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Abstract
Objective
To perform a cross-sectional study to determine whether plasma neurofilament light chain
(NfL) concentration is elevated in patients with Charcot-Marie-Tooth disease (CMT) and if it
correlates with disease severity.

Methods
Blood samples were collected from 75 patients with CMT and 67 age-matched healthy controls
over a 1-year period. Disease severity was measured using the Rasch modified CMT Exami-
nation and neuropathy scores. Plasma NfL concentration was measured using an in-house-
developed Simoa assay.

Results
Plasma NfL concentration was significantly higher in patients with CMT (median 26.0 pg/mL)
compared to healthy controls (median 14.6 pg/mL, p < 0.0001) and correlated with disease
severity as measured using the Rasch modified CMT examination (r = 0.43, p < 0.0001) and
neuropathy (r = 0.37, p = 0.044) scores. Concentrations were also significantly higher when
subdividing patients by genetic subtype (CMT1A, SPTLC1, andGJB1) or into demyelinating or
axonal forms compared to healthy controls.

Conclusion
There are currently no validated blood biomarkers for peripheral neuropathy. The significantly
raised plasma NfL concentration in patients with CMT and its correlation with disease severity
suggest that plasma NfL holds promise as a biomarker of disease activity, not only for inherited
neuropathies but for peripheral neuropathy in general.
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Peripheral neuropathy affects an estimated 10 million people
in the European Union (7 million in the United States) and
represents a substantial public health burden.1,2 Nerve
conduction studies are the gold standard for confirming
a large-fiber peripheral neuropathy; however, in severe cases,
such studies may be unable to monitor disease progression
due to a floor effect. There is therefore a need for a biomarker
that reflects peripheral nerve damage and can be used to assess
response to treatment.

Neurofilaments are the major cytoskeletal proteins of neurons
in both the CNS and peripheral nervous system and form
a lattice comprising neurofilament light (NfL), medium, and
heavy (NfH) chains.3 Damage to nerves leads to the release of
these proteins into the CSF or plasma, as demonstrated by the
20-year-old observation that NfL concentration is increased in
the CSF of patients with amyotrophic lateral sclerosis (ALS).4

Increased NfL concentrations have been reported in CSF, and
more recently in plasma, in neurodegenerative diseases of the
CNS; for example, frontotemporal dementia (FTD), multiple
sclerosis (MS), and Alzheimer disease (AD).5–8

In contrast to diseases of the CNS, biomarkers of peripheral
nerve damage are less well-developed. In this study, we sought
to determine the biomarker potential of plasma NfL in
peripheral neuropathy by measuring the plasma NfL
concentration using ultrasensitive Simoa immunoassay tech-
nology,9 in patients with both demyelinating and axonal forms
of inherited neuropathy (Charcot-Marie-Tooth disease
[CMT]), a group of diseases in which patients experience
slowly progressive axonal degeneration at a constant rate.10 A
blood biomarker of disease activity is likely to be of value in
future treatment trials in CMT, a disease that often shows
only minimal progression during the usual 1- to 2-year period
of a clinical trial and in which current clinical outcome
measures are insensitive in detecting disease progression
during such a time period.11

Methods
Participants
Blood samples were collected prospectively, with informed
consent, from all patients with CMT with a genetically con-
firmed diagnosis attending the inherited neuropathy clinic at
the National Hospital for Neurology and Neurosurgery,
London, between January 2011 and May 2013. Patients with
other neurologic diseases were excluded as determined by
review of the clinical notes and a questionnaire. The disease

severity, as measured using the Rasch modified CMT exam-
ination score, version 212 (the weighted CMTES), was
recorded at the same time as plasma was collected. The
weighted CMTES is a validated outcome measure for
assessing the severity of CMT. It is a composite score that
includes the patient’s symptoms and examination findings.11

All patients underwent nerve conduction studies to confirm
the presence of a neuropathy; however, a weighted CMT
neuropathy score (CMTNS) (which required neurophysiol-
ogy at the same time as the clinical assessment) was only
included if a nerve conduction study had been performed
within 18 months of the blood sample.

Blood samples were obtained from healthy relatives of
patients attending the inherited neuropathy clinic and staff at
the UCL Institute of Neurology and from the relatives of
patients with ALS recruited as part of a separate study.
Healthy controls were excluded if they had coexistent neu-
rologic disease as determined by a symptom and medical
history–based questionnaire.

Blood sampling and sample collection
and storage
All participants were evaluated in outpatient clinics and blood
samples were taken and processed within 1 hour. Whenever
possible, a repeat blood sample was taken after 1 year. Blood
was collected into EDTA-containing tubes and centrifuged at
20°C at 3,500 rpm for 10 minutes. Plasma was then aliquoted
and stored at −80°C.

Standard protocol approvals, registrations,
and patient consents
This study was approved by The National Hospital for
Neurology and Neurosurgery Research Ethics Committee/
Central London REC 3 09/H0716/61 and the East London
and the City Research Ethics Committee 1 (09/H0703/27).
Written informed consent was obtained from all participants
in the study.

Simoa plasma NfL measurements
Plasma sample NfL concentration was determined using the
in-house Simoa NfL assay, which has been described in detail
previously.7 Briefly, paramagnetic carboxylated beads
(Quanterix, Boston, MA) were coated with a mouse anti-
NfL antibody (UD1; UmanDiagnostics, Umeå, Sweden) and
incubated for 35 minutes with sample and a biotinylated
mouse anti-NfL antibody (UD2; UmanDiagnostics) in
a Simoa HD-1 instrument (Quanterix). The bead-conjugated
immunocomplex was thoroughly washed before incubation

Glossary
AD = Alzheimer disease;AEB = average number of enzymes per bead;ALS = amyotrophic lateral sclerosis;CMAP = compound
muscle action potential; CMT = Charcot-Marie-Tooth disease; CMTES = Charcot-Marie-Tooth examination score;
CMTNS = Charcot-Marie-Tooth neuropathy score; FTD = frontotemporal dementia; LLOQ = lower limit of quantification;
MS = multiple sclerosis; NfH = neurofilament heavy; NfL = neurofilament light.
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with streptavidin-conjugated β-galactosidase (Quanterix).
After additional washes, resorufin β-D-galactopyranoside
(Quanterix) was added and the immunocomplex was applied
to a multiwell array designed to enable imaging of every single
bead. The average number of enzymes per bead (AEB) of
samples was interpolated onto the calibrator curve con-
structed by AEB measurements on bovine NfL (UmanDiag-
nostics) serially diluted in assay diluent. Samples were
analyzed blind and in duplicate using one batch of reagents.
The average repeatability coefficient of variation of a sample
with the mean concentration 14.3 pg/mL was 7.5% and the
interassay coefficient of variation was 12%, and for a sample
with a mean concentration of 129.5 pg/mL this was 5.3% and
10.2%, respectively. The limit of detection, determined as
the mean blank signal +3 SD for the Simoa NfL assay, was
0.3 pg/mL, and the lower limit of quantification (LLOQ),
determined as the mean blank signal +10 SD, was 2.7 pg/mL
when compensated for a 4-fold sample dilution. All samples
analyzed were above the LLOQ.

Statistical analysis
Statistical analysis was performed using SPSS version 23.00
(IBM; Armonk, NY) and GraphPad Prism 5.0 (GraphPad
Inc., La Jolla, CA). A normal probability plot of the residuals
of plasmaNfL concentration revealed a skewed distribution of
the data points. Plasma NfL concentration was therefore
compared using a 2-sided Mann-Whitney U test, and

correlations were assessed using Spearman and Pearson cor-
relation coefficients. Fisher r to z transformation was used to
compare correlation coefficients. Multiple linear regression
was performed using SPSS to model the relationship between
plasma NfL (dependent variable) and age and weighted
CMTES score (independent variables).

Results
Patient demographics
A total of 75 patients with CMT (including 21 with hereditary
sensory neuropathy due to mutations in SPTLC1 and
SPTLC2) and 67 healthy controls were enrolled into the
study. There was no significant difference in the mean age of
the 2 groups (table 1; p = 0.73). There were significantly
more women in the control (69%) than the CMT cohort
(52%, p = 0.043); however, this is unlikely to have influenced
the comparison between the 2 cohorts as there was no sig-
nificant difference in plasma NfL concentration between male
and female controls (14.0 [10.9–20.5] vs 14.9 [10.9–25.3]
pg/mL, p = 0.829). The CMT cohort comprised 10 different
subtypes of CMT. The commonest subgroup was CMT1A (n
= 31), followed by SPTLC1 (n = 20) and CMTX1 (n = 11).
Hereditary sensory neuropathy due to mutations in SPTLC1
was disproportionately represented in this study as samples
were collected from patients recruited into a natural history

Table 1 Demographic details, median NfL plasma concentration, and weighted CMTES and CMTNS scores of the CMT
and healthy control cohorts

Patient group n Age, y (SEM) Sex, F/M NfL, pg/mL (IQR) Weighted CMTES (SEM) Weighted CMTNS (SEM)

CMT 75 46.2 (1.7) 39/36 26.0 (17.3–33.6) 17.5 (0.84) 24.6 (1.61) n = 30

Control 67 47.0 (1.9) 46/21 14.6 (11.0–21.1) NA NA

CMT1A 31 48.8 (2.9) 17/14 25.7 (17.4–29.5) 15.1 (0.91) 19.5 (1.11) n = 11

CMT1B 1 55 0/1 38.2 33 38

CMT1C 1 34 0/1 15.8 7 9

CMT2A 1 20 1/0 21.5 13 —

CMT2F 5 58 (2.6) 0/5 19.3 (10.2–25.3) 12.6 (1.94) —

CMT4B 1 32 0/1 26.1 30 38

CMT4C 2 37.5 1/1 47.1 25.5 29.5

CMTX1 11 43.3 (2.6) 9/2 24.8 (16.6–33.8) 17 (1.37) 22 (1.73) n = 3

SPTLC1 20 45 (3.4) 10/10 29.6 (22.3–41.7) 20.9 (1.83) 28.6 (2.76) n = 11

SPTLC2 1 54 0/1 8.98 7 −

CMT2 27 45.5 (2.7) 11/16 26.8 (17.3–33.7) 18.6 (1.60) 28.6 (2.76) n = 11

CMT1 48 46.7 (2.1) 28/20 25.9 (17.0–32.8) 16.8 (0.95) 22.3 (1.84) n = 19

Abbreviations: CMT = Charcot-Marie-Tooth disease; CMT1 = demyelinating CMT; CMT1A = 17p duplication; CMT1B =MPZmutation; CMT1C = LITAFmutation;
CMT2 = axonal CMT; CMT2A = MFN2 mutation; CMT2F = HSPB1 mutation; CMT4B = MTMR2 mutation; CMT4C = SH3TC2 mutations; CMTES = Charcot-Marie-
Tooth examination score; CMTNS = Charcot-Marie-Tooth neuropathy score; CMTX1 = GJB1 mutation; IQR = interquartile range; NA = not applicable;
NfL = neurofilament light; SPTLC1 = serine palmitoyl transferase 1 mutations causing hereditary sensory neuropathy type 1; SPTLC2 = serine palmitoyl
transferase 2 mutation also causing hereditary sensory neuropathy type 1.
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study of HSN1 that was running concurrently. Sixty-four
percent of patients with CMT had CMT1 (demyelinating
neuropathy) vs 36% with CMT2 (axonal neuropathy), which
is reflective of the relative prevalence of these disease subtypes
in the general population.13 All patients included in the study
had a weighted CMTES calculated; however, only 30 (40%)
had a neurophysiologic examination within 18 months of
sample collection and for whom a weighted CMTNS was
calculated.

PlasmaNfL chain concentration is increased in
patients with inherited peripheral neuropathy
Plasma NfL concentration was significantly higher in patients
with CMT compared to age-matched healthy controls (p <
0.0001; table 1 and figure 1A). Furthermore, patients with
more severe disease classified as a weighted CMTES >10 had
higher median NfL concentration compared to patients with

a CMTES <10 (p = 0.0416; figure 1B). The significant dif-
ference in plasma NfL concentration compared to controls
was maintained for individual comparisons of the 3 common
genetic subtypes included in this study (CMT1A: p < 0.0001;
SPTLC1: p < 0.001; GJB1: p = 0.011, figure 1C). Further-
more, plasma NfL concentration was also increased in in-
dividual patients with CMT1B, CMT2A, CMT4B2, and
CMT4C compared to controls (table 1).

Plasma NfL concentration increases with
advancing age
Plasma NfL concentration correlated with age and this was
more pronounced in controls than in patients with CMT
(control: r = 0.70, p < 0.0001; CMT: r = 0.28, p = 0.012;
Fisher r to z transformation (p < 0.0001); figure 2C). This is
unlikely to have confounded our analysis as the CMT and
control group were age-matched (table 1).

Figure 1 Plasma neurofilament light (NfL) concentration in Charcot-Marie-Tooth disease (CMT)

(A) Significantly increased plasmaNfL concentration in patients with CMT (n = 75) compared to healthy controls (n = 67). (B) Significantly increased plasmaNfL
concentration in patients with more severe disease (weighted CMT examination score [CMTES] >10) vs milder CMT (weighted CMTES <10) and healthy
controls. (C) PlasmaNfL concentration for the 3 largest subgroups of CMT, CMT1A (n = 31), hereditary sensory neuropathy due tomutations in SPTLC1 (n = 20),
and CMTX1 (n = 11).

Figure 2 Plasma neurofilament light (NfL) concentration and Charcot-Marie-Tooth disease (CMT) severity

(A) Significant correlation between disease severity as measured by the weighted CMT examination score (CMTES) and plasma NfL concentration. (B)
Significant correlation between plasma NfL concentration and disease severity as measured by the weighted CMT neuropathy score (CMTNS). (C) Significant
correlation between plasma NfL concentration and age, which is more pronounced for healthy controls.

e4 Neurology | Volume 90, Number 6 | February 6, 2018 Neurology.org/N

http://neurology.org/n


Plasma NfL concentration correlates with
disease severity in patients with
inherited neuropathy
The weighted CMTES and CMTNS are disease severity
scales for peripheral neuropathy that have been modified to
create a linear scale. The CMTES includes a symptom and
examination score; the CMTNS in addition includes neuro-
physiologic data. A comparison of the weighted CMTES and
plasma NfL concentration revealed a significant correlation
between NfL concentration and disease severity (r = 0.43, p <
0.0001, figure 2A). This correlation was even more positive if
the single outlier seen in figure 1 was removed (r = 0.46, p <
0.0001). The outlier is a patient with CMT1A and a weighted
CMTES score of 12 but a very high plasma NfL concentration
of 81.0 pg/mL. A retrospective clinical review of this patient
(6 years after sample collection) did not reveal an alternative
cause for the high concentration. The correlation between
plasma NfL concentration and disease severity remained
significant when correlated against the weighted CMTNS (r =
0.37, p = 0.044), although this correlation could only be
performed for the 40% of patients who had a weighted
CMTNS calculated (figure 2B). If the prominent outlier was
excluded from the analysis, the correlation coefficient was
0.46 (p = 0.012). When plasma NfL concentration was pre-
dicted using a multiple linear regression model with age and
the weighted CMTES as independent variables, it was found
that disease severity as measured using the weighted CMTES
was a significant predictor (β = 0.34, p < 0.003), whereas age
was not (β = 0.15, p = 0.17). The overall model fit was R2 =
0.17. There was no significant correlation between plasma
NfL concentration and the ulnar compound muscle action
potential (CMAP) (Pearson r = −0.227, p = 0.228).

Plasma NfL concentration is stable over 1 year
in patients with CMT
On a selected number of patients with CMT (n = 9) and
controls (n = 13), plasma samples were collected at baseline

and after 1 year. There was no significant difference in plasma
NfL concentration in patients with CMT (mean difference
−1.07 pg/mL, 95% confidence interval −8.2 to 6.0 pg/mL;
paired t test p = 0.74) or controls (mean difference +1.19
pg/mL, −0.45 to 2.8, p = 0.14) when comparing baseline with
1-year follow-up samples (figure 3A). The NfL concentration
coefficient of variability over 1 year was 16.4% in patients with
CMT and 9.2% in controls, which is similar to the interassay
variation (5%–12%) of Simoa NfL measurements. There was
no significant change in the weighted CMTES at 1 year
follow-up (mean difference −0.44, p = 0.5).

Plasma NfL concentration discriminates
patients with CMT from healthy controls
To assess the ability of plasma NfL to discriminate patients
with inherited peripheral neuropathy from controls, we
plotted a receiver operator characteristic curve (figure 3B),
which revealed an area under the curve of 0.755. A compar-
ison of the sensitivity and specificity for a range of cutoff

Figure 3 Plasma neurofilament light (NfL) concentration as a diagnostic biomarker of Charcot-Marie-Tooth disease (CMT)

(A) The individual NfL concentration at baseline and after 1 year for all patients with CMT (n = 9) and healthy controls (n = 13). Above the bars is the individual
change inweighted CMTover 1 year. There is no significant difference in plasmaNfL concentration in either patientswith CMT or healthy controls after 1 year.
(B) Receiver operator curve of NfL concentration for detecting patients with peripheral neuropathy. AUC = area under the curve.

Table 2 Sensitivity and specificity for a range of cutoff
neurofilament light (NfL) chain concentrations
for detecting patients with peripheral
neuropathy

NfL, pg/mL Sensitivity, % Specificity, %

>10 95 13

>15 83 55

>20 71 75

>25 53 81

>30 31 95

>35 21 97

>40 13 97
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values suggested that a concentration of 20 pg/mL identifies
patients with inherited peripheral neuropathy with a sensitiv-
ity of 71% and specificity of 75% (table 2).

Discussion
In this study, we have demonstrated that plasma NfL con-
centration is increased in patients with inherited peripheral
neuropathy and that it correlates with disease severity. It is
important to emphasize that raised plasma NfL concentration
was not limited to CMT1A, but was significantly elevated in
the 2 other forms of CMT with sufficient numbers of par-
ticipants for analysis (CMT1X and HSN1). This suggests
a role for plasma NfL in monitoring disease activity may be
extended to multiple forms of CMT. Further studies are
therefore warranted to discover if these results can be repli-
cated for other common forms of CMT such as CMT1B and
CMT4C. The observation of raised plasma NfL in individual
patients with these subtypes in this study is encouraging.

Increased plasma NfL concentration is not specific to CMT as
a similar increase has been reported in several other neuro-
logic disorders such as ALS, MS, FTD, and AD.5–7,14 There-
fore, plasma NfL concentration will not by itself be useful for
diagnosis; however, it may provide a dynamic measure of
axonal damage and serve as a biomarker of disease activity for
future clinical trials and monitoring response to treatment,
especially in the many conditions like CMT where neuropa-
thy is the only neurologic manifestation with no CNS in-
volvement and therefore any change in NfL levels would
reflect neuropathy changes alone. As neurofilaments are al-
most exclusively expressed in neurons, there are likely to be
few non-neurologic confounding factors; however, neuro-
filaments are expressed in T lymphocytes and theoretically the
concentration may be falsely elevated in T-cell proliferative
disorders.11

We have previously measured plasma NfH concentration in
the same cohort of patients and controls and were unable to
detect a difference or a correlation with disease severity.15

This is unsurprising and reflects similar paradoxical results in
cohorts of patients with ALS16 and may reflect the formation
of NfH aggregates resulting in falsely low levels.17 In this
study, we were also unable to detect a correlation between the
ulnar CMAP and plasma NfL concentration. One possible
explanation may be that our sample population included
many individuals withmild CMT (CMTES <10) in whom the
ulnar CMAP may be normal.

Our observation that plasma NfL concentration correlates
with disease severity in CMT suggests that plasma NfL may
also show promise as a biomarker of disease activity. The
CMT neuropathy and examination scores are clinical out-
come measures based on a patient’s symptoms, clinical ex-
amination, and neurophysiology and are currently the gold
standard for measuring disease severity for patients with

CMT.18 There are, however, several limitations to the score,
including a quasi-linear scale and a ceiling effect for severe
patients.18 A blood biomarker of axonal damage and thereby
disease activity is likely to be of considerable value in future
treatment trials in CMT and other peripheral neuropathies
that show only minimal progression during the usual 1- to
2-year period of a clinical trial. To date there have been 4 large
randomized clinical trials in patients with the commonest
form of CMT, CMT1A, comparing ascorbic acid to
placebo.19–22 All 4 trials failed to show a therapeutic benefit of
ascorbic acid, but perhaps equally as important, the first ver-
sion of the CMTNS, which was used as the primary outcome
measure in 3 of the 4 trials, was unable to detect disease
progression over a 1-year period.18 This is important, as
treatments for neurodegenerative diseases such as CMT are at
best likely to stop progression. Encouragingly, quantitative
MRI has been shown to be sensitive to detecting an increase
in the fat fraction of muscle in patients with CMT1A over
a 1-year period, suggesting its suitability as a primary outcome
measure for future treatment trials.23 The sensitivity of muscle
MRI, however, is dependent on the choice of muscle, whereby
severely affected and unaffected muscles are susceptible to
both ceiling and floor effects. A similar floor effect is also seen
with nerve conduction studies, where in a proportion of
patients with moderate to severe peripheral neuropathy, the
nerves are so severely damaged that no electrical response can
be recorded. In this regard, a blood biomarker has the
advantage of reflecting damage to all nerves and is likely to be
more sensitive to multifocal peripheral nerve diseases such as
vasculitis.

Although neurofilaments are axonal cytoskeletal proteins,
plasma concentration was similarly raised in both axonal and
demyelinating forms of CMT. This is perhaps unsurprising in
view of the importance of Schwann cell axonal interaction in
neuronal maintenance and previous observations that the
degree of disability in demyelinating CMT1A is due to the
degree of axonal loss rather than the degree of conduction
velocity slowing (a surrogate marker of demyelination).24

This finding also suggests that plasma NfL concentration may
show promise as a biomarker of disease activity in other
demyelinating peripheral neuropathies such as Guillain-Barré
syndrome and chronic inflammatory demyelinating
polyneuropathy.

We collected follow-up samples from 9 individuals with CMT
at 1 year, revealing an intrasubject variability of plasma NfL
concentration of 16.4%. As one would expect for a genetic
disease such as CMT in which there is constant but slow
progression, implying a constant level of peripheral axonal
degeneration, we could not detect a change in plasma NfL
concentration over 1 year. The plasma concentration of NfL is
likely to be dependent on the rate of production (i.e., axonal
degeneration), the volume of distribution, and the half-life. A
successful treatment for peripheral neuropathy should lead to
a reduction in axonal degeneration and a decrease in plasma
NfL concentration. Further studies will be required to assess
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the sensitivity of plasmaNfL for detecting individual temporal
changes in axonal degeneration over time.

In this study, we have shown that plasma NfL concentration is
sensitive to detecting peripheral axonal damage in CMT, that
it correlates with disease severity, and that there is little
intrasubject variability. We have not demonstrated the re-
sponsiveness of plasma NfL concentration to change in the
rate of axonal degeneration, a vital step in assessing the suit-
ability of plasmaNfL concentration in monitoring response to
therapy in peripheral neuropathy and as a biomarker for
treatment trials in CMT. Further studies addressing this point
are currently in progress.
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