2

2�2 and (38)

x(i, j),y(i, j) 2 {�L� 1

2
, . . . ,

L� 1

2
}⇥ {�L� 1

2
, . . . ,

L� 1

2
} , (39)

and L is the (odd) dimension of the window. In all our applications, we use a

Gaussian convolution matrix G0,� with zero mean, standard deviation � = 1 and

dimension L = 3.

Step 2. Image segmentation. We model the outer region of the organ of interest with a

standard two–compartment model; the ROI A delimiting the organ of physiologic

interest is described by the most reliable compartmental model (according to

the organ physiology). To extract the ROI A we apply the following image

segmentation method:

(i) compute the PET image averaged in time: f̃
n̄

=
1

T

TX

t=1

f̃

(t)

n̄

;
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(ii) consider the pixel with maximum intensity: (̄i, j̄) = max
i,j

f̃

n̄

(i, j);

(iii) approximate the profile of the ī�th matrix row with a family of one–

dimensional Gaussian functions G

j̄,�

of mean j̄, variable variance �, and s.t.

G

j̄,�

(j̄) = f̃

n̄

(̄i, j̄), by means of a curve fitting process. This consists in

computing

�̄

ī

= argmin
�

||f̃
n̄

(̄i, j)�G

j̄,�

(j)||2 ; (40)

(iv) determine the activity’s lower bound in the ROI as the value c̄ at which the two

curves f̃

n̄

(̄i, j) and G

j̄,�̄ī
(j) separate from each other. Formally, this consists

in evaluating 8
<

:

j

⇤ = argmax
j2(j̄��,j̄+�)

|f̃
n̄

(̄i, j)�G

j̄,�̄ī
(j)|

c̄ = f̃

n̄

(̄i, j⇤)
, (41)

in a suitably chosen neighbourhood of j̄ (i.e. for a suitable choice of � > 0).

The ROI encompassing the organ is thus defined as

A(i, j) =

(
0 if f̃

n̄

(i, j) < c̄

1 if f̃
n̄

(i, j) � c̄

. (42)

Step 3. Parameter estimation. We apply the regularized Gauss–Newton algorithm pixel-

by-pixel, considering each pixel with its specific compartmental model. In general,

for a compartmental model with p arbitrary kinetic parameters, for a image pixel

(i, j) 2 {1, . . . , I} ⇥ {1, . . . , J}, the reconstruction iterative algorithm reads as

follows:

(i) check whether the radioactivity is significant: fix a constant value ⌧ > 0 (e.g.

⌧ = 102) discriminating between background noise and tissue activity,

– if ||C̃(i,j)(t)||2  ⌧ , then assign k = 0 and stop;

– if ||C̃(i,j)(t)||2 > ⌧ , then continue;

(ii) choose the initial guess: k(0)
(i,j) 2 Rp

+;

(iii) solve for �(0)
(i,j) 2 Rp

(r(0)I [p] + F

(0)
(i,j)

T

F

(0)
(i,j))�

(0)
(i,j) = F

(0)
(i,j)

T

Y

(0)
(i,j) , (43)

where F

(0)
(i,j) and Y

(0)
(i,j) are defined as in (22), and r

(0) is the regularization

parameter automatically selected by means of the Generalized Cross Validation

(GCV) method [14, 31]. The advantages in using the GCV are mainly that it

can be applied without any a priori information on the error on the data or on

peculiar properties of the solution, and that it requires just the computation

of the SVD of the matrix of the problem;

(iv) project onto zero the components of the step–size vector �

(0)
(i,j) that make

negative the components of the parameter vector k

(0)
(i,j). This means defining
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the p⇥ p projection matrix P

(0)
(i,j) s.t.

P

(0)
(i,j)(q, r) =

8
>><

>>:

0 if q 6= r

0 if q = r and (k(0)
(i,j))q + (�(0)

(i,j))q < 0

1 if q = r and (k(0)
(i,j))q + (�(0)

(i,j))q > 0

; (44)

(v) update k

(0)
(i,j) with the projected step–size:

k

(1)
(i,j) = k

(0)
(i,j) + P

(0)
(i,j)�

(0)
(i,j) , (45)

and iterate.

The iterative scheme is stopped when the relative error between the experimental

dynamic concentration and the model-predicted one is less than an appropriate

threshold, i.e. at a generic iteration h

||C̃(i,j)(t)� V

b

C

ROI
b

(t)�↵

T

C(i,j)(t;k
(h)
(i,j))||2

||C̃(i,j)(t)||2
 ✏ , (46)

where ✏ depends on the noise level on data.

Step 4. Parametric images. Once we obtain the set of exchange coe�cients of the model

for each image pixel, we build up the parametric images K1, . . . ,Kp

:

K1(i, j) = k(i,j)(1), . . . ,K

p

(i, j) = k(i,j)(p) . (47)

Regarding Step 1. and Step 2., other imaging processing methods can be used to

smooth and segment PET images; the impact of other approaches on the accuracy of

compartmental analysis is under investigation. However, simple gaussian smoothing,

as in Step 1., and our ad hoc image segmentation process, as in Step 2., provide good

results regardless of the limited resolution of PET images involved in the analysis.

5. Numerical applications

Our new parametric imaging method is here applied against both synthetic and real

microPET data of murine models [20, 36]. In particular, we test the procedure with the

two–compartment model in the simulation framework and with the three–compartment

model, describing the renal system, in the real data framework.

5.1. Simulation

Synthetic data are created mimicking a real FDG–microPET acquisition: first we

chose a phantom (as in Figure 3(a)) encompassing four homogeneous regions; for

every region, a set of realistic kinetic parameters of a two–compartmental problem

was assigned as ground truth, and a realistic value for the blood volume fraction

V

b

was selected (Table 1). Therefore, we obtained four synthetic parametric images

K

fb

,K

bf

,K

mf

,K

fm

, each one characterized by a specific set of kinetic parameters.

The ground truth parametric images are displayed in Figure 4.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 3. The FDG–PET simulation setting. (a) Phantom composed by four
homogeneous regions. (b) Simulated blood IF. (c) Characteristic noise–free TACs
for the four regions. (d–g) Noisy TACs for each region: the error bars identify the
variability on the concentrations introduced by the noise.

Table 1. Ground truth numerical values of the kinetic parameters kfb, kbf , kmf , kfm
(min�1), and of the blood volume fraction Vb, for each one of the four homogeneous
regions.

kfb kbf kmf kfm Vb

region 1 0.8 0.6 0.07 0.07 0.1
region 2 1 1 0.2 0.2 0.2
region 3 1.1 0.9 0.5 0.4 0.05
region 4 0.5 0.5 0.1 0.01 0.3

The dynamic PET images of tracer concentration were generated following the

scheme below. For each pixel:

(i) compute the values of the integral (2) using the ground truth values of the

parameters and a simulated blood IF (Figure 3(b)), the latter obtained by fitting

with a gamma variate function [13] a set of real measurements acquired from a

healthy mouse in a controlled experiment;

(ii) evaluate the synthetic concentration by means of equation (18), with the numerical

value of V
b

related to the homogeneous region at which the pixel belongs;

(iii) sample on time interval [t1; tT ] of 27 time frames equivalent to the typical total
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(a) Kfb (b) Kbf (c) Kmf (d) Kfm

Figure 4. The ground truth parametric images Kfb,Kbf ,Kmf ,Kfm of the two–
compartment system.

acquisition time of the FDG experiments performed with the microPET scanner

available at our lab (Albira, Carestream Health, Genova) [5] and in agreement with

usual time points of the experiments (10⇥ 15s, 1⇥ 22s, 4⇥ 30s, 5⇥ 60s, 2⇥ 150s

and 5⇥ 300s).

Once the noise–free dynamic PET images were obtained:

(iv) project the images into the sinogram space by means of the Radon transform,

yielding projected noise–free sinogram data;

(v) add mixed Poisson–Gaussian noise [25, 37] to the projected data: apply Poisson

noise to account for the stochastic nature of the photon counting process at the

detectors, and then corrupt the Poisson model with additive Gaussian noise to

account for the intrinsic thermal and electronic fluctuations of the acquisition

device. Notice that the errors arising from instrumental and physical e↵ects,

such as attenuation, scattered events, decay and accidental coincidences, were not

simulated;

(vi) reconstruct the noisy dynamic PET images of tracer concentration by means of the

Filtered Back Projection (FBP) applied on the noisy sinogram data.

We created fifty independent identically–distributed noisy datasets. Characteristic

noise–free TACs of the four regions are shown in Figure 3(c), whereas the noisy TACs

are reported in Figure 3(d)–3(g). The Poisson noise was applied by using the Matlab

function poissrnd, and the white Gaussian noise had a signal-to-noise ratio of 20 dB.

For each dataset, we followed the reconstruction steps of Section 4, i.e. we applied

the Gaussian smoothing filter (� = 1, window 3⇥ 3) on the dynamic PET images and

solved pixel–wise the compartmental inverse problem by means of the regularized Gauss–

Newton algorithm. For each pixel, the starting point of our method was randomly chosen

in the interval (0, 1) and the regularization parameter was optimized at each iteration

through the GCV method. We did not need to apply the image segmentation step

because in this simulation we modeled the same two–compartment scheme for all the

pixels.

Once the entire set of kinetic parameters k

fb

, k

bf

, k

mf

, k

fm

for each pixel were

retrieved, we built up the parametric images K

fb

,K

bf

,K

mf

,K

fm

. Figure 5 shows
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the mean images (first row) and the standard deviation images (second row), computed

over the fifty reconstructions. The mean images provide a reliable approximation of

the ground truth parametric images, demonstrating the consistency of the parametric

inversion procedure. Notice that the artifacts occurring at the edges of the homogeneous

regions, observable especially around the first and second regions, are consequences

of the application of the Gaussian filter. The standard deviation images keep

systematically small values, proving that the iterative reconstruction scheme is

numerically stable with respect to noise. Table 2 reports the mean and the standard

deviation of the kinetic parameters over the four homogeneous regions. Comparison

between the ground truth values of Table 1 and the reconstructed values of Table 2

clearly shows the reliability of our approach.

From the computational viewpoint, the parametric reconstruction takes almost 45

minutes. Please note that the algorithm was implemented in the Matlab programming

environment and the algorithm was executed on a computer with a processor Intel

core i5. Despite that, for a single pixel, the Gauss–Newton iterative scheme requires

about 5-10 iterations before it converges and the operations carried out in a single

iteration for computing the Newton step–size are not computationally demanding (the

matrices in the game have small size). Therefore, the high computational cost of the

method depends only from the application of the reduction scheme on a dense set of

pixels. Nevertheless, the computational complexity of our parametric imaging method

is consistent with standard parametric methods.

(a) Kfb (b) Kbf (c) Kmf (d) Kfm

(e) Kfb (f) Kbf (g) Kmf (h) Kfm

Figure 5. Mean images (first row) and standard deviation images (second row) of
Kfb,Kbf ,Kmf ,Kfm, computed over the fifty reconstructions.
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Table 2. Mean and standard deviation of the kinetic parameters kfb, kbf , kmf , kfm
(min�1), for each one of the four homogeneous region, computed over the fifty
reconstructions.

kfb kbf kmf kfm

region 1 0.75± 0.02 0.59± 0.03 0.07± 0.01 0.07± 0.01
region 2 0.93± 0.03 0.87± 0.06 0.16± 0.02 0.16± 0.01
region 3 1.04± 0.03 0.79± 0.08 0.33± 0.06 0.31± 0.02
region 4 0.58± 0.02 0.51± 0.03 0.08± 0.01 0.02± 0.01

5.2. Real data

We now test our parametric imaging method on real FDG–PET experiments in the

case of the three–compartment non–catenary model representing the renal physiology,

described in Subsection 2.2.

We analyzed FDG–PET real data of murine models obtained by means of

the dedicated microPET system (Albira, Carestream Health, Genova) [5] currently

operational at our lab. Following the experimental protocol for FDG–PET experiments,

utilized during a study on the metabolic e↵ects of metformin [26], the animals were

studied after a fasting period of six hours to ensure a steady state of substrate and

hormones governing glucose metabolism. Then, the animals were properly anesthetized

and positioned on the bed of the microPET system whose two–ring configuration covers

the whole animal body in a single bed position. A dose of 3 to 4 MBq of FDG was

injected through the tail vein, soon after the start of a dynamic list mode acquisition

lasting 40 min. The acquisition was reconstructed using the following framing rate:

10⇥15s, 1⇥22s, 4⇥30s, 5⇥60s, 2⇥150s and 5⇥300s. The dynamic PET images of tracer

concentration (kBq/ml) were reconstructed using a Maximum Likelihood Expectation

Maximization (MLEM) method [40]. The complete dataset is composed by 100 images

of 80 ⇥ 80 pixels, each one reproducing an axial section, by the total number of time

points of the experiment. For this test, we considered a mouse in a control (CTR)

condition and a mouse in a starved (STS) condition (food deprivation, with free access

to water, for 48 hours). We focused on the analysis of the renal physiology and selected

a single PET slice containing an axial section of the right kidney, the same slice for

both animals. The entire FDG kinetic process was initialized by the arterial IF. We

are aware that the determination of IF is a challenging task in the case of mice. To

accomplish it, for each animal model we have first viewed the tracer pass in cine mode.

Then, in a frame where the left ventricle was particularly visible, we have drawn a ROI

in the aortic arc and maintained it for all time points. For both analysis, the blood

volume fraction was assumed to be equal to V

b

= 0.2, a typical value for the kidney of

the mouse [11].

We applied our imaging method on the selected dynamic PET slice of the CTR

mouse and of the STS mouse. More specifically, we smoothed the data by means

of a Gaussian filter of standard deviation � = 1 and size 3 ⇥ 3; we selected the
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ROI within the axial section of the kidney through the image segmentation process

determining the minimum value of activity recorded inside the organ, and reconstructed

the kinetic parameters k
fa

, k

ma

, k

af

, k

mf

, k

fm

, k

tm

, k

ut

of the three–compartment system

for each pixel by means of the regularized Gauss–Newton iterative algorithm. The

initial guesses were randomly selected in the interval (0, 1) and the regularization

parameter was chosen by the GCV method. The reconstructed parametric images

K

fa

,K

ma

,K

af

,K

mf

,K

fm

,K

tm

,K

ut

for the renal compartmental model are presented

in Figure 6 and Figure 7: in each figure, the first row shows the parametric images for

the CTR mouse, the second row for the STS mouse.

All parametric images, of both the CTR mouse and the STS mouse, show

parameters’ values that vary quite largely from pixel to pixel, bringing out the lack of

homogeneity of the renal tissue. Indeed, the parametric images point out the di↵erent

structures composing the kidney and characterizing the distinct functions of the organ

[27]. This is consistent with the architecture of the renal compartmental model we have

designed (Subsection 2.2). The higher activity of the parameters is located in a specific

part of the outer portion of the axial section of the kidney, which is attributable to

the renal cortex, in which most of the renal processes are carried out. Moreover, for

both the CTR and STS conditions, we can observe that the parametric images K

tm

and K

ut

linked to the tubule compartment have a very similar distribution while the

physiologically sound condition k

tm

' 102k
ut

is maintained pixel–wise (without any

constraint in the inversion procedure). Instead, the fundamental di↵erence between the

CTR and the STS parametric images relies on the numerical values of the parameters. In

particular, the values of the exchange coe�cients associated with the blood input, that

are k

fa

, k

ma

, k

af

, exhibit a di↵erent behavior with respect to the two conditions. From

the CTR mouse to the STS mouse: the input parameter from the blood k

fa

increases

(almost duplicates), the filtration process described by k

ma

decreases (is almost reduced

by a factor of three), and the output parameter to the blood k

af

remains approximately

equal. This trend reflects the response of the kidney to the di↵erent physiological

conditions of the two mice analyzed, coherently with what already observed [11]. Finally,

we notice that the parameters linked to the FDG metabolization process, k
mf

and k

fm

,

and the parameters representing the reabsorption and excretion processes, k
tm

and k

ut

respectively, remain basically unchanged in the two conditions.

6. Conclusions

FDG–PET imaging allows the observation of metabolic processes related to glucose

consumption inside a living organism. In order to improve the quality of information

achievable from PET images, one solution is to develop parametric imaging methods

capable of showing the tracer metabolism pixel–wise. Starting from the design

of compartmental models suitable to describe the tracer kinetics in a predefined

physiological system, parametric imaging techniques process dynamic PET images and

estimate the spatial distribution of the exchange coe�cients identified by the model.
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(a) Kfa (b) Kma (c) Kaf

(d) Kfa (e) Kma (f) Kaf

Figure 6. Parametric images Kfa,Kma,Kaf : first row for the CTR mouse, second
row for the STS mouse.

(a) Kmf (b) Kfm (c) Ktm (d) Kut

(e) Kmf (f) Kfm (g) Ktm (h) Kut

Figure 7. Parametric images Kmf ,Kfm,Ktm,Kut: first row for the CTR mouse,
second row for the STS mouse.

In this paper we have shown a novel parametric imaging tool, which integrates

pre–processing methods and optimization of non–linear inverse problems to realize an

automatic pipeline for the reduction of multi–compartment models. The novelties of

this approach are at a mathematical, computational, and technological level. In fact,

from a mathematical viewpoint, we showed that model identifiability occurs also in

the case of more complex compartmental systems like the non–catenary one involving
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three compartments and nicely mimicking the renal physiology. From a computational

viewpoint, we showed that the use of a regularized Gauss–Newton method for the

reduction of the compartmental models is e↵ective also in the case of a pixel–wise

analysis. Finally, from a technological viewpoint, we provided a simple pipeline,

which is able to realize the complete processing workflow, starting from dynamical

nuclear medicine data up to images of all kinetic parameters. The main advantage

of this approach is in its notable degree of generality, since in principle it may be

applied to models made of several compartments. Further, di↵erently to typical linear

parametric imaging methods, this algorithm provides maps of all model parameters,

and di↵erently to direct imaging methods, it may reconstruct a large set of kinetic

parameters, and account for di↵erent models in the same image. We focused on the

standard two–compartment catenary model and a three–compartment non–catenary

model representing the renal system. Interestingly, in this latest application, the results

obtained from experimental observations showed that the approach works properly

without the need of using data from the bladder, which implies that we were able

to obtain reliable parametric reconstructions using just measurements from pixels in

the kidneys. We also remark that the procedure can be applied also for a large variety

of compartmental models, more general and complicated, provided that the numerical

complexity of the model is taken into account. We validated our approach against

synthetic data and then illustrated it on FDG–PET data of murine models. We analyzed

dynamic FDG–PET images of a selected axial section of the right kidney for a control

mouse and a starved mouse, proving that the reconstructed renal parametric images are

qualitatively e↵ective in the description of the local FDG metabolism.

Further developments of this approach to parametric images of nuclear medicine

data are concerned with several issues. From the computational viewpoint, we aim

at reducing the computational burden of this approach by means of ad hoc designed

implementations. This will allow the implementation of a technological pipeline able

to deal with four-dimensional data. Moreover, we are working at the extension of this

approach to the direct imaging problem, whereby the input data are the PET count

sinograms and not the reconstructed PET images. Finally, from the clinal viewpoint,

we are going to apply this approach against a notable quantity of data acquired according

to paradigms designed to investigate the role of metformin in glucose metabolism [26].
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