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Abstract

In this paper, we propose a stabilised finite element method for the numerical solution
of contact between a small deformation elastic membrane and a rigid obstacle. We
limit ourselves to friction–free contact, but the formulation is readily extendable to
more complex situations.
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1 INTRODUCTION

Finite element solvers for contact problems typically employ either Lagrange multipliers or the penalty method for the mortaring
on contact zones. The penalty method is simple to implement and robust but inconsistent and thus requires a large penalty
parameter to ensure non-penetration, which leads to ill conditioning and possibly instability (depending on how the penalty is
imposed). Lagrange multipliers, on the other hand, require careful matching of the spaces for the primal variable and multiplier.
Stabilised multiplier methods have been proposed as a remedy by, e.g., Heintz and Hansbo1, Hild and Renard,2 Oliver et al.3
These methods are often of Galerkin/Least Squares (GLS) type, where a penalty is placed on the deviation between the multiplier
and the contact force (derived from the primal variable), an approach first proposed by Barbosa and Hughes4 for the linear
boundary multiplier method.
A combination of the multiplier and penalty approaches yields the augmented Lagrangian method, cf. Alart and Curnier.5

Provided the penalty is not too strong this is expected to improve the conditioning as well as improving the control of the
constraint compared to the case where only the multiplier is used. For early work on augmented Lagrangian methods in compu-
tational methods for partial differential equations we refer to Fortin and Glowinski.6 The augmented Lagrangian approach was
recently used by Chouly and Hild7 to eliminate the multiplier and arrive at a Nitsche type method for contact, and their work
was adapted to the case of the obstacle problem by Burman, Hansbo, and Larson.8 In this work we further develop the idea to
handle the case of friction free contact between curved membranes and rigid obstacles, using tangential differential calculus for
the membrane model.9,10
The rest of the paper is organised as follows. In Section 2 we recall the membrane model from Hansbo and Larson,9 in Section

3 we describe the continuous and discrete versions of the proposed augmented Lagrangian method, and in Section 4 we derive
our GLS method. In Section 5, we present some numerical results, and, finally, in Section 6 we give some concluding remarks.
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2 THE MEMBRANE PROBLEM

2.1 Basic notation
Let Γ be a smooth two-dimensional surface embedded in ℝ3, with outward pointing normal n. We shall here for simplicity
assume that the surface is closed, but this is not a requirement for the following. Boundary conditions can be applied as discussed
in Hansbo and Larson.9 If we denote the signed distance function relative to Γ by d(x), for x ∈ ℝ3, fulfilling ∇d(x) = n(x) if
x ∈ Γ, we can define the domain occupied by the membrane by

Ωt = {x ∈ ℝ3 ∶ |d(x)| < t∕2},

where t is the thickness of the membrane. The closest point projection p ∶ Ωt → Γ is given by

p(x) = x − d(x)∇d(x),

the Jacobian matrix of which is
∇p = I − d(∇⊗ ∇d) − ∇d ⊗ ∇d

where I is the identity and ⊗ denotes the exterior product (a ⊗ b)ij = aibj for vectors a and b in ℝ3. The corresponding linear
projector P Γ = P Γ(x), onto the tangent plane of Γ at x ∈ Γ, is given by

P Γ ∶= I − n⊗ n,

and we can use it to define the surface gradient ∇Γ as

∇Γ ∶= P Γ∇. (1)

The surface gradient thus has three components, which we shall denote by

∇Γ =∶

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

)
)xΓ
)
)yΓ
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⎤
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.

For a vector valued function v(x), we define the tangential Jacobian matrix as the transpose of the outer product of ∇Γ and v,

(

∇Γ ⊗ v
)T ∶=
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⎥

⎥
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⎦

and the surface divergence ∇Γ ⋅ v ∶= tr(∇Γ ⊗ v).

2.2 The surface strain and stress tensors
To obtain an in-plane strain tensor we need to use the projection twice to define

"Γ(u) ∶= P Γ"(u)P Γ,

where
"(u) ∶= 1

2
(

∇⊗ u + (∇⊗ u)T
)

is the usual three-dimensional small strain tensor. With this definition, "Γ(u) lacks all out-of-plane strain components, i.e., both
the rows and the columns of "Γ(u) are tangent vectors so that "Γ(u) ⋅ n = n ⋅ "Γ(u) = 0. For a membrane, where plane stress
is assumed, this strain tensor can still be used, since out-of-plane strains do not contribute to the strain energy. However, the
tensor "Γ is rather cumbersome to use directly in a numerical implementation; it is easier to work with the symmetric part of
the surface Jacobian

EΓ(u) ∶=
1
2
(

∇Γ ⊗ u + (∇Γ ⊗ u)T
)

,
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which can be established directly using tangential derivatives. For this reason, we use the fact that n ⋅ EΓ(u) ⋅ n = 0 to obtain
the following relation:

"Γ(u) = P ΓEΓP Γ = EΓ(u) −
(

(EΓ(u) ⋅ n)⊗ n + n⊗ (EΓ(u) ⋅ n)
)

,
so that, using dyadic double-dot product,

� ∶ u⊗ v = (� ⋅ u) ⋅ v,
where � is a tensor and u, v are vectors, we arrive at

"Γ(u) ∶ "Γ(v) = EΓ(u) ∶ EΓ(v) − 2(EΓ(u) ⋅ n) ⋅ (EΓ(v) ⋅ n), (2)

which will be used in the finite element implementation below.
We shall assume an isotropic stress–strain relation,

�(u) = 2�"(u) + �∇ ⋅ u I ,

where � is the stress tensor and I is the identity tensor. The Lamé parameters � and � are related to Young’s modulus E and
Poisson’s ratio � via

� = E
2(1 + �)

, � = E�
(1 + �)(1 − 2�)

.

For the in-plane stress tensor we assume
�Γ(u) ∶= 2�"Γ(u) + �0∇Γ ⋅ uP Γ, (3)

where
�0 ∶=

2��
� + 2�

= E�
1 − �2

.

is the Lamé parameter in plane stress conditions. This assumption is consistent with the membranemodel of Ciarlet and Sanchez-
Palencia,11 as shown by Delfour and Zolésio.12 We remark that out-of-plane components of the contraction between stress and
strain will not contribute anything to the strain energy functional underlying the finite element method, since both tensors are
in-plane. Thus, the only difference between plane stress and plane strain in a curved membrane (as concerns strain energy) lies
in the distinction between � and �0, as in the two-dimensional case.

3 AUGMENTED LAGRANGIAN FORMULATION OF THE MEMBRANE CONTACT
PROBLEM

3.1 The continuum model
The equilibrium equation for the membrane can be written

−∇Γ ⋅ �Γ(u) = f in Γ, (4)

where the matrix divergence is defined by taking the vector surface divergence of each row of �Γ, cf. Hansbo and Larson9. Note
that here f ∈ L2(Γ) is proportional to t−1 (so that f has units force per unit volume). Equation (4), together with the constitutive
law (3) defines the differential equations of linear elasticity in general on surfaces.
Our model problem of friction free contact between the membrane and a rigid obstacle thus takes the form

P Γ(f + ∇Γ ⋅ �Γ) = 0 in Γ, (5)
n ⋅ (f + ∇Γ ⋅ �Γ) ≥ 0 in Γ, (6)

�Γ = 2�"Γ(u) + �0∇Γ ⋅ uP Γ in Γ, (7)
(un − g) ≤ 0, (un − g)n ⋅ (f + ∇Γ ⋅ �Γ) = 0 in Γ, (8)

with un ∶= u ⋅ n and g denotes the normal distance from the membrane to the obstacle before deformation.
In order to define the augmented Lagrangian method, we first introduce a Lagrange multiplier p such that

−∇Γ ⋅ �Γ − pn = f in Γ, (9)
un − g ≤ 0 in Γ, (10)

p ≤ 0 in Γ, (11)
(un − g) p = 0 in Γ, (12)
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Note that the multiplier here has the interpretation as the out-of-balance normal force per unit volume p ∶= −n ⋅ (f + ∇Γ ⋅ �Γ)
stopping the membrane from penetrating the rigid object.
We can now replace the Kuhn–Tucker conditions (10)–(12), using the notation

[a]+ ∶=
{

a if a > 0,
0 if a ≤ 0, , (13)

by the equivalent statement
p = −1


[un − g − p]+ (14)

with  a positive number, cf . Chouly and Hild7 Prop. 2.1. Note that for dimensional reasons  must be proportional to the
thickness squared and inversely proportional to the Lamé parameters.
Defining the natural function space for the displacements as

V = {v ∶ vn ∈ L2(Γ) and v − n vn =∶ vt ∈ [H1(Γ)]2},

cf. Ciarlet et al.,11,13 and for the multipliers as
Q = L2(Γ), (15)

and seeking (u, p) ∈ V ×Q we have by Green’s theorem on surfaces (cf. Gurtin and Murdoch14), with

L(v) ∶= ∫
Γ

f ⋅ v dΓ,

and

aΓ(u, v) ∶=∫
Γ

�Γ(u) ∶ "Γ(v) dΓ

=∫
Γ

2�"Γ(u) ∶ "Γ(v) dΓ + ∫
Γ

�0∇Γ ⋅ u∇Γ ⋅ v dΓ

= ∫
Γ

2�EΓ(u) ∶ EΓ(v) dΓ − ∫
Γ

4�EΓ(u) ⋅ n ⋅ EΓ(v) ⋅ n dΓ

+ ∫
Γ

�0∇Γ ⋅ u∇Γ ⋅ v dΓ,

that
aΓ(u, v) − ∫

Γ

p vn dΓ = L(v)

where v ∈ V . Following Chouly and Hild7 we write vn = vn + q − q for an arbitrary function q ∈ Q, so that we may write

aΓ(u, v) − ∫
Γ

p (vn − q) dΓ − ∫
Γ

p q dΓ = L(v).

Replacing p in the first integral by the expression in (14) we finally obtain the problem of finding (u, p) ∈ V ×Q such that

aΓ(u, v) + ∫
Γ

1

[un − g − p]+(vn − q) dΓ − ∫

Γ

p q dΓ = L(v) (16)

for all (v, q) ∈ V ×Q. This problem is related to seeking stationary points to the functional

Π(u, p) ∶= 1
2
aΓ(u, u) − L(u) + ∫

Γ

1
2

[

un − g − p
]2
+ dΓ − ∫

Γ


2
p2 dΓ, (17)

see, e.g., Alart and Curnier5. The formulation (17) constitutes the starting point for our finite element approximation.

3.2 The finite element method
Let ℎ ∶= {T } be a conforming, shape regular triangulation of Γ using a parametric map of a certain polynomial degree from
reference triangles, resulting in a discrete surface Γℎ constructed as follows. We wish to define a map F ∶ (�, �) → (x, y, z)
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from a reference triangle T̂ defined in a local coordinate system (�, �) to T , for all T . To this end, we write xΓ = xΓ(�, �),
where xΓ = (xΓ, yΓ, zΓ) are the physical coordinates on Γ. For any given parametrization, we can extend it outside the surface
by defining

x(�, �, � ) = xΓ(�, �) + � n(�, �)

where n is the normal and −t∕2 ≤ � ≤ t∕2. We next consider an elementwise parametrization of the surface as

xΓℎ(�, �) =
∑

i
xiΓ i(�, �)

where xiΓ are the coordinates of the nodes, assumed located on Γ, and  i(�, �) are finite element shape functions of a certain
degree on the reference element, and extend this approximation outside the surface so that

x(�, �, � ) ≈ xℎ(�, �, � ) ∶= xΓℎ(�, �) + � n
ℎ(�, �) (18)

where

nℎ =

)xΓℎ
)�

×
)xΓℎ
)�

|

|

|

|

|

)xΓℎ
)�

×
)xΓℎ
)�

|

|

|

|

|

. (19)

This gives us the exact normal vector to the discrete surface, which ensures that the correct rigid body motions are reproduced
in the discrete model, i.e., that

ker "Γℎ ∶= {v ∈ [H
1(Γℎ)]3 ∶ "Γℎ(v) = 0 and v ⋅ nℎ = 0} (20)

is finite dimensional and consists only of rigid body rotations.
For the approximation of the displacement, we use a constant extension,

u ≈ uℎ =
∑

i
ui'i(�, �) (21)

where ui are the nodal displacements, and 'i are shape functions, not necessarily of the same degree as the  i. Note that only
the in-plane variation of the approximate solution will matter since we are looking at in-plane stresses and strains. We employ
the usual finite element approximation of the physical derivatives of the chosen basis {'i} on the surface, at (�, �, 0), as

⎡

⎢

⎢

⎢

⎢

⎢

⎣

)'i
)x
)'i
)y
)'i
)z

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= J−1(�, �, 0)

⎡

⎢

⎢

⎢

⎢

⎣

)'i
)�
)'i
)�
0

⎤

⎥

⎥

⎥

⎥

⎦

, (22)

where

J (�, �, 0) ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

)xΓℎ
)�

)yΓℎ
)�

)zΓℎ
)�

)xΓℎ
)�

)yΓℎ
)�

)zΓℎ
)�

nℎy nℎy nℎz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

cf. Hansbo and Larson.9

4 GALERKIN LEAST SQUARES METHOD

4.1 Formulation
As a first attempt at a finite elementmethod for themembrane contact problemwe can introduce finite element spaces constructed
from the basis previously discussed by defining

W ℎ
k ∶= {v ∶ v|T ◦F ∈ P k(T̂ ), ∀T ∈ ℎ; v ∈ C0(Γℎ)}, (23)
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and
Qℎ = {v ∶ v|T ◦F ∈ P l(T̂ ), ∀T ∈ ℎ},

l ≤ k, and a tentative finite element method to be reads: Find (uℎ, pℎ) ∈ V ℎ ×Qℎ, where V ℎ ∶= [W ℎ
k ]

3, such that

aΓℎ(u
ℎ, vℎ) + ∫

Γℎ

1

[uℎn − g − p

ℎ]+(vℎn − q
ℎ) dΓℎ − ∫

Γℎ

pℎ qℎ dΓℎ = L(vℎ) (24)

for all (vℎ, qℎ) ∈ V ℎ ×Qℎ where

aΓℎ(u, v) ∶= ∫
Γℎ

�Γℎ(u) ∶ "Γℎ(v) dΓℎ, L(v) ∶= ∫
Γℎ

f e ⋅ v dΓℎ

where f e denotes an extension of f from Γ to Γℎ. Here and below we write uℎn ∶= u
ℎ ⋅ nℎ for uℎ ∈ V ℎ. The discrete geometry

Γℎ is constructed from a finite element interpolation of the exact geometry in [W ℎ
m ]

3, with m not necessarily equal to k.
Clearly, not all combinations of discrete spaces are stable; we therefore apply a GLS stabilization method which also allows

for the elimination of the pressure variable. To this end, we formally replace p in (17) by −n ⋅ (f +∇Γ ⋅�Γ(u)) and seek uℎ ∈ Vℎ
such that

uℎ = arg min
vℎ∈Vℎ

Fℎ(vℎ) (25)

where

Fℎ(v) ∶=
1
2
aΓℎ(v, v) + ∫

Γℎ

1
2

[

vn − g + nℎ ⋅ (f + ∇Γℎ ⋅ �Γℎ(v))
]2
+
dΓℎ

− 1
2 ∫
Γℎ

(nℎ ⋅ (f + ∇Γℎ ⋅ �Γℎ(v)))
2 dΓℎ − L(v). (26)

The Euler–Lagrange equations corresponding to (26) take the form: Find uℎ ∈ Vℎ such that

aΓℎ(u
ℎ, vℎ) + bΓℎ(u

ℎ, g,f ; vℎ) = L(vℎ) ∀vℎ ∈ Vℎ (27)

where

bΓℎ(u, g,f ; v) ∶=∫
Γℎ

−1[un − g + nℎ ⋅ (f + ∇Γℎ ⋅ �Γℎ(u))]+(vn + n
ℎ ⋅ (∇Γℎ ⋅ �Γℎ(v))) dΓℎ (28)

− ∫
Γℎ

nℎ ⋅ (f + ∇Γℎ ⋅ �Γℎ(u))n
ℎ ⋅ (∇Γℎ ⋅ �Γℎ(v)) dΓℎ. (29)

Next we have the identity
n ⋅ (∇Γ ⋅ �Γ(u)) = −�Γ(u) ∶ � (30)

where � ∶= ∇⊗ n is the curvature tensor (negative Weingarten map) and �Γ(u) ∶ � denotes the Frobenius inner product. To
verify (30) we note that multiplying with a test function ' and using integration by parts we obtain, for tangential �,

∫
Γ

n ⋅ (∇Γ ⋅ �)' dΓ = −∫
Γ

� ∶ ∇('n) dΓ = −∫
Γ

� ∶ (∇')⊗ n dΓ − ∫
Γ

� ∶ �' dΓ = −∫
Γ

� ∶ �' dΓ (31)

where we used the fact that � is tangential to conclude that � ∶ (∇')⊗ n = (∇') ⋅ � ⋅ n = 0. Therefore we conclude that

∫
Γ

(n ⋅ (∇Γ ⋅ �) + � ∶ �)' dΓ = 0 (32)

and thus (30) holds. Furthermore, we note that P Γ ∶ � = tr � and "Γ ∶ � = EΓ ∶ � so that

�Γ(u) ∶ � = 2�EΓ(u) ∶ � + �0∇Γ ⋅ u tr �

which together with (30) can be used to simplify the implementation.
In the discrete version of (30) we need the approximate curvature tensor �ℎ ∶= ∇⊗nℎ. Since we have no explicit expression

for nℎ in physical coordinates, we must use some tools from classical differential geometry to compute �ℎ. To this end, we define
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the matrix representations of the first and second fundamental forms as follows:

G1 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

)xℎΣ
)�

⋅
)xℎΣ
)�

)xℎΣ
)�

⋅
)xℎΣ
)�

)xℎΣ
)�

⋅
)xℎΣ
)�

)xℎΣ
)�

⋅
)xℎΣ
)�

⎤

⎥

⎥

⎥

⎥

⎦

G2 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

nℎ ⋅
)2xℎΣ
)�2

nℎ ⋅
)2xℎΣ
)�)�

nℎ ⋅
)2xℎΣ
)�)�

nℎ ⋅
)2xℎΣ
)�2

⎤

⎥

⎥

⎥

⎥

⎦

Through the Weingarten equations, cf. Kreyszig,15 we may then compute the (�, �)–derivatives of the components of nℎ:

⎡

⎢

⎢

⎢

⎢

⎣

)nℎx
)�

)nℎy
)�

)nℎz
)�

)nℎx
)�

)nℎy
)�

)nℎz
)�

⎤

⎥

⎥

⎥

⎥

⎦

= −G−1
1 G2

⎡

⎢

⎢

⎢

⎢

⎣

)xℎΣ
)�

)yℎΣ
)�

)zℎΣ
)�

)xℎΣ
)�

)yℎΣ
)�

)zℎΣ
)�

⎤

⎥

⎥

⎥

⎥

⎦

.

The physical derivatives of nℎ, defining the curvature tensor �ℎ in 3D, are then found by use of the Jacobianmatrix J analogously
to (22).
Denoting

��(u) ∶= −2�EΓℎ(u) ∶ �
ℎ − �0∇Γℎ ⋅ u tr �ℎ, fℎn ∶= n

ℎ ⋅ f ,
our bilinear form bΓℎ(⋅, ⋅, ⋅; ⋅) takes the form

bΓℎ(u
ℎ, g,f ; vℎ) ∶= ∫

Γℎ

(

−1[uℎn − g + (f
ℎ
n + ��(u

ℎ))]+(vℎn + ��(v
ℎ)) − (fℎn + ��(u

ℎ))��(vℎ)
)

dΓℎ. (33)

4.2 On the stability of the method
We introduce the discrete linear operator P (vℎ) ∶= vℎn + ��(v

ℎ), and use the notation  ∶= g − fℎn so that

bΓℎ(u
ℎ, g,f ; vℎ) = ∫

Γℎ

(

−1[P (uℎ) −  ]+P (vℎ) − (fℎn + ��(u
ℎ))��(vℎ)

)

dΓℎ, (34)

and we note that bΓℎ can be interpreted as a nonlinear penalty term, consistent on Γℎ, for the imposition of the contact condition.
Taking vℎ = uℎ in (34) leads to

bΓℎ(u
ℎ, g,f ; uℎ) = ∫

Γℎ

(

−1[P (uℎ) −  ]+P (uℎ) − (fℎn + ��(u
ℎ))��(uℎ)

)

dΓℎ

= −1‖[P (uℎ) −  ]+‖2L2(Γℎ) − ‖��(u
ℎ)‖2L2(Γℎ) + ∫

Γℎ

(

−1[P (uℎ) −  ]+ − fℎn ��(u
ℎ)
)

dΓℎ. (35)

Using this relation in the formulation (27) leads to the equality

aΓℎ(u
ℎ, uℎ) + −1‖[P (uℎ) −  ]+‖2L2(Γℎ) − ‖��(u

ℎ)‖2L2(Γℎ) = L(u
ℎ) + ∫

Γℎ

(

fℎn ��(u
ℎ) − −1[P (uℎ) −  ]+ 

)

dΓℎ. (36)

For  small enough, we have that
aΓℎ(u

ℎ, uℎ) − ‖��(uℎ)‖2L2(Γℎ) ≥ CaΓℎ(u
ℎ, uℎ) (37)

with C a constant independent of the meshsize. To show this, note that

|��(u)| ≤ |�Γℎ(u) ∶ �
ℎ
| ≤ |�Γℎ(u)| |�

ℎ
|

where |�| denotes the Frobenius norm of a matrix � and |�|max its maximum over Γℎ. Thus

aΓℎ(u
ℎ, uℎ) − ‖��(uℎ)‖2L2(Γℎ) ≥ aΓℎ(u

ℎ, uℎ) − |�ℎ|2max‖�Γℎ(u
ℎ)‖2L2(Γℎ)

≥ aΓℎ(u
ℎ, uℎ)

(

1 − |�ℎ|2max(2� + 2�0)
)

, (38)
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cf. Hansbo and Larson16, and, by choosing
 < 1

2|�ℎ|2max(� + �0)
we regain (37). Note that if we compute  locally, the local |�ℎ| can be used instead of |�ℎ|max. Assuming we have a discrete
Korn’s inequality, ‖uℎ‖H1(Γℎ) ≤ CKa(uℎ, uℎ), we may introduce the norm

9uℎ92 ∶= aΓℎ(u
ℎ, uℎ) + −1‖[P (uℎ) −  ]+‖2Γℎ .

Observe that above we also assumed a Poincaré inequality. In the numerical examples below, Korn and Poincaré are made to
hold using midline symmetry assumptions. Using Korn’s inequality we have the boundedness of the right hand side,

|L(uℎ)| ≤ CK‖f e‖L2(Γℎ) 9 u
ℎ 9 .

Using (36), (38), the Cauchy-Schwarz inequality and the boundedness of L, we then obtain

C 9 uℎ92 ≤ (CK‖f e‖L2(Γℎ) + 
− 1
2
‖ ‖L2(Γℎ) + C���‖f

ℎ
n ‖L2(Γℎ)) 9 u

ℎ9,

with C��� = O(|�ℎ|max(� + �0)
1
2 ), and consequently using the triangle inequality and the bound on  ,

C 9 uℎ9 ≤ CK‖f e‖L2(Γℎ) + 
− 1
2
‖g‖L2(Γℎ) +

(


1
2 + C���

)

‖fℎn ‖L2(Γℎ). (39)

The existence of a unique solution can then be shown using the stability bound (39) and the continuity and monotonicity of bΓℎ :
existence can be proved using Brouwer’s fixed point theorem and uniqueness using monotonicity. We will sketch the second
proof here, following closely the arguments of Burman et al.8 adapted to the present problem. First observe that the following
bound holds.7 For a, b ∈ ℝ,

([a]+ − [b]+)2 ≤ ([a]+ − [b]+)(a − b). (40)

Assume now that there exists two solutions to (27), u1, u2 in Vℎ. Using (40) it is straighforward to show that

bΓℎ(u1, g,f ; eℎ) − bΓℎ(u2, g,f ; eℎ) ≥ −1‖[P (u1) −  ]+ − [P (u2) −  ]+‖2Γℎ − ‖��(eℎ)‖
2
Γℎ
, (41)

where we used the notation eℎ ∶= u1 − u2. In view of (41), and assuming that the condition on  for (37) is satisfied, we have

CaΓℎ(eℎ, eℎ) + 
−1
‖[P (u1) −  ]+ − [P (u2) −  ]+‖2Γℎ ≤ aΓℎ(eℎ, eℎ) + bΓℎ(u1, g,f ; eℎ) − bΓℎ(u2, g,f ; eℎ) = 0.

The last identity follows since both u1 and u2 are assumed to be solutions to (27) and eℎ ∈ Vℎ. We conclude that aΓℎ(eℎ, eℎ) = 0
and, since by Korn’s and Poincaré inequalities this implies that eℎ = 0, the solution is unique.

5 NUMERICAL EXAMPLES

In the numerical examples we use a P 1–continuous approximations of the displacements and a superparametric P 2–continuous
approximation of the geometry. We remark that a P 1–continuous geometry leads to zero curvature in each element, so a post-
processing step would then be required to approximate the curvature. With a piecewise P k geometry approximation, for k ≥ 2,
we compute an approximate curvature directly as discussed in Section 4. For the solution of the nonlinear discrete problem, we
employ a simple fixed point iteration method.
To visualize the reaction force, we first define

p∗ ∶= −1[uℎn − g + (f
ℎ
n + ��(u

ℎ))]+

which is not continuous; we then perform a lumped mass L2–projection of p∗ onto the spaceW ℎ
1 to obtain a smoothly varying

reaction force pℎ.
In the second numerical example, we also compare our results with the multiplier method obtained by using P 1–continuous

approximations for both u and p, which, in our experience, leads to a stable solution.

5.1 A sphere contained in an ellipsoid
In this example, a sphere of radius R = 3∕4 is placed in an ellipsoid with varying fixed major axis, of length Rmax = 3∕2 m,
and varying minor axis, of lengthRmin. The parameters are as follows: Young’s modulus E = 100MPa, Poisson’s ratio � = 0.5,
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 = 10−2∕(�0 + �) (note that |�| has the constant value |�| = 4∕3, and thus |�ℎ| does not vary significantly and is assumed
constant for this example). No external load is applied.
In Figs. 1 –3 we show the computed result on a mesh consisting of 20480 triangles and 10242 nodes with Rmin ∈

{0.74, 0.7, 0.6}. We show a deformation plot of nodal displacements (uℎ ⋅ n)n together with isoplots of the computed reaction
force. The enclosing ellipsoid is shaded.
We also check the convergence of norms, so that eu = ‖u‖L2(Γ)−‖uℎ‖L2(Γℎ) and ep = ‖pℎ‖L2(Γℎ)−‖p‖L2(Γ), where we replace

the exact solution and exact geometry by an “overkill” solution obtained by two further refinements of the mesh (compared to the
last reported discrete solution). In Fig. 4 we show the observed convergence of norms for two different radii showing a slight
decrease in pressure convergence for the more demanding case of Rmin = 0.6, but no effect on the rate for the displacements.

5.2 A sphere in contact with a rigid floor
We use the same sphere, data, and mesh as in the previous example, now in contact with a floor located at z = −0.74 m and
with a load f = (0, 0,−1)MPa/m3.
In Fig. 5 we show the computed solution , and in Fig. 6 we give an isoplot of the reaction force.
For comparison, we also show a computation performed with C0–continuous, piecewise P 1 contact forces. Here we choose

the same  as in the GLS case and show, in Fig. 7 , isoplots of the computed contact force as well as a post–processed contact
force. The solution agrees with the GLS result.

6 CONCLUDING REMARKS

We have proposed a multiplier method for the analysis of friction free contact between curved membranes and rigid obstacles.
By use of a Galerkin/least squares approach we also show how to eliminate the multiplier, which avoids the question of inf–sup
stability of the combination of approximations for the multiplier and primary variable and leads to a symmetric positive definite
discrete system.
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FIGURE 1 Contact solution, Rmin = 0.74.
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FIGURE 2 Contact solution, Rmin = 0.7.

FIGURE 3 Contact solution, Rmin = 0.6.
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FIGURE 4 Convergence for Rmin = 0.6 and Rmin = 0.74.

FIGURE 5 Contact solution, contact with a rigid floor.
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FIGURE 6 Isoplot of the reaction force.
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FIGURE 7 Isoplot of the reaction force using a separate approximation of p; pℎ to the left and p∗ ∶= −(1∕)(n ⋅ uℎ − g − pℎ)
to the right.
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