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Abstract Weprovide a detailed hands-on tutorial for theR package SemiParSample-
Sel (version 1.5). The package implements selection models for count responses fitted
by penalizedmaximum likelihood estimation. The approach can dealwith non-random
sample selection, flexible covariate effects, heterogeneous selection mechanisms and
varying distributional parameters. We provide an overview of the theoretical back-
ground and then demonstrate how SemiParSampleSel can be used to fit interpretable
models of different complexity. We use data from the German Socio-Economic Panel
survey (SOEP v28, 2012. doi:10.5684/soep.v28) throughout the tutorial.

Keywords Copula · Non-random sample selection · Penalized regression spline ·
Selection bias · Count response · Tutorial

1 Introduction

The sample selection model was introduced by Gronau (1974), Lewis (1974) and
Heckman (1976) to deal with the situation in which the observations available for
statistical analysis are not from a random sample of the population, and discussed
by Heckman (1990) among others. This issue occurs when individuals select them-
selves into (or out of) the sample based on a combination of observed and unobserved
characteristics. Estimates based on models that ignore such a non-random selection
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may be biased and inconsistent. This situation can be rectified using sample selection
models, which typically consist of a two-equation system: a binary selection equa-
tion determining whether a particular statistical unit will be available in the outcome
equation.

Let us consider a case study which uses data from the German Socio-Economic
Panel survey (SOEP v28 2012) which will be analyzed in more detail in Sect. 3.
The aim of the study is to estimate the determinants of labor mobility as well as the
average number of job changes. Non-random selection arises if the sample consisting
of individuals who are in the job market differ in important characteristics from the
sample of individuals who are not part of the market. If the link between the decision
to be part of the market and number of direct job changes (i.e., changes without an
intervening spell of unemployment) is through observables, then selection bias can
be avoided by accounting for these variables. However, if the link is also through
unobservables then inconsistent parameter estimates are produced when using classic
univariate modeling approaches. There are several other aspects that may complicate
modeling labor mobility. Variables such as employment and length of education in
years may have non-linear impacts on decision of being part of the job market and on
the number of direct job changes, possibly due to productivity and life-cycle effects;
imposing a priori a linear relationship (or non-linear by simply using quadratic poly-
nomials, for example) could mean failing to capture interesting complex relationships.
In addition, the assumption of bivariate normality employed in many sample selec-
tion models between, in this case, decision to be part of the job market and number
of job changes may be too restrictive for applied work and it is typically made for
mathematical convenience. Finally, the outcome of interest is a count variable.

The literature on sample selection models is vast and many variants of such models
have been proposed; without claim of exhaustiveness here we mention some works.
Chib et al. (2009) andWiesenfarth and Kneib (2010) introduced two estimation meth-
ods to deal with non-linear covariate effects. Specifically, the approach of the former
authors is based onMarkov chainMonte Carlo simulation techniques and uses a simul-
taneous equation system that incorporates Bayesian versions of penalized smoothing
splines. The latter further extended this approach by introducing a Bayesian algorithm
based on low rank penalized B-splines for non-linear and varying-coefficient effects
and Markov random-field priors for spatial effects. Marra and Radice (2013) pro-
posed a frequentist counterpart which is computationally fast. Greene (1997), Terza
(1998), Winkelmann (1998), Miranda (2004), Miranda and Rabe-Hesketh (2006) and
Bratti and Miranda (2011) discuss fully parametric methods for estimating count data
models allowing for overdispersion. These are based on the Poisson distribution and
normally distributed unobserved heterogeneity. The common and limiting factor of
these approaches is the assumption of bivariate normality.

Various methods that relax the assumption of normality have been proposed over
the years; these include semiparametric (e.g., Gallant and Nychka 1987; Lee 1994;
Powell 1994; Newey 2009) and nonparametric methods (e.g., Das et al. 2003; Lee
2008; Chen and Zhou 2010). Another way to relax the normality assumption is to use
non-Gaussian parametric distributions. Recently, Marchenko and Genton (2012) and
Ding (2014) extended the sample selection model to deal with heavy-tailedness by
using the bivariate Student-t distribution. Another example of non-Gaussian paramet-
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ric approach is copulamodelingwhich allows for a great deal of flexibility in specifying
the joint andmarginal distributions of the selection and outcome equations (e.g., Smith
2003; Prieger 2002; Hasebe and Vijverberg 2012; Schwiebert 2013). In the context
of count responses, Marra and Wyszynski (2016) propose a copula-based approach,
where covariates can be modeled flexibly using splines. There are advantages and dis-
advantages to both approaches (semi/non-parametric and parametric). The strongest
point of the semi/non-parametric approach is the property of maintaining consistency
of such estimators even disposing, in part or altogether, of distributional assumptions.
However, semi/non-parametricmethods are usually restrictedwhen it comes to includ-
ing a large set of covariates in the model and the resulting estimates are inefficient
relatively to fully parametrized models (e.g., Bhat and Eluru 2009). To date, pack-
ages implementing semi/non-parametric procedures are CPU-intensive and the set of
options provided is often quite limited. As for the parametric approach, many scholars
agree upon its greater computational feasibility as compared to semi/non-parametric
approaches, which allows for the use of familiar tools such as maximum likelihood
without requiring simulation methods or numerical integration. As pointed out by
Smith (2003), maximum likelihood techniques allow for the simultaneous estimation
of all model parameters, and such methods, if the usual regularity conditions hold and
themodel is correctly specified, ensure consistent, efficient and asymptotically normal
estimators. While a fully parametric copula approach is less flexible than semi/non-
parametric approaches, it is still allows the user to assess the sensitivity of results to
different modeling assumptions. Specifically, the wide selection of potential copulae
allows the modeler to perform sensitivity analysis to assess changes in results.

Some of the methods described above are implemented in popular software pack-
ages like SAS (SAS Institute Inc 2013), Stata (StataCorp 2011), LIMDEP (Greene
2007), EViews (IHS Global Inc. 2015) and R (R Development Core Team 2016). For
example, the conventional Heckman sample selectionmodel can be fitted in SAS using
the proc qlim procedure and in Stata using heckman statement. The non-parametric
method by Lee (2008) can be employed using the Stata package leebounds and the
bivariate Student-t distribution Heckman model using heckt. The Poisson count data
model by Miranda and Rabe-Hesketh (2006) can be employed in Stata using ssm.
In R the sample selection packages are sampleSelection (Toomet and Henningsen
2008), bayesSampleSelection (Wiesenfarth and Kneib 2010), ssmrob (Zhelonkin
et al. 2013) and SemiParBIVProbit (Marra and Radice 2015). sampleSelection and
bayesSampleSelectionmake the assumption of bivariate normality between themodel
equations. sampleSelection and ssmrob assume a priori that continuous regressors
have linear or pre-specified non-linear relationships to the responses, whereas ssmrob
relaxes the assumption of bivariate normality by providing a robust two-stage estima-
tor of Heckman’s approach. sampleSelection and SemiParBIVProbit support binary
responses for the outcome equation, with the latter allowing for non-linear covariate
effects and non-Gaussian bivariate distributions. The R package SemiParSampleSel
(Marra et al. 2017b;Wojtyś et al. 2016) deals simultaneously with non-random sample
selection, non-linear covariate effects and non-normal bivariate distribution between
the model equations. Covariate-response relationships are flexibly modeled using a
spline approach, whereas non-normal distributions are dealt with by using copula
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functions. Note that copulaSampleSel() in GJRM (Marra and Radice 2017) works
as SemiParSampleSel() in SemiParSampleSel.

In this paper, we further extend the SemiParSampleSel package (v. 1.5) by allow-
ing the outcome to be modeled as a discrete random variable, and by allowing the
mean, the higher order moments and the copula dependence parameter to be heteroge-
neous by specifying flexible linear predictor equations for each of them. Our approach
of allowingmultiple parameters to vary by observation follows the same rationale pro-
vided by Rigby and Stasinopoulos (2005), who extended generalized additive models
to the context of more complex response distributions. As suggested by Marra and
Wyszynski (2016), we expand the number of available outcome distributions; these
include, for instance, beta binomial and zero inflated margins (see “Appendix 1”).

The rest of the paper is organized as follows: in Sect. 2, we provide a brief theoretical
overview of the sample selection modeling approach for count data and its properties
(this is based on: Marra andWyszynski 2016). Section 3 presents SemiParSampleSel
by describing its main infrastructure and how to use the package to obtain interpretable
statistical models. Using SemiParSampleSel, we provide a step-by-step illustration
on how to use sample selection models for count data in R to build a prediction model
for SOEP data. A summary of the paper is given in Sect. 4.

2 An overview of sample selection models for count data

2.1 Model definition

In the sample selection problem, our aim is to fit a regression model when some
observations of the outcome variable, Y2i for i = 1, . . . , n, are missing not at random.
We will use a latent continuous variable Y ∗

1i such that Y1i = 1(Y ∗
1i > 0), where 1 is the

indicator function and Y1i governs whether or not an observation on the variable of
primary interest is generated. We assume normality for Y ∗

1i and a discrete distribution,
F , (see “Appendix 1” for all possible choices and Fig. 1 for illustration) for Y2i . That
is, Y ∗

1i ∼ N (μ1i , 1) (which yields a probit model for Y1i ) and Y2i ∼ F(μ2i , σi , νi ),
where μ1i , μ2i are location parameters; σi is the scale parameter and νi is the shape
parameter. Note that we are considering parametrization for the most generic case of
F , although other parametrizations such as F(μ2i ) and F(μ2i , σi ) are possible.

We can represent the random sample using a pair of variables (Y1i ,Y2i ). Let F
denote the joint cumulative distribution function (cdf) of (Y1i ,Y2i ) and let F1 and F2
be the marginal cdfs pertaining to Y1i and Y2i , respectively. The model is then defined
by using the copula representation (Sklar 1959)

F(y1i , y2i ) = C(F1(y1i ), F2(y2i ); θi ),

for some two-place function C , where θi is an association parameter measuring the
dependence between the two marginal cdfs. For details on binding continuous and
discrete margins see Marra and Wyszynski (2016). In the presented package, the
families currently implemented are normal, Clayton, Joe, Frank, Gumbel, Farlie–
Gumbel–Morgenstern (FGM), and Ali-Mikhail-Haq (AMH; for examples of copulae,
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Fig. 1 Probability mass functions of the Poisson (a), negative binomial (b), Delaporte (c) and Poisson
inverse Gaussian (d) distribution. The parameter values have been chosen arbitrarily to show different
shapes of the distributions. For Poisson, μ is 1, 2 and 5, represented as rectangular, circular and triangular
lines respectively. Similarly, for negative binomial and Poisson inverse Gaussian, μ and σ are (1, 1), (5, 2)
and (30, 3). For Delaporte, μ, σ and ν are (1, 1, 0.1), (5, 2, 0.3) and (30, 3, 0.5). Note that Delaporte can
have thinner or thicker tails depending on the choice of parameters. At the same time, the tails of Poisson
are thinner than those of Delaporte (see: Marra and Wyszynski 2016)

seeTable 6 in “Appendix 1”).Rotations by90, 180 and270degrees forClayton, Joe and
Gumbel can be obtained (see also Fig. 2 Brechmann and Schepsmeier 2013). Despite
the fact that θ cannot be interpreted directly, it can be transformed into Kendall’s τ

ranging on the interval [−1, 1] yielding a general interpretation for all copulae (for
a discussion on Kendall’s τ for continuous and discrete margins see: Genest and
Neslehova 2007; Marra and Wyszynski 2016).

The log-likelihood function for the sample selection model can be generically
expressed as a product over two disjoint subsets of the sample: one for the obser-
vations with a missing value of the response of interest and the other for the remaining
observations (Smith 2003). In the first case, the likelihood takes the simple form of
Pr(Y1 = 0), which is equivalent to F1(0). In the second case, the joint likelihood can
be expressed, using the multiplication rule, as P(Y2 = y2,Y1 = 1). We dropped the
observation index i to avoid clutter:

L =
∏

0

Pr(Y1 = 0)
∏

1

P(Y2 = y2,Y1 = 1)

=
∏

0

Pr(Y ∗
1 ≤ 0)

∏

1

f2|1(y2|y∗
1 > 0)Pr(Y ∗

1 > 0).
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Fig. 2 Contour plots of Frank (a), Joe (b), Clayton 90 (c) and Gumbel 270 (d) copulae. 5000 deviates were
generated for each copula. The first margin is Poisson, whereas the second is standard normal. Kendall’s
τ was set to 0.7. The plots have different shapes depending on the copula. For instance, Joe copula shows
greater tail dependence in upper right corner, whereas Clayton 90 shows greater tail dependence in lower
right corner (see: Marra and Wyszynski 2016)

Note that for the continuous response

f2|1(y2|y∗
1 > 0) = ∂

∂y2

F2(y2) − F(0, y2)

F1(1)

= 1

1 − F1(0)

∂

∂y2
(F2(y2) − F(0, y2))

= 1

1 − F1(0)
( f2(y2) − ∂

∂y2
F(0, y2)), (1)

and the log-likelihood will be

� =
∑

0

log F1(0) +
∑

1

log( f2(y2) − ∂

∂y2
F(0, y2)).

In the third line of (1), for the discrete y2, the derivative cannot be computed, since
F2(y2) is discontinuous on the integers in its domain. We will calculate the derivative
with respect to y2 using finite differences (Nikoloulopoulos and Karlis 2009)

f2|1(y2|y∗
1 > 0) = 1

1 − F1(0)
{F2(y2) − F2(y2 − 1)} − 1

1 − F1(0)
{F(0, y2) − F(0, y2 − 1)}

= 1

1 − F1(0)
[{F2(y2) − F2(y2 − 1)} − {F(0, y2) − F(0, y2 − 1)}]
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Fig. 3 Modular relations
between functions in
SemiParSampleSel R package.
The arrows indicate the
direction in which the functions
are called. For instance,
SemiParSampleSel calls
fit.SemiParSampleSel

fit.SemiParSampleSel

ghssDuniv ghssD

marginBitsD copulaBitsD

SemiParSampleSel

= 1

1 − F1(0)
{F2(y2) − F2(y2 − 1) − F(0, y2) + F(0, y2 − 1)}

= 1

1 − F1(0)
{ f2(y2) − F(0, y2) + F(0, y2 − 1)}.

The model log-likelihood will be given by (Marra and Wyszynski 2016)

� =
∑

0

log F1(0) +
∑

1

log( f2(y2) − F(0, y2) + F(0, y2 − 1)). (2)

Figure 3 illustrates how the main SemiParSampleSel function decomposes the
likelihood in (2) in a modular fashion. The probability mass function, f2(y2), and
cumulative distribution functions, F1(0), F2(y1) and F2(y1 − 1), and their deriva-
tives are obtained by marginBitsD. The copulae, F(0, y2) and F(0, y2 − 1),
and their derivatives with respect to cumulative distribution functions are com-
puted with copulaBitsD. The ghssD function makes use of marginBitsD
and copulaBitsD and constructs an object encompassing the likelihood of
the sample selection model and its first and second derivatives. The univari-
ate counterpart of the sample selection model, ghssDuniv, likewise utilizes
information provided by marginBitsD. The parameter estimation is conducted
by fit.SemiParSampleSel and both inputs and outputs are processed by
SemiParSampleSel. Hence, one can implement potentially any margin or copula
with great ease without changing the general structure of the likelihood. For instance,
let us denote the parameters associated with the outcome linear predictor as δ2. The
general expression of the first derivative of (2) with respect to δ2 is

∂�

∂δ2
=

∑

1

1

f2(y2) − F(0, y2) + F(0, y2 − 1)
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×
(

∂ f2(y2)

∂δ2
− ∂F(0, y2)

∂F2(y2)

∂F2(y2)

∂δ2
+ ∂F(0, y2 − 1)

∂F2(y2 − 1)

∂F2(y2 − 1)

∂δ2

)
, (3)

In this case,copulaBitsDwill evaluate two derivatives and three derivatives will
be processed by marginBitsD. The entire expression will be obtained via ghssD.
Hence, implementing an additional copula or margin requires solely changes in either
copulaBitsD or marginBitsD.

2.2 Linear predictor specification

We assume that the mean, scale, shape and copula parameters, μ1i , μ2i , σi , νi and
θi , are linked with the predictors ηvi , v = 1, . . . , 5, i.e., μ1i = η1i , gμ(μ2i ) = η2i ,
gσ (σi ) = η3i , gν(νi ) = η4i and gθ (θi ) = η5i , where the link functions g depend on
the distributions of y2i and on the copula functions (see “Appendix 1”). For simplicity,
andwithout loss of generality, we suppress the v subscript and define the generic linear
predictor as

ηi = uTi α +
K∑

k=1

sk(zki ), i = 1, . . . n,

where vector uTi = (1, u2i , . . . , uPi ) is the i th row of U = (u1, . . . ,un)T, the n × P
model matrix containing P parametric model components (e.g., intercept, dummy
and categorical variables), α is a parameter vector, and the sk are unknown smooth
functions of the K continuous covariates zki . The smooth functions are subject to the
centering (identifiability) constraint

∑
i sk(zki ) = 0, k = 1, . . . , K (Wood 2017).

The smooth functions are represented using regression splines, where, in the
one-dimensional case, a generic sk(zki ) is approximated by a linear combination of
known spline basis functions, bkj (zki ), and regression parameters, βk j , i.e., sk(zki ) =∑Jk

j=1 βk j bk j (zki ) = βT
kBk(zki ), where Jk is the number of spline bases used to rep-

resent sk , Bk(zki ) is the i th vector of dimension Jk containing the basis functions

evaluated at the observation zki , i.e., Bk(zki ) = {
bk1(zki ), bk2(zki ), . . . , bk Jk (zki )

}T,
and βk is the corresponding parameter vector. Calculating Bk(zki ) for each i yields
Jk curves (encompassing different degrees of complexity) which multiplied by some
real valued parameter vector βk and then summed will give a (linear or non-linear)
estimate for sk(zk) (see, for instance, Marra and Radice (2010) for a more detailed
overview). Basis functions should be chosen to have convenient mathematical and
numerical properties. B-splines, cubic regression and low rank thin plate regression
splines are supported in our implementation (see Wood (2017) for full details on these
spline bases).Our implementation also supports varying coefficients’models, obtained
by multiplying one or more smooth terms by some predictor(s), smooth functions of
two or more (e.g., spatial) covariates, random effect and Markov random field smooth
functions, to name but a few (Wood 2017). These cases follow a similar construction
as described above. See, for instance, Wood (2017); Marra et al. (2017a).

In principle, the parameters of the sample selection model are identified even if the
same regressors appear in both linear predictors (e.g., Wiesenfarth and Kneib 2010).
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However, better estimation results are generally obtained when the set of regressors
in the selection equation contains at least one or more regressors (usually known as
exclusion restrictions) that are not included in the outcome equation (e.g., Marra and
Radice 2013).

2.3 Estimation approach

Unpenalized estimation can result in smooth term estimates that are too rough and
overfitting (e.g., Wood 2017). This issue is dealt with by using a roughness penalty
term (Ruppert et al. 2003; Wood 2017). Denote the log-likelihood function as �(δ),
where δT = (δT1 , . . . , δT5 ). Note that this parameter vector’s definition is the most
generic given the marginal distributions considered in this paper (this is consistent
with zero inflated negative binomial, for instance). For outcome margins parametrized
only in terms of μ (e.g., Poisson) we would have δT = (δT1 , . . . , δT3 ), whereas for
distributions parametrized in terms of bothμ and σ (e.g. beta binomial) we have δT =
(δT1 , . . . , δT4 ). For each smooth svkv (zvkv ) we have a penalty such that βT

vkv
Svkvβvkv

,
where Svkv is a positive semi-definite penalty matrix with known coefficients. The
quadratic expression is used, since it measures the second-order roughness of the
smooth terms in the model. The form of the penalty Svkv will depend on the selected
spline basis (Wood 2017). The function to maximize is

�p(δ) = �(δ) − 1

2
δTSλδ. (4)

where Sλ = diag(0TP1 , λ1k1S1k1 , . . . , λ1K1S1K1 , 0
T
P2

, λ2k2S2k2 , . . . , λ2K2S2K2 , 0
T
P3

,

λ3k3S3k3 , . . . , λ3K3S3K3 , 0
T
P4

, λ4k4S4k4 , . . . , λ4K4S4K4 , 0
T
P5

, λ5k5S5k5 , . . . , λ5K5S5K5)

in the most generic case; λvkv represents smoothing parameters which control for the
trade-off between fit and smoothness.

The estimation algorithm is structured in two main steps which are iterated until
convergence:

Step.1 For a given vector δ[a], and maintaing smoothing parameter fixed at λ[a], find
the new iterate for δ using trust region approach (Chapter4 Nocedal andWright
2006):

min
p

�̆p(δ
[a]) def= −

{
�p(δ

[a]) + pT(g[a] − S
λ̂
δ̂
[a]

) + 1

2
pT(H[a] − S

λ̂
)p

}
so that ‖p‖ ≤ r [a],

δ[a+1] = arg min
p

�̆p(δ
[a]) + δ[a],

where ‖ · ‖ denotes the Euclidean norm and r [a] represents the radius of the
trust region. After dropping the iteration index, the score vector g is defined by
five subvectors go = ∂�(δ)/∂δo for o = 1, . . . , 5, while the Hessianmatrix has
a 5 × 5 matrix block structure with (r, h)th element Hr,h = ∂2�(δ)/∂δr∂δTh ,
r, h = 1, . . . , 5. At each iteration of the algorithm, �̆p(δ

[a]) is minimized
subject to the constraint that the solution falls within a trust region with radius
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r [a]. The proposed solution is then accepted or rejected and the trust region
expanded or shrunken based on the ratio between the improvement in the
objective function when going from δ[a] to δ[a+1] and that predicted by the
quadratic approximation. Note that, near the solution, the trust region Newton
algorithm typically behaves as a Newton algorithm (Chapter 4 Nocedal and
Wright 2006).

Step 2 For a given smoothing parameter vector value λ[a], and maintaining δ[a+1]
fixed, find an estimate of λ:

minimize
1

n∗ ||√W(z − Xδ̃)||2 − 1 + 2

n∗ tr (Aλ) w.r.t. λ, (5)

where
√
W is a weight non-diagonal matrix square root, z is the pseudo-data

vector consisting of 5-dimensional subvectors zi defined as zi = Xiδ
[a] +

W−1
i di , di = {∂�(δ)i/∂η1i , . . . , ∂�(δ)i/∂η5i }T, Wi is a 5 × 5 matrix with

(r, h)th element (Wi )rh = −∂2�(δ)i/∂ηri∂ηhi , r, h = 1, . . . , 5, Xi =
diag

{(
uT1i ,B

T
1i

)
, . . . ,

(
uT5i ,B

T
5i

)}
, δ̃ = (

XTWX + Sλ

)−1
XTWz, n∗ = 5n,

√
WA = √

WX
(
XTWX + Sλ

)−1
XTW is the hat matrix, and tr(Aλ) the

estimated degrees of freedom (ed f ) of the penalized model (e.g., Marra and
Wyszynski 2016). The iteration index has been dropped to avoid clutter. We
will use the approach by Wood (2004) to perform minimization of (5), which
turns out to be computationally efficient and stable.

2.4 Confidence intervals, variable and model selection

Inferential theory for penalized estimators is complicated by the presence of smoothing
penalties which undermines the usefulness of classic frequentist results for practical
modeling. As shown in Marra and Radice (2013), reliable pointwise confidence inter-
vals for the terms of a regression spline sample selection model can be constructed
using

δ|z�̇N (δ̂,Vδ), (6)

where δ̂ is an estimate of δ and Vδ = (−H + S
λ̂
)−1. The structure of Vδ is such

that it includes both a bias and variance component in a frequentist sense, which is
why such intervals exhibit close to nominal coverage probabilities (Marra and Wood
2012). Given (6), confidence intervals for linear and non-linear functions of the model
parameters can be easily obtained. For instance, for a generic ŝk(zki ) these can be
obtained using

ŝk(zki )�̇N (sk(zki ),Bk(zki )
TVδkBk(zki )),

where Vδk is the submatrix of Vδ corresponding to the regression spline parameters
associated with kth function. Intervals for non-linear functions of the estimated model
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coefficients can be conveniently obtained by simulation from the posterior distribution
of δ. As for the parametric model components, using (6) is equivalent to using classic
likelihood results because such terms are not penalized. Intervals for average values
of σ , ν and θ can be obtained by simulating from the posterior distribution of δ as
follows:

1. Draw nsim random vectors from (6).
2. Calculate nsim simulated realizations of the function of interest. For example, since

gσ (σi ) = η3i , σ sim
i = (σ sim

1i , σ sim
2i , . . . , σ sim

nsimi
) where σ sim

oi = g−1
σi

(ηsim3oi ), o =
1, 2, . . . , nsim . For each o, obtain the mean value of σ sim

oi across all observations.
3. Using σ sim , calculate the lower, ξ/2, and upper, 1 − ξ/2, quantiles. For 95 per

cent Bayesian confidence intervals, ξ is set to 0.05.

Copula models with a single dependence parameter can be thought of as non-nested
models. As suggested by Zimmer and Trivedi (2006) among others, one approach for
choosing between copula models is to use either the Akaike or (Schwarz) Bayesian
information criterion (AIC and BIC, respectively). In our case, AIC = −2�(δ̂)+2ed f
andBIC = −2�(δ̂)+log(n)ed f , where the log-likelihood is evaluated at the penalized
parameter estimates and ed f = tr(Â

λ̂
). Other model selectionmethods include Vuong

andClarke test (Vuong 1989;Clarke 2007),whichwill be illustrated in the next section.

3 The package SemiParSampleSel

As pointed out above, the R package SemiParSampleSel implements model-based
penalized maximum likelihood estimation that results in interpretable models. As
mentioned in Sect. 2.1, the SemiParSampleSel package offers a modular nature that
allows to specify a wide range of non-random selectionmodels. The non-random sam-
ple selection model is specified as the combination of a distributional assumption and
structural assumptions. Unlike in the case of Greene (1997), the distributional assump-
tion specifies the conditional distribution of the outcome. The structural assumption
specifies the types of effects that are to be used in themodel, i.e., it represents the deter-
ministic structure of the model. Usually, it specifies how the predictors are related to
the conditionalmean, variance and shape of the outcome variable and how the selection
mechanism and the outcome are related.

The function SemiParSampleSel() provides an interface to fit sample selec-
tion models for continuous and count data. Before we show how one can use the
function to fit this model to estimate the determinants of labor mobility, we give a
short overview on the function:

SemiParSampleSel(formula, data = list(), BivD = ‘‘N’’,
margins = c(‘‘probit’’, ‘‘NB’’), \ldots)

The model is specified using a formula which is a list of five formulas, one for the
mean of the selection equation, three for the mean, variance and shape of the outcome
equation and one for the copula parameter. These are glm() like formulas except that
smooth terms can be included in the equations as for gam() in mgcv. For instance,
the formulas for the mean of the selection equation may look like:
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y.sel ˜ as.factor(x1) + s(x2, bs = ‘‘cr’’, k = 10, m = 2) + ...

and that for the scale parameter of the outcome equation:

˜ as.factor(x1) + s(x3, x4) + \cdots

where y.sel represents the binary selection variable, x1 is a categorical predictor,
and the s() terms are used to specify smooth functions of the continuous predictors
x2, x3 and x4. Argument bs specifies the spline basis; possible choices include
cr (cubic regression spline), cs (shrinkage version of cr), tp (thin plate regression
spline) and ts (shrinkage version of tp). Bivariate smoothing, e.g., s(x3, x4), is
achieved using bs = “tp”. k is the basis dimension (default is 10) and m the order
of the penalty (default is 2). More details and options on smooth term specification
can be found in the documentation of mgcv. SemiParSampleSel does not currently
support the use of tensor product smooths. The data set is provided as a data.frame
via the data argument. The type of bivariate copula linking the selection and outcome
equations can be specified through BivD. Possible choices are “N”, “C0”, “J0”,
“FGM”, “F”, “AMH” and “G0” which stand for bivariate normal, Clayton, Joe,
Farlie-Gumbel-Morgenstern, Frank, Ali-Mikhail-Haq and Gumbel. Rotated versions
(90, 180 and 270 degrees) of the asymmetric copulae are also implemented (“C90”,
“C180”, “C270”, “J90”,…). For more details on available copulae see “Appendix
1”. The argument margins specifies the marginal distributions of the selection and
outcome equations, given in the form of a two-dimensional vector which is equal to
c(“probit”,“NB”) for normal and negative binomial margins. The first margin
currently admits only the normal distribution (“probit”). The second margin can
also be “N”, “GA”, “NB”, “D”, “PIG” or “S” which stand for normal, gamma,
negative binomial, Delaporte, Poisson inverse Gaussian and Sichel (see “Appendix ”).
Details on all the other arguments, including starting value and control options, and
the fitted-object list that the function returns can be found in Marra et al. (2017b). See
also data simulation function in Appendix 2, for example.

Apart from SemiParSampleSel(), the package also encompasses several other
functions, which offer some numerical and graphical interpretations. These will be
presented in the next section:

• resp.check(y, margin = “P”). This function preliminarily checkswhe-
ther the (non-missing) response follows one of the discrete distributions. This is
done by generating a kernel density and normalized and randomized QQ-plot (for
details see: Stasinopoulos and Rigby 2007). Distributions that require a binomial
denominator (e.g., binomial) need to specify bd as an argument.

• conv.check() provides some information about the convergence of the algo-
rithm.

• summary(). The summary function of SemiParSampleSel(); analogical
to the one in glm and gam.

• AIC() and BIC() return Akaike and Bayesian information criteria.
• VuongClarke() performs Vuong and Clarke test for comparing two competing
models. For example, these can be models that differ on the choice of copula.

• aver() provides the average predicted values for the entire data set. When
univariate = TRUE, the average prediction for the univariatemodel ignoring
non-random sample selection is returned.
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Table 1 Variables of SOEP
data

Name Description

selection Binary selection variable; 1 if the individual
is part of the job market;

0 otherwise.

EXPFT Full-time employment in years.

Single Binary variable; 1 if the individual is single;
0 otherwise.

WhiteCollar Binary variable; 1 if the individual is a white
collar worker; 0 otherwise.

LEduc Length of education in years.

SPDSup Binary variable; 1 if the individual is a
strong or a very strong supporter

of the Socialdemocratic Party of Germany; 0
otherwise.

• plot() function illustrates smooth terms when they are specified for a given
equation. For instance, eq = 1 will yield a smooth function for the selection
equation of the model.

• post.check() takes the response vector and produces a QQ-plot based on the
estimates obtained from the sample selectionmodel. Simlarly toresp.check(),
the residuals are normalized and randomized. Distributions that require a binomial
denominator need to specify bd as an argument.

3.1 Case study: an application to labor mobility

The data is from the German Socio-Economic Panel survey of 1984 (SOEP v28 2012)
and the aim of the study is to estimate the determinants of labor mobility in the
presence of non-random sample selection. As mentioned in the introduction, non-
random selection arises if the sample consisting of individuals who are on the job
market differ in important characteristics from the sample of individuals who are not
part of the jobmarket. To rectify this situation,wewill employ sample selectionmodels
implemented in SemiParSampleSel.

We first load the package and the data set.

R> library(SemiParSampleSel)
R> data(SOEP)

The data set contains 2,651 observations and the outcome variable is the number of
direct job changes (DJC, i.e. changes without an intervening spell of unemployment).
Other available variables are presented in Table 1.

Following the work by Winkelmann (1998), the linear predictors for the selection
and outcome equations, respectively, can be specified as follows

η1 = α10 + α11Single + α12WhiteCollar + s11(EXPFT)

η2 = α20 + α21SPDSup + α22WhiteCollar + s21(LEduc),
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where the non-linear specification of LEduc and EXPFT arises from the fact that
these covariates embody productivity and life-cycle effects that are likely to affect the
probability to be part of the job market non-linearly. These will be modeled using thin
plate regression splines with 10 bases and penalties based on second order deriva-
tives. We will employ linear predictors for the scale and association parameters, since
WhiteCollar may have an impact on variability of the response. Thus,

η3 = α30 + α31WhiteCollar

η4 = α40 + α41WhiteCollar,

In R, the specification above implies determining formulas as

R> sel.eq <- selection ˜ Single + WhiteCollar + s(EXPFT)
R> out.eq <- DJC ˜ SPDSup + WhiteCollar + s(LEduc)
R> sigma.eq <- ˜ WhiteCollar
R> theta.eq <- ˜ WhiteCollar

Prior to fitting a count data sample selection model, a distribution for the outcome
variable may be chosen by looking at the histogram of the response along with the
estimated density from the assumeddistribution, and at the randomized andnormalized
responses (Rigby and Stasinopoulos 2005). The latter will provide an approximate
guide to the adequacy of the chosen distribution. These should behave approximately
as normally distributed variables (even though the original observations are not). Note
that this preliminary check has to be treated with caution, since the distribution of the
outcome is assumed to be unconditional on any covariate effects.

R> resp.check(SOEP$DJC, margin = ‘‘P’’)
R> resp.check(SOEP$DJC, margin = ‘‘NB’’)
R> resp.check(SOEP$DJC, margin = ‘‘D’’)
R> resp.check(SOEP$DJC, margin = ‘‘PIG’’)
R> resp.check(SOEP$DJC, margin = ‘‘S’’)

These plots (reported in Fig. 4; for the remainder seeAppendix 3) show that the density
and QQ-plots are the most supported with “PIG” being the best. Based on this, we
fit the count sample selection model with Poisson inverse Gaussian margin for the
outcome variable using the function SemiParSampleSel() to the SOEP data.
The normal copula is used to link the selection and the outcome equations. The reason
for choosing normal copula is to preliminarily check the direction and magnitude of
association between both equations.

R> fit1 <- SemiParSampleSel(list(sel.eq, out.eq, sigma.eq, theta.eq),
+ data = SOEP, BivD = ‘‘N’’,
+ margins = c(‘‘N’’, ‘‘PIG’’),
+ iterlimsp = 50)

Before viewing the output, it is necessary to check the convergence of the algorithm.
This can be done by submitting conv.check() command.

R> conv.check(fit1)
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Fig. 4 Poisson inverse Gaussian kernel density and QQ-plot

Largest absolute gradient value: 8.984057e-05
Observed information matrix is positive definite
Eigenvalue range: [0.4848655,5477.451]

Trust region iterations before smoothing parameter estimation: 9
Loops for smoothing parameter estimation: 5
Trust region iterations within smoothing loops: 12

The algorithm converged successfully, since the gradient is equal to zero and the
Hessian is positive definite. Note that the condition number is equal to 5477.451

0.4848655 ≈ 104.
The summary() function yields

R> summary(fit1)

ERRORS’ DISTRIBUTION: Bivariate Normal

SELECTION EQ.
Family: Bernoulli
Link function: probit
Formula: sel ˜ s(EXPFT) + Single + WhiteCollar

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.32760 0.04038 32.878 < 2e-16 ***
Single 0.05431 0.17878 0.304 0.761
WhiteCollar 0.58262 0.11849 4.917 8.79e-07 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Smooth components’ approximate significance:
edf Ref.df Chi.sq p-value

s(EXPFT) 5.383 6.508 34.56 1.01e-05 ***
---
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Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

OUTCOME EQ.
Family: Poisson inverse Gaussian
Link function: log
Formula: l ˜ WhiteCollar + s(LEduc) + SPDSup

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.24748 0.10721 -2.308 0.02098 *
WhiteCollar -0.39729 0.15376 -2.584 0.00977 **
SPDSup 0.10818 0.09063 1.194 0.23260
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Smooth components’ approximate significance:
edf Ref.df Chi.sq p-value

s(LEduc) 2.955 3.604 21.01 0.000219 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

EQUATION 3
Link function: log(sigma)
Formula: sigma ˜ WhiteCollar

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.9093 0.2273 4.001 6.31e-05 ***
WhiteCollar -0.2048 0.3829 -0.535 0.593
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

EQUATION 4
Link function: atanh(theta)
Formula: theta ˜ WhiteCollar

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.0343 0.1968 -5.255 1.48e-07 ***
WhiteCollar 0.1458 0.3879 0.376 0.707
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

n = 2651 n.sel = 2445 sigma = 2.378(1.358,3.97)
theta = -0.761(-0.898,-0.43) total edf = 18.338

The output shows all estimates pertaining to the selection and outcome equations,
and the equations linked with the scale and association parameters. In particular,
the white-collar effect on the selection is statistically significant and implies that
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Table 2 Akaike and Bayesian
information criteria for the
Poisson inverse Gaussian
models for SOEP data

Model AIC BIC Model AIC BIC

Normal 6139.7 6247.5 Gumbel 90 6145.8 6252.6

Frank 6117.3 6223.4 Gumbel 270 6129.7 6236.1

Joe 90 6149.1 6256.1 Clayton 90 6116.9 6223.2

Joe 270 6116.9 6223.1 Clayton 270 6151.6 6258.9

white-collar workers are more likely to be active on the labour market than non-white-
collar workers. In addition, the white-collar effect on the outcome is also statistically
significant and suggests that being awhite-collarworker decreases chances of changing
jobs and hence labour mobility. At the bottom of the output one can see the mean
values across all observations for σ̂ and θ̂ together with the corresponding confidence
intervals.

Let us estimate a Poisson inverse Gaussian Frank (fit2) and Joe 270 (fit3) mod-
els with the same specification as the normal Poisson inverse Gaussian. The Akaike
andBayesian information criteria to compare the competingmodels are obtained using
AIC() and BIC() functions.

R> AIC(fit1, fit2, fit3)
df AIC

fit1 18.33783 6139.654
fit2 18.03288 6117.332
fit3 18.06156 6116.889
R> BIC(fit1, fit2, fit3)

df BIC
fit1 18.33783 6247.530
fit2 18.03288 6223.414
fit3 18.06156 6223.140

The left-hand side column indicates the estimated degrees of freedom, whereas the
right-hand side denotes the criterion. Table 2 shows the AIC and BIC scores for the
normal Poisson inverse Gaussian model and other Poisson inverse Gaussian models
with different copulae. These are Frank and the 90 and 270 degrees rotated versions
of Joe, Gumbel and Clayton. The reason for choosing these rotations is that the nor-
mal model initially indicated negative dependence of θ̂ = −0.761 and these rotations
envisage negative dependence. The differences in AIC and BIC are small. Neverthe-
less, the best-performing model in accordance with both criteria turns out to be Frank,
Joe 270 and Clayton 90. Hence, these models may be considered if the modeler is
interested in making predictions of the number of job changes.

Alternatively, one can use the Vuong test to compare between two competing mod-
els. The VuongClarke() function returns

R> VuongClarke(fit2, fit3)

Vuong’s test: it is not possible to discriminate between the two models.
Clarke’s test: Model 1 is preferred over Model 2.
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By default, the significance level was set to 0.05. The Vuong test does not indicate
any preferred model. On the other hand, Clarke test prefers Frank over Joe 270 model.

We will carry out the remainder of the analysis using Frank model. The average
predictions for all observations are obtained by

R> aver(fit2, univariate = TRUE)

Estimated average with 95% confidence interval:

0.526 (0.487,0.565)

R> aver(fit2, univariate = FALSE)

Estimated average with 95% confidence interval:

0.747 (0.649,0.845)

The former statement returns an average prediction for the univariate model ignoring
non-random sample selection; the latter returns an average prediction for the sam-
ple selection model. To extract the association parameters with their corresponding
confidence bounds one needs to submit

R> out.sum <- summary(fit2)
R> out.sum$theta
[1] -16.69619
R> out.sum$CIth
[1] -39.270136 -5.193194
R> out.sum$tau
[1] -0.7840277
R> out.sum$CIkt
[1] -0.9024080 -0.4686178

Table 3 summarizes the corresponding average predictions and association parameters
of the univariate, normal, Frank, and the rotated versions of Clayton, Joe and Gum-
bel models. The values in brackets indicate 95% confidence interval bounds. For all
models, the confidence intervals of θ̂ do not reach their bound, which implies that
non-random sample selection is likely to be present. Note that Kendall’s τ̂ indicates a
strong negative correlation between the selection and the outcome. The average pre-
dictions do not differ substantially from another. In fact, the confidence intervals of
most of the models overlap. Thus, the copula assumption does not seem to have a
major impact on the predictions for sample selection models.

The post-estimation QQ-plots can be obtained by submitting the following com-
mand line

R> post.check(fit2)

Figure 5 shows post-estimation QQ-plots based on estimates from the Poisson inverse
Gaussian sample selection model with Frank copula. Note that the plot is similar to
the one in Fig. 4 and hence the model provides a good fit to the data.
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Table 3 Average predictions of job changes and estimates of association parameters for Delaporte model
and Frank, and 90 and 270 degrees rotated Clayton, Joe and Gumbel

ȳ θ̂ τ̂

Univariate 0.53 – –

(0.49,0.57) – –

Normal 0.75 − 0.76 − 0.55

(0.61,0.88) ( − 0.90, − 0.42) ( − 0.71, − 0.28)

Frank 0.75 − 16.70 − 0.78

(0.65,0.85) (− 39.27, − 5.19) (− 0.90, − 0.47)

Joe 90 0.74 − 1.67 − 0.27

(0.58,0.91) (− 3.12, − 1.07) (− 0.53, − 0.04)

Joe 270 0.75 − 15.24 − 0.88

(0.65,0.84) (− 47.31, − 8.13) (− 0.96, − 0.79)

Gumbel 90 0.76 − 1.67 − 0.40

(0.61,0.91) (− 2.75, − 1.09) (− 0.64, − 0.09)

Gumbel 270 0.76 − 3.21 − 0.69

(0.64,0.87) (− 5.14, − 1.95) (− 0.81, − 0.49)

Clayton 90 0.75 − 14.36 − 0.88

(0.65,0.84) (− 47.14, − 7.24) (− 0.96, − 0.78)

Clayton 270 0.75 − 0.86 − 0.30

(0.56,0.94) (− 2.68, − 0.09) (− 0.57, − 0.04)

The values in brackets indicate 95% confidence interval bounds

Fig. 5 QQ-plot for Poisson
inverse Gaussian and Frank
copula
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The smooth plots for both equations can be obtained by submitting the following
command lines

R> par(mfrow = c(1,2))
R> plot(fit2, eq = 1)
R> plot(fit2, eq = 2)
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Fig. 6 Selection (left) and outcome (right) equation smooth for Poisson inverse Gaussian outcome and
Frank copula

Figure 6 shows the smooths for the continuous covariates EXPFT (left) and LEduc
(right). The selection equation smooth can be interpreted such that the likelihood
of being active on the labor market as a dependent worker increases when gaining
full time work experience. Then, the likelihood of being active gradually decreases
as individuals start to receive pensions or enter into self-employment. The outcome
smooth suggests that the longer the education of an individual lasts the less likely
he is to change his job. This is due to increasing specialization in his professional
area as he becomes more qualified. Therefore, it is harder for him to find an alternative
occupation or there are no financial incentives for changing jobs (e.g.medical doctors).

To obtain each σi and τi (and the corresponding 95 per cent confidence intervals)
one needs to submit fit2$sigma and fit2$tau (summary(fit2)$CIsig.1
and summary(fit2)$CIkt.1). The confidence intervals for white-collars and
non-white-collars given each parameter are visualized in Fig. 7. For instance, since
the confidence interval for white-collars in τ overlaps with zero, for the group of
white-collar workers non-random sample selection is likely to be absent.

4 Summary

In this paper, we introduced the new features of SemiParSampleSel R package.
The functions included in the package can be used to estimate sample selectionmodels
for a wide selection of discrete responses and incorporate flexible covariate effects.
The modeling approach allows for a specification of the bivariate distribution using
copulae. By doing so, the modeler can check the assumption of bivariate normality.

The function resp.check() allows the modeler to perform exploratory analysis
on the non-missing response permitting the distributional assumption of the outcome
to be checked. SemiParSampleSel() can be used to estimate the model under the
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Fig. 7 Point estimate plots with the corresponding confidence intervals for white-collar workers
(WhiteCollar = 1; left) and non-white-collar workers (WhiteCollar = 0; right). The left-hand panel
depicts the plot for σ and the right-hand plot for τ

desired specification, whereas the summary() function returns the output. aver()
function calculates the average prediction of the univariate and sample selectionmodel
for all observations. AIC(), BIC() and VuongClarke can be used for choosing
between two competing models; post.check() creates post-estimation QQ-plots
and plot() returns smooth plots for equations, where continuous covariates were
specified in terms of splines.

The approach can be extended to trivariate system models. These account for the
endogeneity of a treatment variable and for non-random sample selection in the out-
come. Also, copulae with two parameters can be introduced - these would lead to
a better control of tail-dependence, despite the risk of association parameters losing
their interpretation (e.g., Brechmann and Schepsmeier 2013).

In the context of selection margin, one could employ skew probit links as derived
from the standard skew-normal distribution by Azzalini (1985). Introducing a param-
eter which regulates the distribution’s skewness may have very attractive properties
from the probability point of view (Azzalini and Arellano-Valle 2013).

Future research may also involve applying the new SemiParSampleSel func-
tions to problems in other fields. For instance, Greene (1998) estimates a sample
selection model for predicting the number of non-payments by individuals who own
a credit card. In this case, individuals select themselves into the sample of credit card
owners based on observed characteristics (such as gender and age) and unobserved
ones (e.g. unreported income). In particular, it would be of interest to explore how
average predictions change if non-random sample selection is accounted for.

Another application involves patients who are newly-referred to a specialist doctor
by a general practitioner and often have to be assessed using ultrasound imaging
devices (Ciurtin et al. 2016). In many circumstances, public health systems cannot
afford an assessment of every patient. Non-random sample selection may be present
in the assessment scores, since patients are referred based on characteristics that cannot
be accounted for e.g. fatigue of the consultant or patient’s personality. To rectify this
situation, sample selection models can be applied.
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Appendices

1 Margins and copulae implemented in SemiParSampleSel

See Tables 4, 5 and 6.

Table 4 Discrete distributions implemented in SemiParSampleSel R package. The parameter ranges cor-
responding to log, logit and identity links are (0, ∞), [0, 1] and (−∞, ∞). For binomial-type distributions,
the binomial denominator is determined by themodeler. Note that the support of the logarithmic distribution
does not include zero

Distribution μ link σ link ν link Binomial Argument
(μ range) (σ range) (ν range) denominator call

Poisson log - - - “P”

Delaporte log log logit - “D”

Poisson inverse log log - - “PIG”

Gaussian

Sichel log log identity - “S”

Beta binomial logit log - q “BB”

Binomial logit - - q “BI”

Geometric log - - - “GEOM”

Logarithmic logit - - - “LG”

Negative log log - - “NB”

binomial

type I

Negative log log - - “NBII”

binomial

type II

Waring log log - - “WARING”

Yule log - - - “YULE”
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Table 5 Zero-inflated and zero-altered discrete distributions implemented in SemiParSampleSel R pack-
age

Distribution μ link σ link ν link Binomial Argument
(μ range) (σ range) (ν range) denominator call

Zero inflated logit log logit q “ZIBB”

beta binomial

Zero altered logit log logit q “ZABB”

beta binomial

Zero inflated logit logit – q “ZIBI”

binomial

Zero altered logit logit - q “ZABI”

binomial

Zero adjusted logit logit – – “ZALG”

logarithmic

Zero inflated log log logit – “ZINBI”

negative binomial

Zero altered log log logit – “ZANBI”

negative binomial

Zero altered log logit – – “ZAP”

Poisson

Zero inflated log logit – – “ZIP”

Poisson

Zero inflated log logit – – “ZIP2”

Poisson type II

Zero inflated log log logit – “ZIPIG”

Poisson inverse

Gaussian

The parameter ranges corresponding to log and logit links are (0, ∞) and [0, 1]. For binomial-type distri-
butions, the binomial denominator is determined by the modeler. Note that the support of the logarithmic
distribution does not include zero
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2 Data simulation function

For reader’s interest, we also provide a code for simulating data suffering from non-
random sample selection for Poisson, negative binomial, Delaporte, Poisson inverse
Gaussian and Sichel distributions. The potential copulae include the ones mentioned
in Table 6. The list of possible outcomes and copulae is not exhaustive and can be
extended. In the case below, two covariates are simulatedwhich enter both the selection
and outcome equation.n stands for the number of observations to be generated,s.tau
is correlation between the outcome and the selection equation defined in terms of
Kendall’s tau, rhC is the Pearson correlation correlation coefficient for the covariates;
outcome.margin and copula are the outcome margin and copula defined by the
user.

R> bcds <- function(n, s.tau=0.2, s.sigma=1, s.nu=0.5, rhC=0.2,
+ outcome.margin=‘‘PO’’, copula=‘‘FGM’’) {
+ # Generating covariates
+ SigmaC <- matrix( c(1,rhC,rhC,1), 2 , 2)
+ covariates <- rmvnorm(n,rep(0,2),SigmaC, method=‘‘svd’’)
+ covariates <- pnorm(covariates)
+ x1 <- covariates[,2]; x2 <- round(covariates[,1])
+ # Establishing copula object
+ Cop <- switch(copula,
+ FGM = fgmCopula(dim = 2, param = iTau(fgmCopula(), s.tau)),
+ BN = ellipCopula(family = ‘‘normal’’, dim = 2,
+ param = iTau(normalCopula(), s.tau)),
+ AMH = archmCopula(family = ‘‘amh’’, dim = 2,
+ param = iTau(amhCopula(), s.tau)),
+ Clayton = archmCopula(family = ‘‘clayton’’, dim = 2,
+ param = iTau(claytonCopula(), s.tau)),
+ Frank = archmCopula(family = ‘‘frank’’, dim = 2,
+ param = iTau(frankCopula(), s.tau)),
+ Gumbel = archmCopula(family = ‘‘gumbel’’, dim = 2,
+ param = iTau(gumbelCopula(), s.tau)),
+ Joe = archmCopula(family = ‘‘joe’’, dim = 2,
+ param = iTau(joeCopula(), s.tau)) )
+ # Creating equations
+ f1 <- function(x) 0.4*(-4 - (5.5*x-2.9) + 3*(4.5*x-2.3)ˆ2 - (4.5*x-2.3)ˆ3)
+ f2 <- function(x) x*sin(8*x)
+ mu_s <- 1.0 + f1(x1) - 2.0*x2
+ mu_o <- exp(1.1 + f2(x1) - 1.9*x2)
+ # Creating margin-dependent object
+ speclist <- switch(outcome.margin,
+ PO = list(mu = mu_o),
+ NBI = list(mu = mu_o, sigma = s.sigma),
+ DEL = list(mu = mu_o, sigma = s.sigma, nu = s.nu),
+ PIG = list(mu = mu_o, sigma = s.sigma),
+ SICHEL = list(mu = mu_o, sigma = s.sigma, nu = s.nu) )
+
+ spec <- mvdc(copula = Cop, c(‘‘norm’’, outcome.margin),
+ list(list(mean = mu_s, sd=1), speclist))
+ # Simulating
+ simGen <- rMvdc(n, spec)
+ y <- ifelse(simGen[,1]>0, simGen[,2], -99)
+ y
+ # Data frame
+ dataSim <- data.frame(y,x1,x2)
+ dataSim
+ }
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For instance, to simulate data and estimate a sample selection model with Poisson
margin and Frank copula one needs to submit the following code

R> library(SemiParSampleSel)
R> set.seed(1)
+ dataSim <- bcds(2000, s.tau=0.5, rhC=0.5,
+ outcome.margin=‘‘PO’’, copula=‘‘Frank’’)
R> # Generating selection variable
R> dataSim$y.probit<-ifelse(dataSim$y>=0, 1, 0)
R> out <- SemiParSampleSel(list(y.probit ˜ s(x1) + x2, y ˜ s(x1) + x2),
+ data=dataSim, BivD = ‘‘F’’, margins = c(‘‘N’’, ‘‘P’’))

3 Preliminary analysis plots

See Fig. 8
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Fig. 8 Poisson (a), negative binomial (b), Delaporte (c) and Sichel (d) QQ-plots
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Marra G, Radice R, Wojtyś M, Wyszynski K (2017b) Semiparametric sample selection modelling with
continuous response. R package version 1.5

123



K. Wyszynski, G. Marra

Marra G, Wood S (2012) Coverage properties of confidence intervals for generalized additive model com-
ponents. Scand J Stat 39(1):53–74

Marra G, Wyszynski K (2016) Semi-parametric copula sample selection models for count responses. Com-
put Stat Data Anal 104:110–129

Miranda A (2004) FIML estimation of an endogenous switching model for count data. Stata J 4(1):40–49
Miranda A, Rabe-Hesketh S (2006) Maximum likelihood estimation of endogenous switching and sample

selection models for binary, ordinal, and count variables. Stata J 6(3):285–308
Newey W (2009) Two-step series estimation of sample selection models. Econom J 12(1):217–229
Nikoloulopoulos A, Karlis D (2009) Modeling multivariate count data using copulas. Commun Stat Simul

Comput 39(1):172–187
Nocedal J, Wright S (2006) Numerical optimization. Springer, New York
Powell JL (1994) Handbook of econometrics. Elsevier, Amsterdam
Prieger JE (2002) A flexible parametric selection model for non-normal data with application to health care

usage. J Appl Econom 17(4):367–392
R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation

for Statistical Computing, Vienna
Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape. J R Stat

Soc Ser C 54(3):507–554
Ruppert D, Wand M, Carroll R (2003) Semiparametric regression. Cambridge University Press, New York
SAS Institute Inc (2013) SAS/STAT Software. Version 9:4
Schwiebert J (2013) Sieve maximum likelihood estimation of a copula-based sample selection model. IZA

discussion papers, Institute for the Study of Labor (IZA)
Sklar M (1959) Fonctions de répartition à n dimensions et leurs marges. Université Paris 8, Saint-Denis
Smith MD (2003) Modelling sample selection using Archimedean copulas. Econom J 6(1):99–123
SOEP v28 (2012) Socio-Economic Panel (SOEP). doi:10.5684/soep.v28
Stasinopoulos D, Rigby R (2007) Generalized additive models for location scale and shape (gamlss) in R.

J Stat Softw 23(7):1–46
StataCorp (2011) Stata statistical software: release 12
Terza JV (1998)Estimating count datamodelswith endogenous switching: sample selection and endogenous

treatment effects. J Econom 84(1):129–154
Toomet O, Henningsen A (2008) Sample selection models in R: package sampleselection. J Stat Softw

27(7):1–23
Vuong Q (1989) Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica

57(2):307–333
Wiesenfarth M, Kneib T (2010) Bayesian geoadditive sample selection models. J R Stat Soc C 59(3):381–

404
Winkelmann R (1998) Count data models with selectivity. Econom Rev 17(4):339–359
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