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Abstract 

Repeated use of xenobiotic chemicals has selected for the rapid evolution of resistance threatening 

health and food security at a global scale. Strategies for preventing the evolution of resistance 

include cycling and mixtures of chemicals and diversification of management. We currently lack 

large-scale studies that evaluate the efficacy of these different strategies for minimizing the 

evolution of resistance. Here we use a national scale dataset of occurrence of the weed Alopecurus 

myosuroides (Blackgrass) in the UK to address this. Weed densities are correlated with assays of 

evolved resistance, supporting the hypothesis that resistance is driving weed abundance at a 

national scale. Resistance was correlated with the frequency of historical herbicide applications 

suggesting that evolution of resistance is primarily driven by intensity of exposure to herbicides, 

but was unrelated directly to other cultural techniques. We find that populations resistant to one 

herbicide are likely to show resistance to multiple herbicide classes. Finally, we show that the 

economic costs of evolved resistance are considerable: loss of control through resistance can 

double the economic costs of weeds. This research highlights the importance of managing threats 

to food production and healthcare systems using an evolutionarily informed approach in a 

proactive not reactive manner.  
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Introduction 

Xenobiotic chemicals including antibiotics, anti-cancer treatments, insecticides and herbicides, 

have brought enormous health benefits and increases in food production [1-3]. However, 

pathogens and pests are highly adaptable, and can rapidly evolve resistance to these chemicals 

rendering them ineffective. As a result, evolution of resistance is a major threat to public health 

and food security at a global scale [2-4]. 

The development of new xenobiotics plays an important role in the control of pathogens 

and pests. However, finding new chemical tools that are effective and meet regulatory safety 

standards involves significant time and cost [5]. The useful life of these chemicals can be very 

short, and in extreme cases resistance has evolved in just a few years [2, 5]. In the case of 

herbicides there have been no new modes of action developed in the past 30 years, and evolved 

resistance is reducing the range of management options available [5]. Slowing the evolution of 

resistance to current chemicals is thus a crucial priority [2, 3, 6].  Consequently, research on the 

evolution of resistance is carried out across a diverse range of applied disciplines [7, 8]. 

The primary approach to minimizing the rate of evolution of resistance is through using 

multiple xenobiotics with contrasting modes of action (MOAs: families of chemicals that target 

cellular machinery or metabolic processes in different ways). Four principal strategies exist for 

combining two or more chemical MOAs over space and time, with the objective of delaying the 

evolution of resistance to pesticides and drugs [9]: Periodic application and Responsive 

alternation (collectively referred to as ‘temporal cycling’) where treatments vary over time, but 

not space; Mosaic where treatments vary spatially but not temporally; and Combination where 

treatments vary over both space and time (with multiple MOAs administered at once). In 

medicine, drug combination therapies have slowed the evolution of resistance in HIV [10] and are 

recommended for treating tuberculosis [11] and malaria [12]. In agriculture both the scientific 

literature and industry advice suggest managing the evolution of resistance with temporal cycling 
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and/or combination of different MOAs [8, 13-18]. The rate of evolution for herbicide resistance 

should be slowed more effectively by combination (simultaneous use of multiple MOAs) than by 

responsive alternation (annual rotation) of MOAs [13, 14, 16, 17], however this has yet to be 

tested at large scales and under the usual scenario where resistance has already evolved to some 

MOAs. Notwithstanding in broad terms current management is founded on the theoretical 

prediction that increasing the diversity of chemicals used can reduce the rate of evolution of 

resistance.  

It is not inevitable that using a combination of MOAs will reduce the rate of evolution of 

resistance. The concept of combination treatment is based on the assumption that resistance to 

each MOA is driven by mutations at specific loci (target site resistance), each of which confers a 

large effect [7]. However, much resistance is driven by more general, non-specific non target site 

resistance [7]. This resistance may confer resistance to multiple MOAs, and thus combination and 

temporal cycling of products may have a reduced impact.  

To date, most recommendations for managing the evolution of resistance are predicated on 

the assumption that there are multiple effective modes of action [9]. However, this may not always 

be the case, particularly in systems where xenobiotics have been in use for several decades. 

Historical use means that some resistance already exists to some MOAs available for inclusion in 

a combination or temporal cycle. For weed control in particular this problem is exacerbated 

because new MOAs are introduced very infrequently [5]. In addition, non-target site resistance 

mechanisms may be present in populations never exposed to xenobiotics, pre-adapting those 

populations to quickly evolve resistance [19].  

In agriculture, resistance management is embedded within Integrated Management (IM), 

where pests are controlled by varying crops and management practices, including options beyond 

chemical control [20]. Significantly, mortality from non-chemical control is unaffected by the 

extent of evolved resistance and should not select for increased xenobiotic resistance. By reducing 
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population sizes independently of chemical control, IM is argued to be effective at both delivering 

pest control as well as reducing the rate of evolution to xenobiotics [21]. However, it is generally 

unclear how effective such strategies are, as well as the extent to which managers proactively use 

these methods.  

Understanding of the effectiveness of alternative strategies is limited by the availability of 

long-term management data that simultaneously records the abundance of pests, weeds or diseases 

and the extent of evolved resistance to xenobiotics.  Here we report such a dataset and use it to 

analyze the factors driving herbicide resistance at a landscape scale. We use blackgrass 

(Alopecurus myosuroides), an arable weed in the UK, as an empirical system for investigating the 

evolution of resistance at scales relevant to national cropping and food production. Data from a 

national network of farms are used to investigate the role of historical management in the 

evolution of resistance. We collated field management histories for up to 10 years on each farm, 

which allow us to measure real-world management where herbicide applications are commonly 

used alongside integrated management control methods. We describe the national distributions of 

the weed, demonstrating a large-scale cline in occurrence and confirming the role of resistance in 

driving densities. By linking densities and resistance status to management we are able to 

demonstrate how different management strategies have affected the evolution of resistance. 

Finally, we explore the wider consequences of evolved resistance, measuring the costs of 

management and showing how resistant weeds are driving losses in crop production. 

 

Results and Discussion 

Distribution and spread. The distribution of A. myosuroides is now extensive, with eighty-eight 

percent of 24 824 quadrats surveyed containing at least one blackgrass plant. Thirty-two percent of 

quadrats contained high or very high densities. We found that weed density varies geographically 

(Figures 1a and 1b) with significantly higher densities found in the southern regions of the study 
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(F=93.48, df = 564, p <0.001). For example, we recorded high and very high densities in 75% of 

quadrats in Buckinghamshire (Southern England), compared to only 20% in Yorkshire (Northern 

England). 

Changing herbicide usage suggests that A. myosuroides is becoming increasingly difficult 

to manage with chemicals: recent years have seen increases in the geographical range of 

Alopecurus myosuroides (Figure 1c) and concomitantly both the volume and diversity (Figure 1d) 

of herbicides used has increased with time as successive products become ineffective. Particularly 

evident is a dramatic increase in the use of Glyphosate (Figure 1d/e), a broad-spectrum herbicide 

that is used to manage problematic outbreaks.  

 

Is resistance driving high weed densities? Herbicide resistance was first reported in the 1950's 

[19] and, as of March 2017, is confirmed in 252 weed species globally, covering a broad range of 

herbicides [23]. Resistance is widespread in populations of A. myosuroides in the UK. The three 

herbicides tested caused <40% mortality (very high resistance) in 96% (FEN), 82% (ATL) and 

57% (CYC) of the 138 blackgrass populations, when applied at recommended field rates (see 

Experimental Procedures for details). Most populations were resistant to multiple herbicides 

(Figure 2): 79% of populations had high levels of resistance (defined as <80% mortality after 

exposure) to all three herbicides. This suggests two possibilities: firstly, that target-site resistance 

combined with extensive gene flow has led to the evolution of resistance to all three MOAs 

independently, or alternatively, evolution of resistance to one MOA confers cross resistance to the 

other MOAs (i.e. one that the plant is yet to meet), potentially through metabolic mechanisms. 

Our data indicate that resistance appears to be a key factor driving the abundance of A. 

myosuroides: we find a positive relationship between blackgrass density and herbicide resistance 

across all three herbicides tested (Figure 3a). The fraction of plants surviving herbicide treatment 

increased with blackgrass density in the source population, but the relationship differs between 
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herbicides (χ2 (3) = 128.13, p<0.001. Corrected R2=0.34; Figures 3a/b). The dry weight of 

blackgrass (per plant) after treatment with herbicides also increases with blackgrass density, and 

the relationship between weed density and biomass differs between herbicides (χ2 (3) =98.154, 

p<0.001. Corrected R2=0.52; SI: Figure S1). 

To further explore the relationship between herbicide resistance and black grass density we 

analysed the relationship between resistance and densities in successive winter wheat crops.  The 

significant relationship between herbicide resistance and density can be seen in Figure 4a, where 

fields with higher levels of resistance tended to have a higher mean density state in 2014 (F1,43 = 

12.9, P = 0.0009 ) and 2016 (F1,43 = 11.1, P = 0.0017).  As shown in Figure 4b, the relationship 

between resistance and density drives weed levels in the subsequent crops: there is a close 

relationship between densities in successive crops, correlated with resistance. Although there is 

slight evidence for increases in density between 2014 and 2016 (30 out of 45 populations 

increased in density, sign test P = 0.036) the closeness of the relationship between densities in 

2014 and 2016 (r =0.81, F1,43 = 83.1, P < 0.0001) emphasizes the importance of previous density 

and, hence historical resistance, in generating long-term infestations.  

 

How does previous management affect levels of resistance? From healthcare to agriculture a 

major objective of resistance management is to preserve the efficacy of existing chemicals by 

limiting or optimizing their use [2, 24]. Evidence suggests that resistance can evolve after as few 

as three years of consecutive use of a single xenobiotic [5] and that repeated application of 

chemicals with the same MOA has the greatest risk for evolution of herbicide resistance [25, 26]. 

Reducing the rate of evolution of resistance requires the minimization of both the survival and 

reproduction of resistant individuals. Integrated weed management (IWM), where herbicide 

strategies [18] are combined with cultural control methods such as crop rotation and soil 

cultivation [27] are the most common approach to achieve this. These strategies impose mortality 
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or reduce rates of population increase through mechanisms unconnected with susceptibility or 

resistance to xenobiotics.  

Contrary to previous literature, industry recommendations and common agricultural sector 

practice [9, 28, 29], we found that herbicide diversity does not appear to reduce the likelihood of 

herbicide resistance evolving (Table 1). Note that in our farm management data high herbicide 

diversity could be achieved through combinations (different MOA applied together on the same 

date) or temporal cycling (different MOA applied on different dates within a year), and both 

strategies were frequently employed simultaneously. Instead, we found that higher levels of 

herbicide resistance are associated with greater intensity (frequency) of herbicide applications. We 

split the management data into two time periods to allow us disentangle the effects of earlier 

management (2004-2009), from those of more recent management (2010 – 2014). The results 

were essentially the same for both, although herbicide intensity only had a significant effect on 

survival (and not dry-weight) for the more recent time period (Table 1).  

Herbicide diversity (mean number of MOA applied within a crop year) is correlated with 

herbicide intensity (mean number of herbicide application dates within a crop year) (2004 – 2009: 

rho= 0.874; 2010 – 2014: rho= 0.827). To assess the effect of this correlation we fit models with 

either herbicide diversity or herbicide intensity. Although there was a relationship between 

herbicide diversity and resistance, when compared in the same model herbicide diversity was 

always a weaker predictor of resistance than herbicide intensity, and so was not retained in any of 

the final models. The intensity of herbicide applications (number of applications within a growing 

season), irrespective of the type of herbicide, is thus the most important management variable 

correlated with the evolution of resistance.  

We considered the directionality of the relationship between herbicide usage and 

resistance. One possibility is that the relationship between volume of herbicide applied and 

resistance could reflect recent increases in herbicide use in response to high weed densities 
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resulting from resistance. Crucially three findings render this interpretation unlikely. First, as 

shown in Table 1, the relationships are robust whether we consider management in the past (2004-

2009) or recently (2010-2014). Second,  these relationships remained when we analysed data on 

resistance to the most recently introduced product to the market, Atlantis, separately 

(Supplemental Information: Table S2). Atlantis was only introduced in 2005, however the 

correlates of resistance remain the same. Thirdly, we found no relationship between weed density 

and volume of herbicide used either recently (2010-2014) or in the past (2004-2009) indicating 

that weed density is not a driver of herbicide usage, notwithstanding the correlation of both 

volume of herbicide and weed density with resistance (See Supplemental Information: Table S3). 

Taken both individually and together these three results do not support the interpretation that 

resistance is driving herbicide usage rather than vice versa.  

Our results suggest that using multiple MOAs (either in combination or cycles) may be 

ineffective as a reactive strategy for managing resistance that has already evolved. In addition, our 

analysis that focused solely on Atlantis suggests that use of multiple MOAs may also fail when 

new products appear on the market and are introduced to a combination or cycle comprised of 

older MOAs where resistance has already evolved. Given how infrequently herbicides with novel 

MOAs are introduced [5] this is likely to be a common scenario in weed control. 

A recent study in Germany found no relationship between number of MOA used and 

resistance status of A. myosuroides [30]. Alongside our finding that the intensity of herbicide 

application was a stronger predictor, we found the widespread occurrence of resistance to multiple 

herbicides in our dataset (Figure 2). This suggests a significant role for multiple herbicide 

resistance driven by metabolic mechanisms. Multiple herbicide resistance driven by metabolic 

mechanisms is a significant threat to the sustainability of chemical management because evolution 

or resistance under selection by one herbicide can lead to resistance to others, including those that 
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populations have not yet been exposed to. Thus, future options for management are constrained if 

multiple herbicide resistance is widespread.  

Another study to find that volume (intensity) of applications is a very important factor in 

the evolution of resistance, did, however, also find that combining MOAs may delay the evolution 

or resistance in systems with no evidence of metabolic resistance [31]. This highlights that the best 

management strategy may often be context dependent in terms of the previous history of herbicide 

management. The authors note that the major challenge for the future of crop production is 

identifying effective mixes against weeds that have already evolved resistance to many of the 

previously effective herbicide options [31]. This will remain to be the case even when crops are 

genetically engineered to contain traits conferring tolerance to multiple herbicides.  

Despite widely repeated recommendations that diversity of crop rotation, changes in 

cultivation and ploughing regimes should be adopted to reduce A. myosuroides infestations [32, 

33], our results fail to detect an effect of cultivation intensity, frequency of ploughing or crop type 

(PCA axis 1: combining frequency of winter wheat, cereal and autumn sown cropping) on the 

evolution of herbicide resistance (Table 1). Thus, although such techniques are expected to have 

demonstrable impacts on population sizes [33], at least in the medium-term, impacts on resistance 

are undetectable in our dataset.  

 

Measuring the impacts of evolved resistance and its management. Since its widespread 

emergence, herbicide resistance has become a major threat to global food security [34]. Herbicide 

resistant weeds are one of the biggest threats to crop yields. Weeds cause average yield losses of 

35%, worldwide [35], this figure could be much higher without effective herbicides [10]. Yield 

losses incurred by A. myosurorides infestations are thought to make it the most economically 

important weed in Western Europe [32]; our dataset offers a unique resource to estimate these 

costs from field to regional scales.       
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At the field scale, our data show total yield losses to range from 0.2% to 12.8% and overall 

yield decreased significantly with increased weed density (F1,8=5.643, p=0.045). Within fields, A. 

myosuroides only begins to impact wheat yields when it occurs at high densities (Figure 5a). 

Herbicide treatments targeted at control of A. myosuroides cost between £105/ha to £176/ha, but 

there is no relationship between costs of herbicides applied/ha and weed density 

(F1,8=1.061,p=0.33) (Figure 5b). This suggests that farmers do not vary their management 

approaches with respect to weed density. Combined costs (herbicides + yield loss) ranged from 

£115/ha to £320/ha, accounting for profit losses of between 4% and 12% (see SI: Table S5). Total 

cost of A. myosuroides (herbicide costs/ha + yield loss) increased significantly with weed density 

(F1,8 =6.631, p=0.033) (Figure 5c), where an increase in average A. myosuroides density, at the 

field level, to the next density state results in a 2.5% loss in profit. The distribution of A. 

myosuroides within a field tends to be clumped, and so average densities were often increased by a 

larger area of a field developing high density infestations, and yield losses in those areas could be 

very high (Fig 5). Increasing blackgrass density state explained 34% of the reduction in yield and 

39% of the increase in total management cost.  

 

Conclusions. Resistance to herbicides, pesticides and antibiotics creates enormous costs in terms 

of reduced health and lost food production worldwide. We demonstrate a case using a spatially 

extensive dataset where there is no evidence that using a diversity of MOAs reduces selection for 

resistance, contrary to current industry advice and scientific literature [13, 14, 16, 17]. These 

findings raise a strong caution that temporal cycling, or combinations of MOAs might not be 

enough to combat resistance at landscape scales, particularly where resistance to some MOAs has 

already evolved. This could equally be the case in pesticide and antibiotic resistance. It is a matter 

of urgency to test this hypothesis in these important systems.  
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We also find that populations of A. myosuroides only have substantial economic impacts 

when they reach high densities. This, combined with our finding that it is the number of 

applications that drives the evolution of herbicide resistance, suggest that in the long-term 

balancing herbicide usage and economic impacts against the likelihood of selecting for resistance 

will be a possible route for developing sustainable management regimes. Previous papers that 

have promoted similar ideas, for instance based on thresholds [36, 37], have made similar 

arguments. The results we present here are an empirical demonstration that reliance on herbicides 

has led to wide-scale evolution of resistance. Managing to reduce weed density is not the same 

objective as minimizing resistance. Future management should more explicitly address the 

question of how to minimize resistance and maximize the efficacy of herbicides.   

There is a belief that new compounds will continue to become available in the future [38, 

39], and so there is no need to change the way we use these valuable chemical tools. The lessons 

learned from case studies such as this are vital to ensure that the value of any new product is 

maximized. With resistance evolving over short timescales [4, 5] it is inevitable that any new 

products will become ineffective if application strategies do not change. A major imminent threat 

to food production is the growing reliance on glyphosate as a weed management tool (Figure 

1d/e). Resistance to glyphosate is already present in eight different countries [40]. How long until 

resistance to glyphosate becomes near universal is uncertain, but in evolutionary terms it is 

inevitable unless standard management practices change. 
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Figure legends 

Figure 1 a, Field level density of A. myosuroides in fields surveyed in 2014. Colours relate to mean 

weed density measured on ordinal scale from 0 (absent) to 4 (very high); green colours represent 

low weed densities, red colours represent high weed densities. b, Relationship between blackgrass 

density and latitude captured through the 2015 rapid assessment survey data (see Supplemental 

Experimental Procedures: Rapid Assessments for methodology). c, Historical distribution of 

Alopecurus myosuroides in the UK derived from Botanical Society of Britain and Ireland atlas data. 

Green dots represent records appearing in the 1960s atlas [41]. Orange dots represent new records 

appearing in the 1990s atlas [42]. Red dots represent new records from 2015/16 surveys. d, 

Herbicide usage records for Great Britain for three target-site herbicides and one broad-spectrum 

herbicide (Glyphosate), lines represent total area treated (ha) across all crops, data extracted from 

the Pesticide Usage Survey (https://secure.fera.defra.gov.uk/pusstats/) e, Total herbicide usage for 

Great Britain, line represents total area treated (ha) across all crops, data extracted from the Pesticide 

Usage Survey.  

 

Figure 2 Percentage of fields tested for resistance to three herbicides, where resistance has been 

confirmed and is highly likely to reduce herbicide effectiveness. 79% of fields were resistant to all 

three herbicides; 1% of fields were not resistant to any of the herbicides tested. Resistance refers to 

<80% mortality when herbicide applied at recommended field rate – see Experimental Procedures 

for details. 

 

Figure 3 a, Relationship between mean blackgrass density state measured on ordinal scale from 0 

(absent) to 4 (very high) and percentage survival of plants after treatment with each herbicide. 

Plotted lines represent predicted survival of weeds after treatment with herbicide for differing 

blackgrass densities; models are mixed effect models with mean blackgrass density state and 



15 
 

herbicide as fixed effects and farm name as a random effect. b, Heat maps showing percentage 

survival of plants (as a measure of herbicide resistance) to each of three herbicides. Red colours 

show high survival rates (i.e. low herbicide effectiveness), green colours show low survival rates 

(i.e. high herbicide effectiveness).  

 

Figure 4 Blackgrass density measured on ordinal scale from 0 (absent) to 4 (very high) and 

resistance status of each field that was in winter wheat in both 2015 and 2016. a, The relationship 

between density of blackgrass and resistance. Lines connect the same field across years. b, 

Relationship between densities in successive years. Point color indicates resistance to the most 

effective herbicide tested. The dashed line indicates equality in both years.  

 

Figure 5 Farm management impacts of blackgrass. a, The effect of density state on the yield for 

each 20m by 20m grid square (gray points), for 10 fields where high resolution yield data was 

available. Black points show the average effect of blackgrass density on yield, controlling for 

differences between fields. Black lines show 95% parametric bootstrapped confidence intervals. 

Relationship between; b, Costs of herbicides (£/ha), and c, total costs of blackgrass (yield loss + 

herbicide costs, £/ha), and mean density state of blackgrass for each field (each point represents 

one field). Costs were calculated at a wheat price of £115.10/t (source: Agriculture and 

Horticulture Development Board, Corn Returns). All costings were calculated at 2014 prices.  
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Table 1 Final models of herbicide resistance. Generalized linear mixed effects models (GLMM) 

were used to determine the effect of farm management histories on two measures of herbicide 

resistance (survival and dry weight) across two timeframes (old: 2004-2009 and recent: 2010 – 

2014). Mean black-grass density state, herbicide, soil type and herbicide parameters (mean number 

of herbicide application days per harvest year (herbicide intensity), mean number of herbicide 

MOAs applied within a harvest year (herbicide diversity)) were fitted as fixed effects in the models, 

and farm name was fitted as a random effect to describe the structure of the data. Observation-level 

random effects were used to account for over dispersion in the models. Here we present only the 

final models with significant predictor terms. A set of secondary analyses investigated the additional 

effect of crop type (derived from the proportion of years the field was in winter wheat/ an autumn 

sown crop/ a cereal crop), the proportion of years the field was ploughed and a mean cultivation 

intensity score. R-square values were calculated using MuMIN [39] and parametric bootstrap using 

Kenward Roger methods [40] (using the ‘pbkrtest’ package in R) were used for model comparison 

and calculation of p-values. 

 

OLD      RECENT     

                     

SURVIVAL   
Model 

fit  
   SURVIVAL   

Model 

fit  
  

Model structure 

Effect 

size 

(Sum 

Sq) 

P 

value 

R2 

GLMM 

(m) 

R2 

GLMM 

(c ) 

 Model structure 

Effect 

size 

(Sum 

Sq) 

P 

value 

R2 

GLMM 

(m) 

R2 

GLMM 

(c ) 

Black-grass 

Density 
24.311 0.001 0.281 0.353  

Black-grass 

Density 
23.380 0.001 0.275 0.351 

Herbicide 126.364 0.001    Herbicide 124.661 0.001   

Soil type 9.907 0.006    Soil type 9.634 0.006   

Herbicide intensity 17.099 0.002    
Herbicide 

intensity  
13.188 0.003   

+ Crop type 

  (PCA axis 1) 
2.244 0.168      

+ Crop type 

  (PCA axis 1) 
0.757 0.447     

+ Plough frequency  0.149 0.718    + Plough frequency  1.168 0.357   

+ Cultivation score 0.100 0.808    + Cultivation score 0.736 0.465   

           

                     

DRY WEIGHT   
Model 

fit  
   DRY WEIGHT   

Model 

fit  
  

Model structure 

Effect 

size 

(Sum 

Sq) 

P 

value 

R2 

GLMM 

(m) 

R2 

GLMM 

(c ) 

 Model structure 

Effect 

size 

(Sum 

Sq) 

P 

value 

R2 

GLMM 

(m) 

R2 

GLMM 

(c ) 

Black-grass 

Density 
7.263 0.001 0.289 0.525  

Black-grass 

Density 
7.192 0.001 0.258 0.508 

Herbicide 49.117 0.001    Herbicide 49.117 0.001   

Soil type 2.992 0.023    Soil type 2.923 0.023   

Herbicide intensity 2.863 0.013         

+ Crop type 

  (PCA axis 1) 
0.221 0.513    

+ Crop type 

  (PCA axis 1) 0.433 0.394 
  

+ Plough frequency  0.127 0.622    + Plough frequency  0.087 0.647   

+ Cultivation score 1.197 0.100    + Cultivation score 0.003 1.000   
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Methods 

We surveyed 138 fields on 71 farms across England. Study sites were selected to cover a large 

geographic range, and to include a variety of farm sizes, crop rotations and management strategies 

within each region. Two fields were selected on each farm, one known to have large black-grass 

populations and one with a smaller weed population. For accurate comparison, all fields selected 

were cropped with winter wheat for harvest in 2014.  

 

Weed population surveys 

138 Fields with black-grass present were censused in a six week period from 1st of July 2014. 

Fields were divided into contiguous 20 x 20m grid squares and weed density was estimated in 

each grid square. The surveys followed a density-structured approach, recording density state of 

black-grass rather than numerical abundance. Each grid square was assigned to one of 5 density 

states that correspond to the number of plants per 20x20m square; 0 (absent), 1 (1-160 plants), 2 

(160-450 plants), 3 (450-1450 plants) and state 4 (1450+ plants). These density states have been 

shown to accurately capture the variation within field populations and the 20 x 20m grid size 

sufficient to be representative of 1m2 subplots where blackgrass plants were physically counted 

[45]. Areas within fields that were sprayed off or cut early were classified as state 4, to reflect 

management for very high levels of black-grass infestation. 

 

Resistance testing 

We quantified resistance to three herbicides that have been commonly used for grass weed control 

in arable crops: fenoxaprop (‘FEN’: inhibitor of ACCase; Aryloxyphenoxypropionates (FOPs), 

introduced to Europe in 1989), cycloxydim (‘CYC’: inhibitor of ACCase; Cyclohexanediones 

(DIMs) introduced to Europe in 1989) and mesosulfuron-methyl, henceforth referred by its UK 

trade name Atlantis (‘ATL’: inhibitor of acetolactate synthase [ALS] introduced to Europe 2001). 
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We quantify resistance in two ways: a) survival and b) dry weight of biomass, three weeks after 

exposure to herbicide. 

Black-grass seeds were collected from ten different locations within each field surveyed in 

2014, using a semi-random seed collection strategy (See Supplemental Experimental Procedures: 

Seed Collection for further details). A. myosuroides seedlings were germinated and allowed to 

grow for 18-21 days until reaching the three leaf stage before spraying with herbicide. We tested 

for resistance to three herbicides at the following rates: 'Atlantis' (Mesosulfuron + Iodosulfuron at 

300 g ha-1), 'Cheetah' (Fenoxaprop at 1.25 L ha-1), and 'Laser' (Cycloxydim at 0.75 L ha-1). These 

application rates were chosen as previous experimentation has shown them to provide the best 

approximation of field rate doses under glasshouse conditions and were applied with a track 

sprayer. Plants remained in the glasshouse for three weeks following herbicide treatment, at which 

point plant mortality was recorded before harvesting aboveground biomass from each pot. Plant 

material was dried at 80°C for 48 hours before weighing (See Supplemental Experimental 

Procedures: Resistance Testing for more details). 

 

Field Management Data 

Historical field management data was requested for each of the 138 fields that we surveyed for 

weed density. Data were available for 96 fields and up to 10 years data were collated for each 

field. For each year we recorded the following: crop, first cultivation type and herbicide 

applications (product name and date of application). From this we derived herbicide intensity 

(average number of herbicide application days per year) and herbicide diversity (average number 

of modes of action applied per year). We also derived cropping patterns (e.g. autumn or spring 

sown, cereal or non-cereal). Cultivation types were recorded and scored on a scale of intensity 

from 0-4 (where direct drilling = 0, to ploughing = 4) (See Supplemental Experimental 

Procedures: Cultivation Intensity Scores for more detail). Soil type for each field was extracted 
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from the National Soil Resources Institute, NATMAP1000 database and classified into two groups 

(clays, non-clays) after [46, 47]. Where available, yield maps were obtained for fields that we 

surveyed to enable direct comparison of within field black-grass density and crop yield. See 

Supplemental Information: Table S1 for outlines of chemical/ cultural control techniques and 

corresponding model input variables. 

 

Statistical analyses 

Does resistance drive weed abundance and the role of diversity of management in the evolution 

of resistance? 

We used R (v 3.2.2) and lme4 [48] to perform linear mixed effects analyses of the relationship 

between herbicide resistance, black-grass density and farm management parameters. Herbicide 

resistance was classified in two ways; firstly, as a binary parameter of plant survival three weeks 

after herbicide application (number that survived and number that died), and secondly, as dry 

weight of above ground plant material three weeks after herbicide application. We modeled the 

survival measure of resistance using a binomial error term and the dry weight measure of 

resistance using a normal error distribution.  

Models were created for both measures of resistance using both older (2004 to 2009) and 

more recent (2010 to 2014) management records, so that a total of four models were built (Table 

1). Field management histories were split into two time-frames to assess whether management had 

changed over the preceding 10 years. In all models mean weed density state and herbicide were 

entered as fixed effects, along with management predictors; herbicide intensity (mean number of 

herbicide application days per harvest year), herbicide diversity (mean number of herbicide MOAs 

applied within a harvest year), a measure of crop rotation (PCA axis 1 that describes crop choice, 

Table S1), proportion of years the field was ploughed, and mean cultivation intensity score.  Soil 

type was also included in the models (Table 1, SI: Tables S2 and S3). 
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Farm was used as a random effect to account for multiple fields within a farm. We used a 

hierarchical approach, putting the most important terms into the model first (i.e. black-grass 

density state and herbicide). Observation-level random effects were used to account for over 

dispersion in the survival model [49]. Visual inspection of residual plots did not reveal any 

obvious deviations from homoscedasticity or normality. 

  Marginal and conditional R-squared values were calculated for resulting models using the 

‘MuMIN’ package [39]. Parametric bootstrapping was used for mixed model comparison and to 

calculate p-values for each predictor in the final models (using the ‘pbkrtest’ package [42]). Model 

residuals were plotted against farm name. Moran’s I (using R package ‘lctools’ [50]) was used to 

test for spatial autocorrelation. 

To test the relationship between resistance and black grass density we used a linear model 

to predict Ln(mean density state) for each field in winter wheat. We use resistance to the most 

effective herbicide as a measure of resistance because most farmers applied multiple herbicides 

and resistance was correlated across herbicides (Figure 2). Under these conditions the efficacy of 

the most effective herbicide will determine overall efficacy. Densities in successive years were 

compared with resistance and with each other using simple linear models.  

 

What impact does a black-grass infestation have on yield? 

For ten fields where high resolution wheat yield data were available black-grass density data were 

overlaid onto yield maps (in ArcGIS 10.1). Mean yield (t/ha) was extracted for each 20x20m grid 

square in which black-grass density had been estimated. For each field, details of products applied 

for control of A. myosuroides were obtained within that crop year (product name, date applied, rate 

applied). Herbicide product prices were obtained from industry sources and prices per hectare 

were calculated for the application of each herbicide. We assume a wheat price of £115.10/t 
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(source: Agriculture and Horticulture Development Board, Corn Returns). All costings were 

calculated at 2014 prices, in line with the time of data collection and weed surveys. 

We used the linear model yield ~ density state + (density state | field) to predict yield at the 

20m by 20m grid square level (fit using lmer() in the 'lme4' package) for the ten fields with high 

resolution yield data. Density state was treated as categorical to allow a non-linear effect of 

density on yield, and field was used as a random effect to control for differences between fields. 

Linear regressions were performed on field scale relationships between weed density and 

herbicide costs/ha, and weed density and total costs of A. myosuroides (herbicide costs + yield 

loss) for these same ten fields.  

  


