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ABSTRACT 1 

 2 

The human auditory efferent system may play a role in improving speech-in-noise 3 

recognition with an associated range of time constants. Computational auditory models with 4 

efferent-inspired feedback demonstrate improved speech-in-noise recognition with long efferent 5 

time constants (2000 ms). This study used a similar model plus an Automatic Speech 6 

Recognition (ASR) system to investigate the role of shorter time constants. ASR speech 7 

recognition in noise improved with efferent feedback (compared to no-efferent feedback) for 8 

both short and long efferent time constants. For some signal-to-noise ratios, speech recognition in 9 

noise improved as efferent time constants were increased from 118 ms to 2000 ms.  10 
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1. Introduction 26 

In addition to afferent neural pathways, the mammalian auditory system includes a 27 

number of efferent pathways, one of which is a brainstem-mediated pathway by way of the 28 

medial olivocochlear (MOC) system which reduces the response of the basilar membrane (BM) 29 

in the cochlea to sound (Murugasu and Russell, 1996). Physiological non-human mammalian 30 

studies and otoacoustic emission (OAE) measures from humans suggest a range of time constants 31 

associated with the MOC effect, categorised as slow (tens of seconds), medium (290-350 ms) or 32 

fast (ranging from 60-80 ms) (OAEs measured in humans: Backus and Guinan, 2006). Kim et al. 33 

(2001) also measured efferent time constants in humans using OAEs and described time 34 

constants falling within a fast (10-350 ms) and slow (350 ms-5.5 s) range. [Temporal descriptors 35 

of fast (short), medium, and slow (long) are typically used in the literature to describe both 36 

efferent onset and offset durations.]  37 

Although the MOC is suggested to play a role in improving speech intelligibility in noise 38 

(Giraud et al., 1997), the role of a range of efferent time constants and their effect on speech 39 

recognition in noise remains unknown. The motivation for this study is to investigate the effect of 40 

different MOC time constants on speech recognition in noise by adapting an existing 41 

computational model of the auditory system (Brown et al., 2010). The auditory model is used as 42 

the front-end to an ASR system; the ASR is used as a tool to understand the effect of 43 

manipulating efferent time constants within the auditory model on speech recognition in noise.  44 

Currently there is much interest in incorporating aspects of human neural “feedback” in 45 

computational models of the auditory system (serving as the front-end to ASR devices) to 46 

understand the effect of MOC feedback on speech recognition. In general, models incorporating 47 

efferent processing (in addition to afferent processing) using even a single long MOC time 48 
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constant demonstrate a marked improvement in speech intelligibility in noise (Messing et al., 49 

2009; Brown et al., 2010; Clark et al., 2012). Brown et al. (2010) used an auditory model (as the 50 

“front-end” for an ASR system) with efferent-inspired feedback (Ferry and Meddis, 2007) 51 

operating as an open-loop system with fixed amount of efferent gain reduction across signal 52 

frequencies and found that speech reception thresholds in pink noise improved by about 10 dB 53 

SNR compared to the case where there was no efferent feedback. A similar improvement for 54 

speech recognition in pink noise was demonstrated by Clark et al. (2012) using a variant of the 55 

same model in which the feedback signal dynamically controlled the amount of frequency-56 

dependent attenuation; this is more representative of the physiological operation of the MOC 57 

(Guinan, 2006). The feedback (control) signal was dependent on the recent history of auditory 58 

nerve activity and was estimated from the temporally-smoothed firing rate using a 1st-order 59 

lowpass filter and a lag of 10 ms to account for the MOC-OHC synaptic minimum latency 60 

(Liberman, 1988). In the model, the rate-level function was replicated by deriving the control 61 

signal from the logarithm of the ratio of the temporally-smoothed firing rate to a firing-rate 62 

threshold. The efferent attenuation was derived from multiplying the control signal by a scalar. 63 

Further details of this stage of the model are also provided in Clark et al. (2012).  64 

Both Clark et al. (2012) and Brown et al. (2010) used a single, relatively long efferent 65 

time constant for modelling the MOC efferent effect; 2000 ms in duration. The present study 66 

investigates whether there is a difference between the effects of short- to medium-duration 67 

efferent time constants and longer time constants on speech recognition in noise using the closed-68 

loop model described by Clark et al. (2012). For the purpose of this study only pink noise was 69 

used in order to allow a direct comparison with the results of Brown et al. (2010), Clark et al. 70 

(2012) as well as Lee et al. (2011) who measured speech recognition in pink noise using an 71 

alternative auditory model with efferent-inspired feedback.  72 
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 73 

2. Methods 74 

2.1 Auditory Model 75 

 The computational auditory model used in the current study is the one described by Ferry and 76 

Meddis (2007) and subsequently used by Brown et al. (2010) and Clark et al. (2012). Since the 77 

model components are described in sufficient detail in these papers, only the salient components 78 

will be described here. The auditory model represents the responses of the outer ear, middle ear, 79 

and basilar membrane (BM) in the cochlea, coupling of BM response to inner hair cell (IHC), 80 

IHC transmitter release and auditory-nerve (AN) firing. The Dual Resonance NonLinear (DRNL) 81 

model is used to describe the mechanical BM response, with a linear and nonlinear pathway. BM 82 

response attenuation by way of efferent feedback is represented by an attenuation stage at the 83 

start of the nonlinear pathway (the feedback control signal is received from the recent history of 84 

the AN firing response) (Ferry and Meddis, 2007; Clark et al., 2012).  A schematic of the model 85 

is shown in Fig. 2 of Brown et al. (2010). In the present study the efferent activation and decay 86 

time constants tested within the model were 2000 ms (in order to make a direct comparison with 87 

Brown et al., 2010 and Clark et al., 2012), 1000 s, 450 ms, 200 ms [within the range of slow and 88 

medium efferent time constants reported by Backus and Guinan (2006) using OAE measures], 89 

and 118 ms [efferent time constant reported by Yasin et al. (2014) using psychoacoustical 90 

measures]. The model also includes processing by both high- and low-spontaneous rate fibers, 91 

although for the modelling described here only the high spontaneous rate fibers were used in 92 

order to make comparisons with previous studies (e.g., Clark et al., 2012).  93 

 94 

2.2 ASR Training and Evaluation 95 



6 

 

6 

 

 The input signal to the Hidden Markov Model (HMM) is a sequence of feature vectors 96 

generated by integrating AN firing probability at 10-ms intervals; a discrete cosine transform is 97 

applied to yield a set of components. The first fourteen coefficients were retained. Since the main 98 

steps in training the ASR are described in detail in Brown et al., (2010) and Clark et al. (2012), 99 

only a summary is provided here.  A continuous hidden-density HMM toolkit (Young et al., 100 

2009) was used. The speech material was taken from the TIDIGITS corpus (Leonard, 1984). The 101 

recogniser was trained on a clean set of material (without either background noise or efferent-102 

related attenuation) consisting of 8440 utterances.  The evaluation task was to identify a 103 

connected sequence of digits in the presence of background noise (in this case, pink noise). For 104 

testing the recognizer, 358 utterances were used, each containing three connected digits from the 105 

set (“oh”, “one” “two”, “three”, “four”, “five”, “six” “eight” and “nine”). Utterances were 106 

presented in random order at 60 dB SPL and pink noise was added to the utterances at SNRs 107 

ranging from -10 dB to 20 dB (-10, -5, 0, 5, 7, 10, 12, 15 and 20 dB). Each test stimulus 108 

comprised a sample of 6 s of background noise [as used by Clark et al. (2012); a duration 109 

sufficient enough to initiate the efferent response] preceding the combined speech plus noise 110 

segment. The HMM finds the most probable sequence of digits corresponding to the input 111 

sequence of features. A correct response was classified as one in which the recognizer identified 112 

the correct digit in the correct position within the presented triplet of digits. For each SNR 113 

condition two values of ASR output (speech recognition score) were obtained for each time 114 

constant (model runs were randomized). The averaged values are shown in Figure 1 [plot of 115 

averaged value of percentage digits correct (%) as a function of the signal-to-noise (SNR)]. The 116 

standard errors ranged from 0.036 to 4.09. 117 

 118 

3. Results and Discussion 119 
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  Fig. 1 presents the speech recognition scores with efferent activation (for a range of efferent 120 

time constants from 118-2000 ms) and in the absence of efferent activation. In general, the trend 121 

for an increase in speech recognition scores in the absence of efferent activation with increasing 122 

SNR is similar to that reported by Clark et al. (2012) for SNR values up to 20 dB. Efferent 123 

activity resulted in improved recognition scores for all of the time constants studied but some 124 

time constants were more effective than others. In the region above 50% correct identification, 125 

the greatest improvements were associated with longer time constants. At about 10 dB SNR the 126 

benefit to speech recognition with efferent activation (compared to no efferent activation) 127 

improved as efferent time constants were increased (there is a corresponding steepening of the 128 

sigmoidal function); there was a successive improvement in speech recognition with increasing 129 

efferent time constant (118 ms, 200 ms, 450 ms) averaging about 19 dB, 23 dB and 27 %, 130 

respectively. However, there appears to be no additional benefit as the time constant was 131 

increased from 1000 to 2000 ms. For more challenging conditions where the percent correct 132 

value fell below 50%, the shorter time constants sometimes showed greater improvement. 133 

 134 
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 135 

 136 

Fig. 1. ASR performance [digits correct (%)] as a function of SNR (dB), obtained for pink noise 137 

for efferent time constants of 118 ms, 200 ms, 450 ms, 1000 ms and 2000 ms. The comparison 138 

plot for the data obtained in the condition where there was no efferent feedback (no MOC) is 139 

depicted by the dashed line plus cross symbols.  140 

 141 

 142 

 For a positive SNR of 10 dB there is a successive improvement in speech recognition as the 143 

efferent time constant is increased from 118 to 2000 ms.  This is because the response to lower-144 

level noise is represented at the bottom of the shifted sigmoidal rate-level function, whilst the 145 

speech response is moved from the saturated part of the curve to the steeper region. Therefore 146 

efferent activation in cases of positive SNR confers an advantage to speech recognition in noise. 147 

It can also be seen that for negative SNRs, speech recognition remains poor even with efferent 148 

feedback; this is similar to the findings of both Brown et al. (2010) and Clark et al. (2012) for 149 
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both pink noise and babble noise. This is because in negative SNR conditions the response to the 150 

less intense speech is shifted to the bottom of the rate-level response curve whilst the response to 151 

the more intense noise is moved from the saturated to the steeper region of the rate-level response 152 

curve, providing little benefit to speech recognition. 153 

 However, it still remains an open question as to how the auditory system benefits from 154 

multiple co-existing time constants. Fast and slow effects of efferent activation appear to emanate 155 

from different underlying mechanisms (Cooper and Guinan, 2006), but their roles in perception 156 

are not too clear. Efferent effects with different time constants may be required in different 157 

listening situations, perhaps dependent on the type and duration of the ongoing background noise. 158 

The present results show that, at least with high-spontaneous rate fibers, efferent time constants 159 

shorter than 2000 ms (particularly between 118 ms to 450 ms) also bring about incremental 160 

increases in the improvement in speech recognition in noise at some SNRs. Recent studies with a 161 

binaural cochlear implant sound coding strategy with efferent-inspired feedback also demonstrate 162 

improved speech intelligibility in noise with short time constants (Lopez-Poveda et al., 2016; 163 

Lopez-Poveda et al., 2017).  164 

 Future work to evaluate the effect of efferent activation on speech recognition in noise could 165 

look into the relative contributions of different types neural fibers (low- and high-spontaneous 166 

rate) and their respective roles in the linearization of the compression applied to the signal 167 

response during efferent activation (Yasin et al., 2013; 2014).  168 

 169 

CONCLUSIONS 170 

 171 

1. Efferent time constants shorter than 2000 ms can also provide improved ASR speech 172 

recognition in noise. 173 
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2. In the region above 50% correct, speech identification (around 10 dB SNR), successive 174 

increases in efferent time constant (118-450 ms) leads to successive improvements in speech 175 

recognition in noise. 176 

3.  The greatest improvements in ASR speech recognition performance were associated with the 177 

longer time constants.  178 

 179 
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