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Sequential dependencies in pitch judgments
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Studies that measure pitch discrimination relate a subject’s response on each trial to the stimuli pre-
sented on that trial, but there is evidence that behavior depends also on earlier stimulation. Here, lis-
teners heard a sequence of tones and reported after each tone whether it was higher or lower in pitch
than the previous tone. Frequencies were determined by an adaptive staircase targeting 75% correct,
with interleaved tracks to ensure independence between consecutive frequency changes. Responses
for this specific task were predicted by a model that took into account the frequency interval on the
current trial, as well as the interval and response on the previous trial. This model was superior to
simpler models. The dependence on the previous interval was positive (assimilative) for all subjects,
consistent with persistence of the sensory trace. The dependence on the previous response was either
positive or negative, depending on the subject, consistent with a subject-specific suboptimal response
strategy. It is argued that a full stimulus + response model is necessary to account for effects of

stimulus history and obtain an accurate estimate of sensory noise.
© 2017 Acoustical Society of America. https://doi.org/10.1121/1.5009938
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I. INTRODUCTION

Psychophysics attempts to relate a physical dimension
of a stimulus (for example, fundamental frequency) to a
psychological dimension (for example, pitch) using behav-
ioral methods. Some individuals possessing absolute pitch
are capable of accurately identifying the pitch of a musical
tone without any preceding reference, but a majority of lis-
teners appreciate tone pitches in a melody by judging their
distance relative to previous tones. The physical dimension
is then frequency change (or ratio) between tones, and the
psychological dimension pitch change (or interval). A rich
literature has probed experimentally the limits of our ability
to discriminate small frequency differences (Harris, 1952;
Rosenblith and Stevens, 1953; Nordmark, 1968; Moore,
1973; Jesteadt and Sims, 1975; Moore and Glasberg, 1989;
Sek and Moore, 1995; Matthews and Stewart, 2008; Dai
and Micheyl, 2011; Micheyl et al., 2012). In these studies,
listeners typically make judgments on pairs (or triplets, or
quadruplets) of tones, and the accuracy of their judgments
is assessed as a function of the frequency difference
between the tones in the trial. Discrimination thresholds are
then interpreted as reflecting the resolution of the sensory
representation by which those tones are coded. However,
there is evidence that judgments also depend on the history
of stimuli that precede each trial. In an extreme case,
Chambers et al. (2017) found that for certain ambiguous
stimuli (two successive Shepard tones separated by a tritone
interval) responses depended almost entirely on the history
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of prior stimulation (Chambers and Pressnitzer, 2014;
Chambers et al., 2017). To the extent that history effects
are uncontrolled, they contribute an unwanted source of
variance when measuring the psychophysical relation
between the stimulus and the response that it evokes. It is
thus of interest to better understand these effects and model
their influence.

It is well known that “roving” the overall frequencies of
tone pairs can lead to poorer accuracy when judging the fre-
quency difference within each pair. In 2-Interval Forced
Choice (2-IFC) designs, where listeners are instructed to iden-
tify which of two tones that are presented successively is
higher in pitch, frequency discrimination thresholds, some-
times termed Frequency Difference Limens, are lower if the
comparison involves a fixed reference tone that appears in all
trials, compared to a situation in which the tones can be taken
from a set of multiple, spaced frequencies (Harris, 1952; Bull
and Cuddy, 1972; Jesteadt and Bilger, 1974) or drawn ran-
domly from a large, continuous frequency range (Demany
and Semal, 2005; Mathias et al., 2010; Nahum et al., 2010),
two methods that can be referred to as frequency roving. In
addition, when a fixed reference is used, thresholds appear to
depend on the position (first or second interval) of the refer-
ence within trials (Nahum er al., 2010; Raviv et al., 2014).
Such effects are often interpreted as reflecting a difference in
perceptual sensitivity between different experimental configu-
rations, but it has also been argued that they can be accounted
for by a history-dependent perceptual bias (Raviv et al.,
2014).

Detecting a history-dependent bias is important for
the study of perceptual mechanisms. First, ignoring it can
lead to overestimating the amount of “internal noise” in
the sensory representation (Friind et al., 2014). Second,
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the bias itself may inform us about how the brain accumu-
lates perceptual evidence and combines ongoing sensory
input with past traces. Last, taking into account inter-trial
dependencies might improve the analyses of neural corre-
lates of decision making (Lages and Jaworska, 2012). To
better capture these dependencies we made certain meth-
odological choices that differ from those made in previous
studies.

In past experiments probing context effects in pitch
perception (Ruusuvirta et al., 2008; Raviv et al., 2012,
2014), the subject was presented with a sequence of tone
pairs, and answered after each fone pair which tone had a
higher pitch [two interval two alternative forced choice (21-
2AFC)]. In contrast, we used a one-tone-per-trial procedure
in which subjects were presented with a sequence of tones
and answered after each fone whether it was higher in pitch
than the previous tone (sliding 2AFC). The purpose of the
new procedure was to ensure a homogeneous sequence of
prior tones, in contrast to the classic procedure where the
sequence included both reference tones (the first of a pair)
and comparison tones (the second). Prior to this study, we
established that the new procedure yields similar discrimi-
nation thresholds as the old (Arzounian et al., 2017). The
task has an analog in melody perception, where each note
anchors both the preceding and following interval, or
speech intonation where each segment participates in the
pitch transitions that precede and follow it.

In a standard adaptive procedure, the interval size for a
trial is adjusted based on the correctness of the response to
the previous trial. This introduces a strong serial correlation
in the sequence of interval sizes, limiting the range of inter-
vals that can precede a trial. To ensure a wider range of his-
tory, we interleaved multiple independent tracks, such that
the interval on each trial was determined by the response to
a trial several steps in the past.

Previous studies of history effects in perception have
analyzed these effects as resulting from the recent history of
stimuli (e.g., Ruusuvirta et al., 2008; Raviv et al., 2012, 2014;
Alais et al., 2015; Taubert et al., 2016a, 2016b). However, a
subject’s judgment is also known to depend on previous
responses (Frund et al., 2014). In this study, we analyze our
data using a set of models that incorporate stimulus history,
response history, or both.

Using this combination of experimental and analysis
methodology, we assess the question of history effects on
sequential pitch judgments. In brief, we found effects of
both stimulation and response, the weight of each factor
being subject-dependent. Estimates of internal noise in the
model that incorporates these factors were smaller (and argu-
ably more accurate) than those obtained with a history-blind
model.

Il. METHODS
A. Participants and procedure

Fourteen subjects, seven male and seven female, aged
between 19 and 29 years, with no self-reported hearing
impairment or history of neurological or psychiatric disor-
der, participated in the experiment. Among them, seven
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were inexperienced, two had prior experience in non-
auditory psychophysical studies, three had prior experience
in psycho-acoustic studies, and two had performed a similar
task in a previous study. All gave written, informed consent
prior to participation and received a compensation of 20€
per hour of their time. The protocol was approved by the
ethics review board of Paris Descartes University (CERES
2013-11).

B. Apparatus, stimuli and task

Participants sat in a double-shielded experimental booth.
Visual displays and auditory stimuli were generated by
MATLAB (version 2012a). Written instructions and fixation
cross were displayed on a computer LCD screen standing in
the outside of the booth and visible from the inside through a
window. Auditory stimuli were presented through insert ear-
phones (E-A-R-TONE® 3A) at a comfortable level, similar
for all participants. As part of a study on the effects of brain
state on performance, electroencephalography was recorded
using an Active-Two (BioSemi) system with 72 channels
(64 channels positioned according to the standard 10/20 lay-
out + 8 additional channels positioned at M1, M2, 101, 102,
SO1, SO2, EO1, and EO2), sampled at 2048 Hz. The analy-
sis of these data is not reported here.

Auditory stimuli were 100-ms pure tones with 10-ms
cosine onset- and offset-ramps. Starting from fy = 1000
Hz, the frequency varied from one tone to the next with
random direction and a step size |Af| determined according
to an adaptive procedure (see below). A random walk can
produce extreme values; to avoid this situation the proba-
bility of an up transition (0.5 at 1000 Hz) decreased line-
arly in frequency by a factor 0.0003/Hz, so that frequency
remained in a region near 1000 Hz (see Sec. III). In this
region, up and down transitions were approximately
equiprobable.

After each tone, the participant was requested to indicate
the direction of pitch change (either “upward” or “downward”)
by pressing one of two computer keyboard keys. The reaction
time on each trial was recorded. The key press triggered the
onset of the next tone after an interval of 500 ms.

Before the main block analyzed here, participants were
trained on the task with visual feedback (on 60 trials if they
were already familiar with the task, on 120 trials if they were
not). They then performed two short blocks (120 trials) with-
out feedback, not analyzed here. The main, final block com-
prised 1080 trials without feedback. Participants were told
they could take short breaks when needed by simply holding
the response of the current trial until they were ready to con-
tinue (such trials were then later excluded from analyses).

C. Multi-track adaptive procedure

The size of the relative frequency step |Af /f| was 10%
in the first trial and was then adjusted trial-by-trial accord-
ing to a weighted up-down procedure (Kaernbach, 1991)
with step size limited to at most 30%. During an initial
phase, the step size for each trial depended on the success
of the previous trial. After a minimum of 20 trials and one
reversal, the rule was then changed so that the step size
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depended on the response four trials in the past, yielding
four independent interleaved adaptive tracks (Leek et al.,
1991). For an incorrect response, the step size was
increased by a factor of 2, otherwise it was decreased by a
factor of v/2. Thus all tracks targeted a 75%-correct perfor-
mance (Kaernbach, 1991). The adaptive procedure ensures
a dense sampling of the psychometric function in the vicin-
ity of the nominal threshold (Dai, 1995), and interleaving
reduces the short-term serial correlation of |Af]| typically
induced by adaptive procedures, thus providing a more bal-
anced distribution of frequencies and step sizes preceding
each trial.

D. Analysis of behavioral data

Data were analyzed by fitting to them a series of models
of increasing complexity. Previous studies of sequential his-
tory effects in perception considered only the sign of the rel-
evant stimulus feature in the previous trial (Ruusuvirta et al.,
2008; Alais et al., 2015; Taubert et al., 2016b). Here, the
preceding signed interval was included as a linear regressor,
together with response history, and a fixed bias. Previous
studies averaged data over subjects so the analysis could
only reveal effects that are consistent across individuals,
whereas we fit subject-specific models. We model the proba-
bility of reporting an upward change on each trial, rather
than the probability of a “correct” response as in many previ-
ous studies (Rosenblith and Stevens, 1953; Moore, 1973;
Moore and Glasberg, 1989; Sek and Moore, 1995; Dai and
Micheyl, 2011). Standard model comparison methods are
used to assess the significance of the contribution of each
parameter to the model.

1. Models

All models tested here assume the choice probability P
of reporting an upward pitch change to be a psychometric
function of the form

P= ¢U(X)a (D

where ¢, is the cumulative normal distribution function with
mean 0 and standard deviation o, and the decision variable X
is determined by the stimulus and, possibly, by an invariant
bias and/or by stimulus or response history. This form is in
accordance with the framework of Signal Detection Theory,
assuming that the internal representation of the frequency
change is given by the sum of X and some internal noise that
is normally distributed with mean O and standard deviation
0. The parameter ¢ determines discrimination sensitivity.

In the simplest model, which we’ll refer to as Baseline
model, the value of X at trial n is purely determined by the
frequencies f,_; and f,, of the last two tones,

X, = Sny (2)

where s, = 121log, (f,/fa—1) is expressed in semitone units.
This first model corresponds to the behavior of an ideal lis-
tener in the sense that choice probability only depends on the
task-relevant attribute of the stimulation, with the probability
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being 0.5 when s, = 0, i.e., when consecutive tones have
exactly the same frequency. In this ideal case, the discrimi-
nation threshold is determined by ¢ only, and can be calcu-
lated as 45;1(0.75), that is ~0.67¢0, for a threshold at 75%
correct. The parameter ¢ is assumed to reflect the frequency
resolution of the sensory representation.

This Baseline model can be extended by including other
potential contributions to the probability of an upward
change report, such as the frequency ratio on the previous
trial, the response to the previous trial, or a uniform bias

X, = (1 - a) Sp+0Sy—1 + Brnfl + b7 (3)

where r,_; is a binary variable coding for the response in
trial » — 1 (1 in case of an upward report, —1 in case of a
downward report), o quantifies the relative influence of the
previous trial’s frequency change, f weights the contribution
of the previous trial’s response, and b represents a systematic
bias. Figure 1 represents the relations between variables and
parameters of this Full model. A non-zero bias (b # 0)
reflects a tendency to report more upward changes (or more
downward changes) regardless of the stimuli presented. A
non-zero response history parameter (ff # 0) might reflect a
deliberate or unconscious adaptive response strategy, whereas
a non-zero stimulus history parameter (o # 0) might repre-
sent an assimilative (« > 0) or else contrastive (¢ < 0) sen-
sory dependency on prior stimulation (Raviv et al., 2012).
These contributions are illustrated in Fig. 1.

In addition to the Baseline and Full models, we consid-
ered three partial models according to which the parameters
of Eq. (3) are non-zero. These models are: systematic Bias
(B), systematic Bias + Prior Stimulus (BPS), and systematic
Bias + Prior Response (BPR) (Table I). Like the Full model,
the last two are history-dependent. It should be noted that
the factors prior interval s,_; and prior response r;,_;
are mutually dependent, as the subject is more likely to
have reported an upward change after a positive step.
Consequently, with f§ = 0, the as,—; term would indirectly
capture a contribution of the preceding response, leading to
an incorrect estimate of stimulus history effects. Similarly
with o = 0, the fir,_; term would capture some contribution
of the previous stimulus.

S S S
n-1 n+1

r r r
n-1 n n+1

FIG. 1. (Color online) Structure of the Full model. Solid arrows represent
the additive contributions of current (s,) and previous (s,_;) intervals, previ-
ous response (r,_1) and choice bias (b) to the decision variable (X,).
Parameters o and  weight the relative contributions of previous interval
and previous response, respectively. The dashed arrow symbolizes the sto-
chastic dependence of the response r,, on X,,.
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TABLE 1. Models. The five models differ based on which of the additive
terms in Eq. (3) are assumed to be zero. All models have in common a free
parameter ¢ corresponding to the standard deviation of internal noise. Each
model has between 0 and 3 additional free parameters: b representing system-
atic bias, o weighting the contribution of the previous interval to the decision,
and f§ weighting the contribution of the previous report. Non-free parameters
are set to 0. Models in which & # 0 or § # 0 are history-sensitive.

Parameters
Model o b o p
History-Insensitive Baseline free 0 0 0
B free free 0 0
History-Sensitive BPS free free free 0
BPR free free 0 free
Full free free free free

Obviously, these constitute only a subset of plausible
models. In particular, we consider only linear dependencies
[Eq. (3)], we ignore the possibility that parameters might
vary over the session, for example, due to a change in the
subject’s strategy, and we ignore potential contributions of
earlier history (trials n — 2, etc.).

2. Data analysis

Thresholds were computed in a first analysis estimating
the classic psychometric function relating probability of a
correct answer to the logarithm of the absolute value |Af/f|
of the relative frequency difference (Dai and Micheyl,
2011). This accuracy psychometric function is implicit in
most studies that estimate a discrimination threshold using
adaptive methods (Levitt, 1971; Kaernbach, 1991). A logis-
tic function varying between 50% (chance level perfor-
mance) and 100% correct was fit to individual subjects’ data
and individual discrimination thresholds were defined as the
interpolated value of |Af /f] yielding 75%-correct accuracy.

As the sign of the frequency difference is not taken into
account by the accuracy psychometric function, it is inade-
quate to highlight choice biases that may affect performance.
A second analysis estimated instead the choice psychometric
function relating probability of an “up” report [Eq. (1)] to the
decision variable, which was log frequency ratio in the
Baseline model, and some combination of this factor, bias and
prior stimulus, and response in the four other models. Each
model was fit individually to the behavioral data collected
from each participant. Using the notation y, = (1 + r,)/2 for
convenience (y, =1 if the listener reported an upward
change, y, = 0 if they reported a downward change), parame-
ters were estimated with the MATLAB (version R2015b) glmfit
function performing a generalized linear regression of the
binary responses y, on the predictor variables (s, S,—1, 7—1)
or a subset of these depending on the model, using a probit
link function. For all except the Baseline model, predictors
included an additional constant term to capture the systematic
bias (b); 95%-confidence intervals for the free parameters
were computed using a bootstrap procedure with 1000 resam-
pling iterations.
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The quality of each fit was assessed by three different
metrics. First, the Mean Squared Residual (MSR) was com-
puted as

1 5
MSR =52 [#(Xa) =] 4)
where N is the number of trials. Second, the Mean Log
Likelihood (MLL) was computed as

Ly In (1=y,)
MLL = 53 tog { oK) [1 = 9,06 ). )

n=1

Last, a Receiver Operating Characteristics (ROC) and the
Area Under the ROC curve (AUROC) were computed using
MATLAB’S perfcurve function. The ROC describes the perfor-
mance of the model when it is used as a binary classifier pre-
dicting the subject’s response y,, (“up” versus “down”) based
on X,. By changing the probability threshold to be reached
by ¢,(X,) to label a response as “up” rather than “down,”
one changes the “true positive” (i.e., model predicts “up”
response, subjects responds “up”) and “false positive” (i.e.,
model predicts “up” response, subjects responds “down’)
rates, similarly to what happens in Signal Detection Theory
when a subject changes criterion. The AUROC reflects the
“sensitivity” of the model, i.e., its capacity to discriminate
between the two classes of trials.

Nested models were compared by F-tests with a 5%
false-rejection probability (Motulsky and Christopoulos,
2004), with correction for multiple comparisons as needed.

lll. RESULTS

Main blocks lasted between 19 and 29 min (mean dura-
tion was 24 min), except for one participant who took more
than 38 min. Trials in which the reaction time was shorter
than 300ms or exceeded 1500ms were excluded. This
resulted in the exclusion of between 11 and 124 trials
depending on the participant, leaving between 956 and 1069
trials to include for model fitting, except for the slowest par-
ticipant for which 448 trials were excluded leaving 632 for
analysis. Frequencies followed a random walk with opposite
biases above and below 1000 Hz preventing large deviations
from this center frequency (see Sec. II). Resulting frequency
distributions had an average (over subjects) center of 1000.9
*41 Hz [mean * standard deviation (s.d.)] and an average
(over subjects) s.d. of 8974 Hz.

A. Classic discrimination threshold analysis

The accuracy psychometric function relating probability
of a correct response to log absolute value of the relative fre-
quency step was fit individually for each subject, and the
abscissa at 75% correct was taken as the discrimination
threshold. Thresholds are plotted for each subject as open
symbols in Fig. 2. On average over subjects, the threshold
was 0.10 semitones (geometric mean) with a deviation factor
of 2.0 (geometric s.d.).
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FIG. 2. Estimated noise parameter ¢ for the Baseline model (closed sym-
bols) derived from a fit of the choice psychometric function and thresholds
(open symbols) derived from a fit of the accuracy psychometric function for
each subject. Subjects are ordered on the horizontal axis by increasing
noise.

B. Baseline model

The choice psychometric function relating probability of
an “up” report to log frequency ratio was fit individually for
each subject using the Baseline model [Egs. (1) and (2)],
yielding an estimate of the ¢ parameter for each subject.
Values of ¢ for each subject are plotted as closed symbols in
Fig. 2. For convenience, subjects are ordered according to
increasing ¢. The average value of ¢ was 0.18 semitones
(geometric mean) with a deviation factor of 2.2 (geometric
s.d.). Assuming a Gaussian model with zero response bias,
discrimination thresholds are expected to be ~0.67¢, and
thus these values appear consistent with the previous analysis.
The wide scatter of values across subjects (more than an order
of magnitude) is typical of previous studies (e.g., Micheyl
et al., 2006). In the absence of bias and history effects, dis-
crimination thresholds are assumed to reflect sensory noise,
so it is reassuring that the two estimates seem to agree.

C. Full model

The probability of “up” versus “down” reports was also
fit using the Full model [Egs. (1) and (3), b # 0, o # 0,
p # 0] that includes factors prior stimulus, prior response,
and systematic bias, as well as reduced models with subsets
of these factors. Adding factors improves the fit, as reflected
by the MLL scores plotted in Fig. 3(a). The scores indicate
a better fit for the Full model (plotted rightmost, average
MLL is —0.46*0.03, mean * s.d.) than for the Baseline
model (plotted leftmost, average MLL is —0.52%0.03,
mean =+ s.d.), with intermediate scores for the reduced mod-
els, and similar trends were found for AUROC and MSR
measures (not shown). However, an obvious concern is
whether the more complete models are justified given their
complexity. Pairs of nested models were compared using
the F-statistic with a p-value threshold of 0.05, and for each
pair the number of subjects for which the more complete
model was superior is reported in Fig. 3(b). Detailed statis-
tics can be found in the Appendix. Models BPS and BPR
are not compared with each other because they are not
nested. According to this analysis, for all factors, a model
that includes that factor is better than a model that excludes
it for most subjects. The benefit was cumulative, and
the Full model was superior to all other models for 13 of
the 14 subjects. After applying the Bonferroni correction of

J. Acoust. Soc. Am. 142 (5), November 2017

-0.4
-
= |
= 05
-0.6 — : : :
0 B BPS/R Full
Model
(a)
14
Full [P / /
BPR
7
BPS
B
0
0 B BPS BPR
(b)

FIG. 3. (Color online) Summary of model quality of fit and model compari-
sons. Tested models were 0, B, BPS, BPR, and Full. (a) MLL per model.
Lines correspond to individual subjects. Models are ordered by increasing
complexity on the horizontal axis, MLL of BPS and BPR models have the
same number of parameters and are plotted in distinct colors for better read-
ability. (b) Summary of all pair-wise model comparisons. Each box displays
the number of participants for which the model on the vertical axis was
retained against the model on the horizontal axis after F-test. BPR and BPS
models were not compared because they are not nested.

p-value thresholds for multiple comparisons, the Full model
was still superior to all others for 12 of the 14 subjects.

Figure 4 shows parameter estimates of the Full model for
all subjects (parameters b and f§ are normalized by the value of
o obtained for this model, for visual convenience). Estimates
of ¢ (geometric mean: 0.12 semitones, geometric s.d.: 2.2)
were significantly lower under the Full model than under the
Baseline model (based on bootstrap resampling) for nine sub-
jects [Fig. 4(a)]. Smaller values of ¢ are to be expected as the
factors controlled for by the Full model appear as noise in the
Baseline model. The bias parameter b [Fig. 4(b)] was signifi-
cantly different from zero for ten subjects (positive for eight
and negative for two). The average normalized bias /¢ was
0.08%0.18 (mean =* s.d.). The parameter o [Fig. 4(c)] was
significantly different from zero for all subjects but one, with
a positive value suggesting an assimilative effect of prior
stimulation. The average value of o was 20% =*8.5% (mean
* s.d.). The parameter f5 [Fig. 4(d)] was significant for most
subjects, but with a sign that differed between subjects, sug-
gesting different behavior strategies (also suggested by the
between-subject differences in systematic bias b). The aver-
age value of /o was —0.14%0.45 (mean = s.d.).

As mentioned earlier, the factors prior stimulus and
prior response are mutually dependent but not collinear: if
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either is removed, the model quality is reduced for most sub-
jects. If one factor is removed, the variability associated to it
is captured by the other factor, overestimating its true effect
when both factors act in the same direction, underestimating
it otherwise. Thus, response history effects should be con-
trolled for, as we do, even in studies where the goal is to
measure purely sensory effects (e.g., Raviv et al., 2012). To
illustrate this point, Fig. 5 shows the amount by which o is
overestimated when the contribution of the prior response is
ignored (model BPS) relative to the Full model as a function
of normalized f3. The parameter is overestimated for f§ posi-
tive, and underestimated otherwise.

IV. DISCUSSION

This study probed the influence on sequential pitch
judgments of the history of frequency changes and
responses preceding each trial in a sliding 2-AFC task. In
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most psychophysical studies of pitch perception, the
“physical” dimension considered is the interval between
tones within a trial, based on the assumption that the subject
can ignore previous trials. This is at best an approximation:
discrimination thresholds are known to be higher if frequen-
cies are roved, implying that the ability to discriminate two
tones within a trial is impaired if the frequencies of previ-
ous trials fluctuated over a wide range (Mathias et al.,
2010). This might be attributed to the wider distribution of
frequencies preceding a trial, for example, because the sub-
ject cannot focus on a restricted frequency region.
Alternatively, it might be explained by a stimulus context-
dependent bias, such as we found in this study, that leads to
non-optimal performance and thus elevated thresholds. In
the presence of roving, the large frequency interval preced-
ing each trial might more strongly bias the decision on that
trial, leading to higher thresholds. Effects of stimulus his-
tory on performance in a 2-interval task have recently been
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FIG. 5. Error on the o estimate when the contribution of the prior response
is ignored. The difference between the estimate of « obtained by a fit of the
BPS model and that obtained by a fit of the Full model is plotted against the
ratio of f§ and ¢ estimates obtained with the Full-model fit. Dots correspond
to individual participants.

examined more closely (Nahum et al., 2010) and modeled
as an integration of frequencies of prior tones (Raviv et al.,
2012, 2014). Our study extends those studies using a differ-
ent methodology. Of course, one should beware that the
effects described here might be specific to this methodology
and not apply to more traditional experimental procedures,
in particular to 2-interval procedures. However, the agree-
ment of these effects with the roving effect and with the his-
tory effects previously found by Raviv et al. in 2-interval
tasks suggests that similar mechanisms may be at play in
these different procedures.

A. Discrimination acuity

The measurement of perceptual limits is a primary goal
of psychophysics (Fechner, 1966), and numerous psycho-
physical studies have been devoted to quantifying frequency
discrimination thresholds (Harris, 1952; Rosenblith and
Stevens, 1953; Nordmark, 1968; Moore, 1973; Jesteadt and
Sims, 1975; Moore and Glasberg, 1989; Sek and Moore,
1995; Matthews and Stewart, 2008; Dai and Micheyl, 2011;
Micheyl et al., 2012). According to Signal Detection Theory
(Green and Swets, 1966; Macmillan and Creelman, 2005),
perceptual limits are determined by the amount of noise
within the sensory dimension underlying the task, and with
appropriate assumptions (Gaussian noise, no bias) the noise
magnitude can be inferred from the measured threshold. The
threshold is defined as the abscissa of the point at which the
psychometric function, relating frequency step size to per-
centage correct, reaches a criterion value, for example, 75%.
This point can be determined explicitly from a psychometric
function estimated by fitting the density of correct and incor-
rect responses to a range of stimuli, or else implicitly from
the rule associated with an adaptive procedure (Levitt, 1971;
Kaernbach, 1991). For the classic correct-response analysis
(Sec. II), we chose to estimate thresholds from the psycho-
metric function relating percent correct to log (JAf /f]) sam-
pled at values chosen by the adaptive procedure. Thresholds
that we obtain in this fashion (Fig. 2, open symbols) are
consistent with the literature of frequency discrimination
(Moore, 1973; Emmerich et al., 1989; Moore and Glasberg,
1989; Sek and Moore, 1995; Micheyl et al., 2006) although
markedly smaller than those reported by Nahum et al.
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(2010). The wide spread of values across subjects (more
than an order of magnitude) is also consistent with other
studies (e.g., Micheyl et al., 2006). Under the assumption of
Gaussian sensory noise and no bias, the standard deviation
o of the noise is inferred to be ~1.5 times the threshold
at 75%.

For the alternative up-response analysis (Sec. II), the
noise magnitude ¢ is inferred from the slope of the psycho-
metric function relating the density of “up” reports to
log (fy/fu—1). Again assuming Gaussian noise, ¢ is propor-
tional to the inverse of the slope at 50% of this curve. In the
absence of bias the two methods for estimating variance are
equivalent, and indeed fitting our data with the model with-
out bias terms leads to estimates of ¢ (Fig. 2, closed sym-
bols) that are consistent with the thresholds estimated with
the classic analysis (ratio close to 1.5).

In the presence of bias, the two approaches are no lon-
ger equivalent. With the first approach (psychometric func-
tion relating percent correct to the unsigned relative
frequency difference), sensory noise is overestimated,
whereas with the second (psychometric function relating
percentage of “up” reports to the signed interval), bias con-
tributions appear as opposite effects on rising and falling
intervals and can be factored out to obtain an accurate esti-
mate of sensory noise. Estimates of ¢ obtained in this way
are indeed smaller (Fig. 4 top, red symbols) and arguably
more reliable than with the first approach. An accurate esti-
mate of sensory noise is important for studies that compare
human performance to theoretical limits such as the Gabor
tradeoff, (Moore, 1973; Oppenheim and Magnasco, 2013),
or to physiological data and models (e.g., Heinz et al.,
2001).

B. Effects of stimulus and response history

As pointed out earlier, the existence of stimulus history
effects can be surmised from higher thresholds observed
with roving in 2-interval tasks. Likewise, the lower thresh-
olds obtained using a fixed standard (e.g., Bull and Cuddy,
1972; Nahum et al., 2010) can be interpreted either as a
beneficial “perceptual anchor” effect of a fixed reference
(Durlach and Braida, 1969; Matthews and Stewart, 2008;
Nahum et al., 2010) or as a deleterious confusing or bias
effect of a roving reference (Mathias et al., 2010, 2011).
The latter was probed in recent studies (Raviv et al., 2012,
2014).

However, the methodology of prior studies limits their
ability to conclude. Studies that evidenced effects of rov-
ing by comparing thresholds or percent correct between
conditions conflate bias with sensory noise. They cannot
distinguish between a history-dependent sensory noise
(e.g., a deleterious effect of roving or beneficial effect of a
fixed perceptual anchor), or a history-dependent bias (e.g.,
regression of new sensory traces to the mean of prior
traces). Likewise, studies that model effects of stimulus
but not response history miss the opportunity to factor out
that source of variance and risk producing misleading esti-
mates of sensory history effects due to dependencies
between the two factors. In contrast, our methods allow us
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to control both for stimulus and response history, and
indeed we find evidence for both.

We found a significant and positive contribution of stim-
ulus history for all subjects, except one for which the contri-
bution was not distinguishable from zero [Fig. 4(c)]. We also
found a contribution of response history that was significant
for all subjects, and with a sign that depended on the subject
[Fig. 4(d)]. A possible explanation is that near threshold sub-
jects adopt a guessing strategy (conscious or unconscious)
that takes into account their previous response, and that this
strategy is subject-dependent. For example, a subject might
try to avoid a series of identical responses, judged unlikely, or
else stick to the same decision as was made on the previous
trial in the absence of a strong sensory cue to decide other-
wise. Systematic bias was also subject-dependent [Fig. 4(b)].
As we pointed out, the factors stimulus and response history
are mutually dependent, and the variance of one is likely to
be absorbed by the other unless both are included in the
model. A model including both factors was superior for all
subjects to a model containing only stimulus history (Fig. 3),
and omitting response history strongly affected estimated
weights o of stimulus history (Fig. 5). Thus, including both
factors leads to a more accurate estimate of the contribution
of stimulus history.

C. Sensory integration

Once the confounding effect of response history has
been controlled for (Full model), the contribution of prior
stimulation appears to be positive (assimilative) for all
subjects but one for which it did not differ from zero. One
interpretation is that an internal representation of the interval
on that trial is integrated with that of the previous interval.
A representation of frequency change by Frequency-Shift
Detectors was hypothesized by Demany and Ramos
(Demany and Ramos, 2005; Demany and Semal, 2005;
Demany et al., 2009, 2011; Carcagno et al., 2011). Another
is that internal representations of the two frequencies that
determine the interval associated with a trial are affected by
those of previous tones. These two hypotheses are compati-
ble with the same model of Eq. (3), so we cannot distinguish
them on the basis of the data.

Integration across trials might be due to an inability to
rapidly discard past sensory traces and follow fast change
(sluggishness). Alternatively, it could reflect a mechanism of
temporal integration or evidence accumulation designed to
counteract sensory noise, or to smooth out irrelevant stimu-
lus fluctuations. Sensory integration is an effective way of
reducing noise in stimulus representations when the world
tends to remain constant (Burr and Cicchini, 2014; Cicchini
et al., 2014), i.e., when stimulus changes are small in com-
parison to noise fluctuations in internal representations.
Here, all frequency changes were near threshold for pitch
discrimination, possibly promoting greater integration. The
weight of the interval preceding a trial was indeed quite
large, 20% on average (Fig. 4). An interesting question is
whether this weight might change with the statistics of fre-
quency changes preceding each trial. In 2-interval tasks,
there is some evidence that the threshold elevation due to
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roving is larger for an intermediate than a large frequency
range (Matthews and Stewart, 2008). The weight of prior
sensory evidence is also expected to increase with decreas-
ing salience of sensory evidence within the current trial. As
an extreme example, the direction of pitch change between
ambiguous stimuli (Shepard tones spaced by half an octave)
was found to be almost entirely dependent on prior stimula-
tion (Chambers and Pressnitzer, 2014; Chambers et al.,
2017). It has been suggested that updating of the perceptual
weight of previous observations might occur on a rapid time
scale, according to a process that can be modeled as a
Kalman filter (Burr and Cicchini, 2014). It has also been sug-
gested that information can be accumulated over repetitions
of a recurring “reference” stimulus to form a perceptual
anchor (Durlach and Braida, 1969; Matthews and Stewart,
2008; Nahum et al., 2010). Both hypotheses imply a model
more complex than embodied by Eq. (3) that assumes fixed
weights.

The model proposed here considers only the contribu-
tion of the previous interval (s,_;) to the decision variable
[Eq. (3)]. We tested linear models including even earlier
intervals (s,_», s,—3, not reported here) and found that
effects can extend over several trials, with effects decreas-
ing with anteriority, as reported in previous studies of
auditory and visual perception (Raviv et al., 2012; Alais
et al., 2015; Cicchini et al., 2014; Fischer and Whitney,
2014; Frund et al., 2014; Taubert et al., 2016a). In the
extreme, we could hypothesize that subjects performed the
task by comparing each new tone to a weighted average of
all preceding stimuli (e.g., Morgan et al., 2000). Other
models can be proposed to capture sensory integration
over multiple stimuli, such as the implicit memory model
of Raviv et al. (2012), or the Bayesian integration model
of Cicchini et al. (2014). Such models lead to similar pre-
dictions as the generalized linear model (as shown by
Raviv et al., 2012).

The sliding 2AFC procedure used in this study differs
from the classic two-interval procedure used in most pitch
discrimination studies in two important ways. The first is
that each tone was involved in two successive comparisons,
first as a test tone and then as a reference tone. In particular,
the need to store the representation of tone n—2 (to
compare it with n — 1 on the previous trial) might have
increased its salience and weight within the current trial.
The second is that each tone was followed by a response in
our procedure, whereas no response follows the reference
tone in the classic procedure. The response to tone n — 1
might require additional cognitive resources, reducing its
weight relative to tone n — 2. However, in both cases we
would expect a performance difference between proce-
dures, whereas our previous study found none (Arzounian
et al., 2017). The motivation for the new procedure was to
ensure effects such as these, if they exist, affect uniformly
all tones in the sequence, so that tones preceding a trial dif-
fer only by their rank. It would be useful to repeat our anal-
yses with data from the classic procedure to clarify these
issues.

Sensory integration has an assimilative effect, as if the
representation of an interval were attracted towards that of
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the previous interval(s). This differs from adaptation effects,
where past stimuli bias the perception of following stimuli in
the opposite direction (Gibson, 1937). Alais et al. (2015) found
such negative aftereffects when listeners had to detect continu-
ous, directional frequency modulations (sweeps) in a series of
modulated and non-modulated tones. It is still unclear which
types of perceptual traits are dominated by positive assimila-
tion or by negative aftereffects, and in which conditions
(Cicchini and Kristjansson, 2015). It has been suggested that
naturally stable stimulus attributes be prone to assimilation,
while naturally changeable attributes be subject to adaptation
(Taubert et al., 2016a). The intervals presented in our study
were sampled around listeners’ thresholds and rarely exceeded
*2 semitones, whereas Alais et al. used frequency sweeps
with amplitudes ranging from 0 to =3 octaves.

D. Differences between subjects

Thresholds differed widely across subjects (Fig. 2, open
symbols) as found in previous studies of frequency discrimi-
nation (Amitay et al., 2005; Micheyl et al., 2006; Kidd
et al., 2007). Using the Full model, subjects were also found
to differ in the magnitude and sign of the systematic bias
[Fig. 4(b)], the magnitude and sign of the previous response
factor [Fig. 4(d)], and the magnitude of the previous stimulus
weight [Fig. 4(c)]. After factoring out these effects, internal
noise [Fig. 4(a)] also differed between subjects by an order
of magnitude, which quashes any speculation that differ-
ences in pitch discrimination ability result only from differ-
ences in ability to ignore trial history. The weight of interval
s,—1 ranged from non-significant for subject 11 to 40% for
subject 9, suggesting a difference in ability to “isolate” the
current sensory trace from previous traces. Mathias et al.
(2010) previously found that subjects differed in their sus-
ceptibility to frequency roving in 2AFC tasks. Although they
used a different procedure, those inter-individual differences
might be linked to the differences we report here. It has been
observed that some subjects can perceive a pitch change but
have difficulty assigning a direction to it (Semal and Demany,
2006; Mathias et al., 2010). It would be interesting to extend
our experimental and modeling framework to address this
situation.

E. Limitations of our study

The frequency step preceding a trial was restricted to a
few times the listener’s threshold. This limits the applicabil-
ity of the present findings to situations where the frequency
steps are larger, e.g., roving over a wide range. We mainly
consider history limited to the previous trial, for ease of
exposition, and because our trial selection criterion based on
response time (Sec. II) reduces the number of longer sequen-
ces. In any case, because we used only four interleaved
tracks, interval sizes in trial » and trial n — 4 are highly cor-
related, which limits our ability to assess the influence of a
deeper history. We considered only a linear model [Eq. (3)].
It is possible that choice probability is better predicted by a
non-linear transform of the factors, in which case our linear
model captured the best linear approximation of this depen-
dence. In particular, we might expect interactions between
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factors, for example, a stronger weight of response history
when stimulus evidence is weak, or an increase in sensory
noise with roving due to confusion. Other factors might con-
ceivably affect responses, like absolute frequency. A system-
atic exploration of all possible factors, transforms, and
interactions is tedious and prone to overfitting. For the same
reason, we did not explore the likely hypothesis that model
parameters vary as a function of time, for example, due to
adjustments of response strategy. Although testing for such a
hypothesis and adjusting the model accordingly is theoreti-
cally feasible, it requires assumptions about the lifespan of a
given set of parameters, and the number of data points avail-
able for each fit would be reduced, reducing confidence in
parameter estimates. For simplicity, the model was therefore
assumed to be stationary over the entire duration of the block.

V. SUMMARY

This study investigated how responses in a sliding 2-
AFC pitch discrimination task are affected by factors other
than the stimuli to be compared, and in particular by the pre-
ceding pitch interval and the report made about this preced-
ing interval. We found a significant influence of interval
history, of assimilative nature for all subjects, suggesting
that the sensory trace of each new stimulus might be inte-
grated with the memory trace of previous stimuli. We also
found a significant influence of response history, with a sign
that was subject-specific, that might reflect a conscious or
unconscious response strategy based in part on the previous
response. Because the two factors were correlated (the previ-
ous response was affected by the previous interval), a model
that contains only one would have incorrectly estimated the
weight of the other. In particular, ignoring response history
would have led to misleading conclusions with respect to
stimulus history effects. Factoring out effects of interval and
response history as well as systematic bias (also subject-
dependent) led to an estimate of sensory noise that was
smaller (and arguably more reliable) than that obtained with a
simpler model, or from the measure of a pitch discrimination
threshold. The level of sensory noise varied widely across
subjects, suggesting that perceptual acuity was highly subject-
dependent, as suggested by previous studies. Subjects also
differed in the weight assigned to the previous interval (sug-
gesting differences in ability to “isolate” the current interval),
and response (suggesting differences in ability to resist the
influence of previous decisions). Future work may clarify if
these context effects occur similarly in more traditional
2-interval tasks. To obtain these results we used several meth-
odological refinements (choice psychometric function, contin-
uous tone series, interleaved tracks, model including response
history and bias) that may be of use in future studies.
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APPENDIX

TABLE II. Statistics for nested model comparisons. The first column corresponds to subject (S) rank as in Fig. 2 and Fig. 4. The second column lists the num-
ber (N) of data points available for model fitting after trial rejection based on reaction times. Following columns list the F-statistics (F, first sub-column) and
p-values (p, second sub-column) for the test comparing the two models indicated in the heading line (the reader is referred to Table I for a definition of model
acronyms). The symbols *** indicate p < 0.001. Figure 3(b) summarizes the number of tests with p < 0.05 for each model pair.

BvsO0 BPSvs 0 BPS vs B BPR vs 0 BPR vs B Full vs 0 Full vs B Full vs BPS Full vs BPR
S N F P F P F p F P F p F p F p F p F p
1 1049 183  *#k 59 132 #* 103  *¥¥x 227 013 421 Wk 30.8  *x* 98.1 HEE 27.8 HEE
2 990  38.1  x¥¥ 217 ¥¥¥ 51 002 347 302 ¥k 225 FEFE 463 Rk 18.1 oAk 42.1 ok
3 1042 125 ##*% 924  #x* 585 0.02 156 @ F** 184  *¥* 421 Fkx 308 Rk 98.1 Ak 35.6 Ak
4 1058 442 ek 2209 ik 145 02 39.1 ¥ 325 kR QDS ik 463 kkk 18.1 ok 30.8 ok
5 854 679 001 404 002 128 03 515 0.006 348 0.06 42.1 = 30.8 0.004 98.1 0.001 772 0.006
6 1001 2.1 0.1 731  #*¥* 12 Rk QB3 RRE 537 wwx QDS HEE 463 Rk 18.1 HEE 98.1 HEE
7 1043 613 % 698  kEE 738 kxx 605 Rk 733 kxx 4D ] FEFEF 30,8k 98.1 HEE 23.7 HEE
8 961 16 *** 739  wE* 129 ##% 138  #** 255 kR D)5 RER 463 HFEF 18.1 oAk 12.1 Ak
9 1026 046 05 29.8  *k* 59 #0015 09 -0.2 1 42,1 ¥ 30.8  kEE 98.1 Ak 95.5 Ak
10 990 124 *# 628 0.002 0.13 0.7 319 k¥ 507 k¥ 225 Rk 463 Rk 18.1 ok 0.006 ok
11 1045 145 #4272  *%% 68,8  FFE 44wk 270 kR 421 kR 308 RRE 98.1 Ak 225 0.76
12 956 222 0.1 1.08 03 -0.1 1 433 ek B4l R DS HEE 463 ik 18.1 ok 46.3 ok
13458 1.09 03 119 031 128 026 21.8 423 FEE 4D R 308 Rk 98.1 ok 12.4 HEE
14 1021 28.7 ##*% 644  FEE Q73 w119 Rk 203 kR 225 kR 463 HFEE 18.1 HEE 18.1 HEE
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