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ABSTRACT

Lightning is a natural hazard that can lead to the ignition of wildfires, disruption and damage to power and

telecommunication infrastructures, human and livestock injuries and fatalities, and disruption to airport

activities. This paper examines the ability of six statistical and machine-learning classification techniques to

distinguish between nonlightning and lightning days at the coarse spatial and temporal scales of current

general circulation models and reanalyses. The classification techniques considered were 1) a combination of

principal component analysis and logistic regression, 2) classification and regression trees, 3) random forests,

4) linear discriminant analysis, 5) quadratic discriminant analysis, and 6) logistic regression. Lightning-flash

counts at six locations across Australia for 2004–13 were used, together with atmospheric variables from the

ERA-Interim dataset. Tenfold cross validation was used to evaluate classification performance. It was found

that logistic regression was superior to the other classifiers considered and that its prediction skill is much

better than using climatological values. The sets of atmospheric variables included in the final logistic-

regressionmodels were primarily composed of spatialmeanmeasures of instability and lifting potential, along

with atmospheric water content. The memberships of these sets varied among climatic zones.

1. Introduction

Appreciable attention has been given to the problems

of thunderstorm classification and prediction in recent

years. Many techniques have been used, including em-

pirical orthogonal function and canonical correlation

analyses (e.g., Muñoz et al. 2016), classification and re-

gression trees (e.g., Burrows et al. 2005), random-forest

classification (e.g., Blouin et al. 2016), quadratic dis-

criminant analysis (e.g., Sánchez et al. 1998), logistic

regression (e.g., Mazany et al. 2002; Sousa et al. 2013;

Romps et al. 2014), and dynamical modeling (e.g., Yair

et al. 2010; Lynn et al. 2012; Zepka et al. 2014). Sub-

ject areas have included very-short-range forecasting,

seasonal prediction, and climatological studies. The

systematic evaluation of the performances of several

different classification techniques when applied to da-

tasets from a wide range of climatic zones has not re-

ceived much attention, however.

The principal aim of this study is to investigate the

relationships between lightning activity and atmo-

spheric conditions at the coarse spatial and temporal

scales of currently available climate models and rean-

alyses, including a comparison of different modeling

techniques that are based on a range of thermodynamic

measures. The lightning data used in this study are from

several locations in Australia, covering a variety of cli-

mate types. The description of study sites and data,

multivariate analyses, and cross-validation experiments

below parallels that of Bates et al. (2017). The material

covered in section 2 is derived from there with minor
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modification and is intended to provide sufficient detail

to allow readers to assess the validity and generaliz-

ability of the results presented here. Results are pre-

sented in section 3, and a summary of key research

findings is given in section 4.

2. Data and methods

The daily lightning data used in this study were

collected from six Comité Internationale des Grandes

Réseaux Electriques (International Committee on

Large Electric Systems; CIGRE) model ‘‘CIGRE 500’’

lightning-flash counters (Fig. 1; Table 1). The total

number of flash counts was considered herein because 1)

although the CIGRE 500 sensor was designed specifi-

cally to detect cloud-to-ground flashes, it also responded

to cloud-to-cloud flashes, with about 68% of the

lightning-flash counts recorded being due to cloud-to-

ground flashes; 2) estimates of the effective horizontal

ranges of the counters for cloud-to-ground flashes and

cloud-to-cloud flashes are different (30 and 15km, re-

spectively); and 3) the ratio of intracloud to cloud-to-

ground flashes can vary considerably depending on

thunderstorm type and intensity, region of occurrence,

and season (Rakov and Uman 2003). The counters were

read manually each day between 0800 and 0900 local

time. They were selected because of their record length

and quality and their different climatic settings. The

period of record varies from January of 2004 to at least

December of 2010 (Townsville, Queensland, Australia)

and at most February of 2013 (Melbourne, Victoria,

Australia). A thunderstorm was deemed to have oc-

curred during a 24-h period if the counter registered at

least one lightning-flash count (LFC).

A second threshold of two LFCs per 24-h period was

also used to assess the degree of the sensitivity to

threshold selection, because of the (undocumented)

possibility that some counts of one flash may have

originated from a source other than lightning. For the

Melbourne site, which has a high proportion of lightning

days with LFC 5 1 (Table 1), it was found that the re-

sults obtained from the procedures described below

showed slight to some sensitivity in terms of

atmospheric-variable selection and levels of prediction

skill. There was no impact on the interpretation of the

results, however. Therefore, the results obtained using

FIG. 1. Locations of CIGRE 500 sensors (black dots), observed proportions of lightning

days at the sensors (indicated by relative heights of black bars within rectangles centered on

sensor locations), and corresponding Köppen climate-classification zones: Aw 5 tropical sa-

vanna, Cfa5 humid subtropical, Cfb5marine west coast, Csa5Mediterranean, and BWh5
subtropical desert climate. Numbers in parentheses refer to record lengths (days).
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the threshold of two LFCs in a 24-h period will not be

reported here.

Data for 31 atmospheric fields were obtained from the

European Centre for Medium-Range Weather Fore-

casts interim reanalysis (ERA-Interim) archive (Dee

et al. 2011): the fields are listed in Table 2. The fields

represent a broad variety of physical processes that can

be associated with deep convection, including both dy-

namical and thermodynamical processes. The variables

cover various measures of temperature lapse, moisture

content, vertical motion, and water phase state at a

range of different pressure levels. The spatial and tem-

poral resolution of the dataset is 0.758 and 6h. For each

CIGRE 500 site, atmospheric data were extracted for

the 49 reanalysis grid points closest to the sensor’s lo-

cation. The lightning series was synchronized with the

ERA-Interim series for 0600 UTC (1600h eastern

Australia time) within the 24-h period represented by

the lightning data. This procedure was done because, in

general, weather conditions are more favorable for

lightning activity to occur during the late-afternoon

period than at other times of the day or night (see,

e.g., Christian et al. 2003; Dowdy and Mills 2009).

Moreover, the additional information provided by data

at other time steps was found to be largely redundant

because correlations within a 24-h period were in-

variably high. For example, correlations between indi-

vidual variables at 0600 and 1200 UTC, spanning the

time period during which most deep-convective pro-

cesses occur in Australia, are greater than 0.85 in every

case examined, and most are greater than 0.95.

Quadratic surfaces and low-dimensional summary sta-

tistics (LDSS) were used to characterize the main features

of the atmospheric fields on each day (appendix A). Six

LDSS were considered: the intercept of the quadratic

surface (mu), the magnitude of the gradient vector (gd)

and its direction (dr), Gaussian curvature (gc), vertical

gradient (vg), and adjusted correlation coefficient squared

R2 (r2). The adjusted R2, as a goodness-of-fit measure for

the quadratic surfaces, was included as ameasure of spatial

(dis)organization in the atmospheric fields.

For each candidate variable (designated hereinafter by

the convention ‘‘LDSS code.field name’’), comparative

box plots were used to contrast its values for lightning

and nonlightning days. A data matrix was constructed

using variables that showed the greatest contrast. The

columns of this matrix were standardized to zero mean

and unit variance. This ensures that the variables were

placed on a commensurable scale without disturbing the

shape of their probability distributions, facilitates in-

terpretation of the results of a discriminant or regression

analysis, and helps to concentrate precisely on the con-

ditions that are present during nonlightning and lightning

days because it focuses on the relative variations of each

variable within its own physical limits. The ‘‘colldiag’’

function from the ‘‘perturb’’ package in the R computing

software environment (https://cran.r-project.org/web/

packages/perturb/index.html) was used to detect the

presence of collinearity in the data matrix. Colldiag is an

implementation of the regression collinearity diagnostic

procedures found in Belsley (1991). It computes the

condition indices of the data matrix and provides the

variance decomposition proportions associated with each

condition index. As a rule of thumb, variables with pro-

portions that are greater than 0.99 were considered to be

sources of severe collinearity. Thus, the corresponding

columns were removed to form a reduced data matrix.

Six classification techniques were used: a principal

component (empirical orthogonal) analysis–logistic-

regression approach (PCA&LR), classification and

regression trees (CART), random forests (RF), linear

discriminant analysis (LDA), quadratic discriminant

analysis (QDA), and logistic regression (LR). Four

measures of prediction skill were considered: hit rate

(HR), false-alarm ratio (FAR), Brier (1950) score

(BS), and (for LR) the area under the receiver-

operating-characteristic curve (AUC). For a perfect

classification, HR5 1, FAR5 0, BS5 0, and AUC5 1.

Values of HR near 0, FAR and BS values near 1,

and AUC values near 0.5 indicate poor performance.

Further details on the classifiers and the receiver-

operating-characteristic curve can be found in

appendix B and other sources (see, e.g., Breiman 2001;

Venables and Ripley 2002; Hilbe 2009). Tenfold cross

validation was used to assess how well the classifiers

performed on an independent dataset. All analyses

TABLE 1. Site and data details for Australian CIGRE 500 lightning-flash counters used in the study. Daily records of LFC cover the period

from January of 2004 to at least December of 2010 (Townsville) and at most February of 2013 (Melbourne).

Site No. Location Record length (days) No. of lightning days Percentage of lightning days with LFC 5 1

1 Darwin 3109 1350 6.22

2 Townsville 2218 286 14.0

3 Coffs Harbour 2500 501 25.0

4 Melbourne 3285 570 34.5

5 Perth 2501 148 18.9

6 Port Hedland 3069 401 17.2
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were carried out in the R computing environment

(https://www.r-project.org/).

3. Results

The proportions of lightning days for the CIGRE 500

sites are displayed in Fig. 1. The proportions range from

0.06 (Perth,WesternAustralia, Australia) to 0.43 (Darwin,

Northern Territory, Australia). Median adjustedR2 values

for the fitted quadratic surfaces varied across atmospheric

fields and sites, with 8.1%–16% below 0.5 and 49%–70%

above 0.75. Thus, the surfaces gave a reasonable repre-

sentation of the main features of the fields. For PCA&LR,

perusal of comparative box plots revealed that only the

first principal component had any predictive power in

terms of discriminating between lightning and non-

lightning days. Therefore, the remaining principal com-

ponents were not considered further.

TABLE 2. Abbreviations, full names, units of measure, and specifications for atmospheric fields. This is the same set of fields that was

considered by Bates et al. (2017, their Table 2).

Abbreviation Full name Specification

Instability and lifting potential

CAPE Convective available potential energy

(J kg21)

As provided in ERA-Interim (max CAPE on the basis of lifting

parcels within a near-surface layer)

CBH Cloud-base height (m) From temperature and dewpoint at a height of 2m with lifting

to condensation level using an idealized constant lapse rate

CMF Convective mass flux (Pa2 s21 K21) 500 hPa: calculated as the product of air density, fraction of grid

points covered by updrafts within the 7 3 7 gridded region,

and the vertical velocity averaged across all updrafts

CONV1000850 Mean low-level horizontal wind

convergence (s21)

Mean value at 850 and 1000 hPa pressure levels

DD Dewpoint depression (8C) 500, 700, and 850 hPa

DDIV Density-weighted mean upper-level

divergence minus density-weighted

mean low-level divergence (s21)

{300, 400} 2 {850, 1000} hPa

EPTL Mean low-level equivalent potential

temperature minus mean midlevel

equivalent potential temperature (8C)

Mean value at 1000 and 850 hPa 2 mean value at 700 and

500 hPa

TD850T500 Cross totals index (8C) 850 and 500 hPa

TGD Direction of thickness gradient (rad) {500, 700}, {500, 1000}, and {700, 1000} hPa

TGM Magnitude of thickness gradient (m2 s22) {500, 700}, {500, 1000}, and {700, 1000} hPa

THETA_W1000 Wet-bulb potential temperature (8C) 1000 hPa

THETA_W850500 Wet-bulb potential temperature diff (8C) 850 2 500 hPa

THK7001000 Geopotential thickness (m2 s22) 700 2 1000 hPa geopotential heights

TL850500 Temperature lapse (8C) 850 2 500 hPa

TL850700 Temperature lapse (8C) 850 2 700 hPa

TTI Total totals index (8C) 850 and 500 hPa

W Vertical velocity (Pa s21) 200, 300, 500, 700, 850, and 1000 hPa

Atmospheric water content

CONVP Convective precipitation (m) As provided in ERA-Interim

ICE Total column ice water (kgm22) As provided in ERA-Interim

SH Specific humidity (kg kg21) 500, 700, and 850 hPa

TCWV Total column water vapor (kgm22) As provided in ERA-Interim

TOTP Total precipitation (m) As provided in ERA-Interim

Wind speed

MVWS Max vertical wind shear (m s21) From 300 to 850 hPa

S06 Vertical wind shear between 0 and

6 km (m s21)

1000 and 500 hPa

U Zonal wind velocity (m s21) 300, 500, 700, 850, and 1000 hPa

V Meridional wind velocity (m s21) 300, 500, 700, 850, and 1000 hPa

General atmospheric state and variability

SEASON Season of year DJF, MAM, JJA, and SON

T Air temperature (8C) 2m and 500, 700, and 850 hPa

MSLP Mean sea level pressure (Pa) As provided in ERA-Interim

GPH Geopotential height (m2 s22) 500 and 700 hPa

MING Min geostrophic vorticity (s22) Laplacian of geopotential at 500, 700, and 850 hPa
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Summaries of the cross-validation results for lightning

days appear in Figs. 2 and 3. Every classifier considered

performed well for Darwin: HRs are noticeably greater

than FARs and the BSs are low (0.09–0.13). The RF and

LR methods produced the highest HRs (0.92 and 0.93,

respectively). For the five remaining sites, PCA&LR is

the worst-performing classifier, with FAR . HR in ev-

ery case. The LR method produced the highest HRs

across these sites and, forMelbourne and Perth, the only

cases in which HR. FAR. Across all sites, AUC values

ranged from 0.80 (Melbourne) to 0.96 (Darwin). They

indicate a prediction skill that is much better than use of

climatological values (known as ‘‘climatology’’; AUC5
0.5). Perusal of Fig. 3 reveals that CoffsHarbour (inNew

South Wales) and Melbourne, both in the vicinity of the

extratropical east coast region of Australia, have the

highest BSs (0.15, BS # 0.24). This is primarily due to

low HRs for both lightning and nonlightning days and

high FARs for nonlightning days. The relatively low

prediction skill in this region could relate to the fact that

lightning activity is sometimes associated with other

synoptic-scale systems, such as subtropical cyclones

FIG. 2. Cross-validated prediction skill for six classifiers, with line of equality (dashed line).
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known as ‘‘east coast lows’’ (Chambers et al. 2014;

Dowdy and Kuleshov 2014). Although these synoptic-

scale systems may exert some localized control on at-

mospheric conditions associated with deep convection

(such as in relation to low-level convergence and ad-

vection of moisture), the cyclones in this region may

not be well represented by the specific set of 0600

UTC thunderstorm and convection measures that are

considered in this study. Furthermore, an improved

understanding of the factors controlling cyclone activity

in this region, as well as associated local severe-weather

conditions, is an area of active research. Research

topics include improved understanding of the region’s

uniqueness in terms of the hybrid energetics character-

istics of these cyclones (Pezza et al. 2014); the regional

features of its lightning climatological behavior (Dowdy

and Kuleshov 2014); and the interrelationships among

cyclones, fronts, thunderstorms/lightning activity, and

local atmospheric conditions (Dowdy and Catto 2017).

Across the six classifiers, the lowest BSs were obtained

for Perth (0.052 , BS , 0.11). This result is because of

the high HR (0.90) and low FAR (0.017) obtained for

nonlightning days and the low number of lightning days

for that site.

A dot chart of the 15 variables included in the six final

LR models is displayed in Fig. 4, and a key to the at-

mospheric fields that were used appears in Table 2. The

plot and table reveal five key features. First, 10 variables

are spatial mean measures of instability and lifting po-

tential and of atmospheric water content. Second, only

mu.CAPE appears in all six models, mu.TOTP appears

in five, and mu.TTI, r2.SH, and mu.CONVP appear in

four. Third, variables representing wind shear are not

included in the LR models for these locations. Fourth,

the LR models for Darwin and Townsville include mu.

CAPE, mu.TOTP, mu.TTI, and r2.SH as variables

whereas the models for Perth and Port Hedland (in

Western Australia) include those variables as well as

mu.CONVP. Fifth, despite the above similarities, the

general pattern of scatter in the dot chart suggests that

the optimal variable sets for the classification of light-

ning days may vary among different climatic zones.

The dominance of the spatial meanmeasures could be

related to temporal variations in the timing of thun-

derstorms with respect to a given location since lightning

can, at times, occur during hours other than late after-

noon. Although CAPE and TTI are well known mea-

sures of storminess, including for Australian conditions

(Hanstrum et al. 2002; Niall andWalsh 2005; Allen et al.

2011; Dowdy 2015), the prominence of mu.TOTP and

mu.CONVP might reflect the strong relationship be-

tween convective parameterizations and dynamic vari-

ables such as moisture convergence and vertical velocity

W at midlevels that was found by Davies et al. (2013). It

is also noted that measures that are based on pre-

cipitation in combination with CAPE have also been

shown to provide a good indication of lightning-flash

density in other regions of the world, such as the United

FIG. 3. Bubble chart of Brier scores for six classification methods

and six CIGRE 500 sites. The largest bubble diameter corresponds

to a Brier score of 0.241, and the smallest bubble corresponds to

0.052. The key to the site numbers appears in Fig. 1. FIG. 4. Dot chart of important atmospheric variables for each

final LRmodel for each of the six CIGRE 500 sites. Variables were

declared important if they appeared in at least twomodels. The key

to site numbers appears in Fig. 1.
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States (Romps et al. 2014). Perusal of the comparative

box plots for r2.SH revealed that high values (.0.9) are

associated with lightning days at Darwin, Townsville,

Perth, and Port Hedland. These days are associated

with noticeably high values of mu.SH and low values of

vg.SH. Combined, these conditions indicate the pres-

ence of high levels of atmospheric moisture content near

the surface (as indicated by r2.SH) with little change

with height (as indicated by vg.SH). A high concentra-

tion of moisture throughout a range of levels in the

lower troposphere could help to lead to enhanced moist

convection over a considerable depth of the atmosphere.

Given the important role of entrainment and de-

trainment in cumulus convection (De Rooy et al. 2013),

these conditions are likely to be conducive to latent heat

release (from condensation and/or freezing processes)

acting to enhance potential updraft strengths. Although

there are considerable uncertainties and complexities

around the microphysical processes and combination of

physical factors associated with lightning generation,

such as the role of aerosols as potential cloud conden-

sation nuclei in processes leading to lightning occur-

rence (Stolz et al. 2017; Thornton et al. 2017), it is widely

accepted from a thermodynamic perspective that strong

updraft speed (i.e., kinetic energy) is needed in regions

of the cloud where ice is present to help to produce

charge separation and the associated high potential

differences that are required for atmospheric electrical

breakdown (Rakov and Uman 2003).

Two variables that represent vertical wind shear

were considered as candidate variables in the analysis

(Table 2). Although some previous studies, such as

Allen et al. (2011), have used variables for vertical wind

shear within large-scale indicators of thunderstorm

characteristics in Australia, one plausible explanation

for the lack of wind-shear variables in the final LR

models for lightning is that it is due to differences in the

thunderstorm characteristics under study. For example,

Allen et al. (2011) focused on severe-thunderstorm

characteristics such as hail, tornados, and extreme

winds and rainfall rather than on lightning occurrence.

4. Conclusions

The following key results were found for six different

locations in Australia:

1) Low-dimensional summary statistics capture useful

information about the structure of thunderstorms at

coarse spatial and temporal scales. This result is

consistent with the finding of Bates et al. (2017) that

the use of LDSS adds value to the discrimination of

dry and wet thunderstorms.

2) The overall performance of logistic regression was

superior to that of the other classifiers considered.

3) The prediction skill of the LR was found to be much

better than use of climatology.

4) The variables associated with the final LRmodels are

dominated by spatial mean measures of instability

and lifting potential and of atmospheric water con-

tent (10 of 15 variables). This dominance might be

related to temporal variations in the timing of

thunderstorms at a given location.

5) Although the same set of atmospheric variables was

used for each CIGRE 500 site, the variables in the

final LR models varied across climatic zones. The

issue of whether it is possible to use the same

variables and same classification method at different

sites within a single climatic zone would be a fertile

area for future research.

It is envisaged that the combined LDSS–LR ap-

proach advocated in this study will find application as finer-

scale reanalyses and GCM runs become available. Such

work might lead to results that are less dependent on

climate-model parameterizations (such as mu.TOTP and

mu.CONVP).
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APPENDIX A

Representation of Atmospheric Variables

The material covered here and in appendix B is taken

from Bates et al. (2017) with minor modification and is

intended to provide sufficient methodological detail to

allow readers to decide whether they need to read fur-

ther. Most of the information on the daily atmospheric

variables that are used herein is available at a single

pressure level or is defined as a mean or difference for

fixed pressure levels and hence can be considered as a

function of two spatial dimensions: z 5 f(x, y). An ex-

ception is convective mass flux (CMF), which, by defi-

nition, has a constant value across all 49 reanalysis grid

points for a given day and UTC time. Other variables

such as air temperature, minimum geostrophic vorticity,
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vertical velocity, specific humidity, and zonal and me-

ridional wind are defined for specific atmospheric pres-

sure levels p at each grid point (Table 2). These variables

can be considered as a function of three spatial di-

mensions: z5 f(x, y, p). For each day, quadratic surfaces

were fitted to the atmospheric fields for 0600 UTC using

ordinary least squares. A quadratic surface in two spatial

dimensions is defined by

z5 f (x, y)5 c
1
1 c

2
x1 c

3
x2 1 c

4
y1 c

5
xy1 c

6
y2 , (A1)

and the corresponding surface in three spatial di-

mensions is defined by

z5 f (x, y, p)5 c
1
1 c

2
x1 c

3
x2 1 c

4
y1 c

5
xy1 c

6
y2

1 c
7
p1 c

8
xp1 c

9
yp1 c

10
p2 . (A2)

Instead of fitting Eqs. (A1) and (A2) directly, the

linear and quadratic terms were replaced by orthogonal

polynomials to ensure that the intercept and linear and

quadratic regression coefficients are independent of

each other (i.e., they do not change when higher-order

terms are added), and the estimates of the intercept

and regression coefficients are placed on the same

scale. Also, it allows the decomposition of relation-

ships into general components of magnitude as well as

into linear and nonlinear rates of change. The esti-

mates were calculated in a coordinate system that was

centered on the CIGRE 500 sensor (i.e., the 73 7 grid

described in section 2). The adjusted R2 was used as a

goodness-of-fit measure for the quadratic surfaces

and a measure of spatial (dis)organization in the

atmospheric fields.

Let u1, . . . , u10 denote the orthogonal polynomial re-

gression coefficients. Six LDSS for the above surfaces

were used to facilitate physical interpretation: the in-

tercept, which is equivalent to the mean across the do-

main (mu 5 u1); the magnitude of the gradient vector

(gd) and its direction (dr) in the x–y plane; Gaussian

curvature (gc); vertical gradient (vg 5 u7); and adjusted

R2 (r2) since it is a measure of spatial (dis)organization

in the atmospheric fields. The magnitude of the gradient

vector and its direction in terms of linear rate of change

are defined by gd5 (u22 1 u24)
1/2 and dr 5 tan21(u4/u2).

Given the use of orthogonal polynomial regression,

the values of gd and dr are the same as those that

would have been obtained had a linear surface been

fitted to the data. Gaussian curvature is an intrinsic

geometric property of a surface that is independent of

the coordinate system that is used to describe it. It is

defined by

gc5 det(H)5 l
1
l
2
, (A3)

where det () denotes the determinant, H is the Hessian

matrix given by

H5

0
BBBB@

›2z

›x2
›2z

›x›y

›2z

›y›x

›2z

›y2

1
CCCCA5

�
2u

3
u
5

u
5

2u
6

�
, (A4)

and l1 and l2 are the eigenvalues of H (and also the

maximum and minimum principal curvatures).

APPENDIX B

Statistical and Machine-Learning Classification
Techniques

The first classification technique used in this study

involves dimensional reduction using PCA and classifi-

cation with logistic regression. PCA uses an orthogonal

transformation to convert an original set of possibly

correlated variables into a new set of mutually un-

correlated variables that are arranged in decreasing or-

der of importance. The first principal component is the

linear combination of the original variables that cap-

tures as much of the variation in the original dataset as

possible. The second component captures the maximum

variability that is uncorrelated with the first component,

and so on. PCA provides a useful reduction in com-

plexity when a substantial proportion of the total vari-

ance in the data is accounted for by a few components. It

is not in itself a classification technique.

The LR model can be written as

logit(p
i
)5 ln[p

i
/(12p

i
)]5b

0
1 �

p

j51

b
j
X

j
, (B1)

where pi is the probability of occurrence of class i

(i5 1, 2), pi/(12 pi) is the odds ratio for class i, p is the

number of columns in the data matrix X, and b0, . . . , bp

are the regression coefficients, which are determined

through maximum likelihood estimation. (It is obvious

that with only two categories it is only necessary to es-

timate the coefficients for one of the categories since

p2 5 12 p1.) Classification on the basis of the variables

is then done by setting a threshold t, say, and allocating a

day to category 1 if p1 . t. For each site, a receiver-

operating-characteristic curve (a plot of HR vs FAR as

the threshold t is varied across its full range) was used to

estimate the threshold by minimizing the distance from

the curve to the point representing perfect classification

accuracy (HR5 1; FAR5 0). This was done to account

for the fact that the sample sizes for nonlightning and
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lightning days were noticeably unequal at all sites

(Table 1). Experiments using the Youden (1950) index

indicated that threshold estimates were not sensitive to

the selection technique that was used. With LR, by

contrast with LDA and QDA, there is no formal re-

quirement for multivariate normality of the explanatory

variables within each category of the response variable,

and the use of binary or categorical variables is accept-

able. A combination of stepwise selection and analysis

of deviance was used to determine the significance of

variables in the LR models. All of the variables used in

the final LR models are significant at the 0.05 level.

CART uses binary recursive partitioning to divide the

data space, splitting it along the coordinate axes of the

candidate variables to give increasingly homogenous

subsets and hence the maximal separation of the classes

until it is infeasible to continue. The measure of node

heterogeneity is the deviance (a quality-of-fit statistic).

The partitioning leads to a set of decision rules in the

form of a binary tree. The tree is ‘‘pruned’’ to identify a

parsimonious tree with acceptable misclassification

rates. Cross validation can be used to determine an ap-

propriate tree size.

The random-forests method is an ensemble learning

algorithm that generates a large number of CART from

bootstrap samples of the original data. An estimate of

the misclassification rate can be obtained by using each

tree to predict the data not in the bootstrap sample and

averaging the predictions over all trees. Variable im-

portance plots can be produced that reveal how important

each variable is in classifying the data and contributing to

the homogeneity of the nodes.

LDA is derived from an underlying model in which

the distributions of the variables on dry and wet light-

ning days are both multivariate normal, with possibly

different means and a common covariance matrix. LDA

is somewhat robust with respect to minor violations of

these assumptions. Although serious violations will of-

ten result in unreliable estimates of the coefficients, the

procedure can still be a good heuristic. The discriminant

function is a linear combination of the candidate vari-

ables, the coefficients of which are estimated by ordinary

least squares so that the ratio of the between-classes

variance and the within-classes variance is maximized.

This function takes the value zero at the decision

boundary. If the value of the discriminant function is

negative, the variable vector is assigned to one class; if it

is positive, the variable vector is assigned to the other

class. Given that the variables are standardized, the

coefficients indicate the relative importance of each

variable in predicting class assignment.

Quadratic discriminant analysis is a generalization of

LDA in which the two classes need not have the same

covariance matrix, but the assumption of multivariate

normality still applies. The interpretation of the co-

efficients in terms of the relative importance of each

variable is more difficult to assess than for LDA as the

discriminant function contains quadratic as well as linear

and constant terms.
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