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Abstract  

 

Fused deposition modelling (FDM) 3D printing (3DP) is a revolutionary technology with the 

potential to transform drug product design in both the pre-clinical and clinical arena. The 

objective of this pilot study was to explore the intestinal behaviour of four different polymer-

based devices fabricated using FDM 3DP technology in rats. Small capsular devices of 

8.6mm in length and 2.65mm in diameter were printed from polyvinyl alcohol-polyethylene 

glycol graft-copolymer (PVA-PEG copolymer, Kollicoat IR), hydroxypropylcellulose (HPC, 

Klucel), ethylcellulose (EC, Aqualon N7) and hypromellose acetate succinate (HPMCAS, 

Aquasolve-LG). A smaller sized device, 3.2mm in length and 2.65mm in diameter, was also 

prepared with HPMCAS to evaluate the cut off size of gastric emptying of solid formulations 

in rats.  The devices were radiolabelled with Fluorodeoxyglucose (18F-FDG) and small 

animal positron emission tomography/computed tomography (microPET/CT) was used to 

track the movement and disintegration of the fabricated devices in the rats. The PVA-PEG 

copolymer and HPC devices disintegrated after 60min following oral administration. The EC 

structures did not disintegrate in the gastrointestinal tracts of the rats, whereas the 

HPMCAS-based systems disintegrated after 420min. Interestingly, it was noted that the 

devices which remained intact over the course of the study had not emptied from the 

stomach of the rats. This was also the case with the smaller sized device. In summary, we 

report for the first time, the use of a microPET/CT imaging technique to evaluate the in vivo 

behaviour of 3D printed formulations. The manipulation of the 3D printed device design 

could be used to fabricate dosage forms of varying sizes and geometries with better gastric 

emptying characteristics suitable for rodent administration.  The increased understanding of 

the capabilities of 3DP in dosage form design could, henceforth, accelerate pre-clinical 

testing of new drug candidates in animal models.   
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1. Introduction  

 

Three-dimensional printing (3DP) has the potential to revolutionise the future design and 

manufacture of medicines. With this technology, personalised doses to specific individuals is 

a promising objective (Sanderson 2015). Therefore, 3DP may shift the scope of manufacture 

from mass-produced restricted dose-range unit forms in the pharmaceutical industry to on-

demand production of patient-specific medicines, integrated in pharmacies or hospitals 

(Alomari et al. 2015). Moreover, the ability of 3DP to readily prepare formulations with 

different dose strengths may facilitate pre-clinical studies in animals. This could be used to 

determine a range of safe doses for first-in-man studies and to assess the safety profile of 

new active compounds. 

 

3DP can be used to produce 3D printed solid dosage forms (PrintletsTM) in a repeatable and 

efficient manner, with the capability to combine multiple drugs in one formulation (Goyanes 

et al. 2015c, Khaled et al. 2015b). With the application of intelligent design features (Markl et 

al. 2017), 3DP formulations can exhibit immediate or modified release characteristics, or 

even combinations of these (Goyanes et al. 2015b, Goyanes et al. 2014, Goyanes et al. 

2017, Okwuosa et al. 2017). There are various types of 3DP technologies commercially 

available for pharmaceutical use, namely from stereolithography (Wang et al. 2016), 

selective laser sintering (Fina et al. 2017), and material extrusion, for example (Khaled et al. 

2015a). However, fused-deposition modelling (FDM) remains the most affordable, easy to 

operate and most versatile method of manufacture for unit-dose fabrication (Goyanes et al. 

2015a). In FDM, an extruded filament is passed through a heated nozzle, utilised to soften 

the polymer filament. This allows the formulation to be deposited layer by layer onto the 

build plate of the printer in x-y dimensions to produce the required design. It is possible to 

obtain several drug release profiles from PrintletsTM by altering the parameters of the 3DP 

software, such as the infill, layer thickness (Goyanes et al. 2016) or through excipient 

selection (Goyanes et al. 2017, Melocchi et al. 2015, Melocchi et al. 2016, Okwuosa et al. 

2017).  

 

The use of molecular imaging technologies has optimised the development and evaluation 

of drug delivery systems (Fernandez-Ferreiro et al. 2017, Ding and Wu 2012). These 

technologies involve non-invasive procedures which significantly decrease the number of 

animals used for analysis whilst increasing the number of measurements taken for each 

animal (Cunha et al. 2014, Capozzi et al. 2013). Techniques such as magnetic resonance 

imaging (MRI) (Schiller et al. 2005) and scintigraphy (Tuleu et al. 2007, Weinstein et al. 

2013) have been applied to pharmacokinetic studies for orally-administered dosage forms. 
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Morphological techniques such as computed tomography (CT), for example, have also been 

used for the tracing of capsules along the gastrointestinal (GI) tract (Saphier et al. 2010). 

Unlike other medical imaging techniques, CT enables the direct imaging and differentiation 

of soft tissue structures. In addition, due to short scanning times of approximately 500 

milliseconds to a few seconds, CT can be used for all anatomic regions, including those 

susceptible to motion and breathing. Positron emission tomography (PET) is a further 

example of a functional imaging technique used for pharmacokinetic studies of oral dosage 

forms (Shingaki et al. 2012). PET allows for a three dimensional mapping of positron 

emitting radiopharmaceuticals to detect blood flow, glucose metabolism and receptor 

densities in biological tissues (Lameka, Farwell and Ichise 2016). The use of integrated 

information from PET and CT technologies enable radiopharmaceutical release data to be 

obtained in combination with the anatomical position of the formulation at different times, 

and thus, creates a powerful imaging tool (Anand, Singh and Dash 2009).   

 

As rodents are often used in the pre-clinical arena (Hatton et al. 2015), the aim of this pilot 

study was to investigate the in vivo behaviour of four different FDM 3D printed structures in 

rats. Printed devices with different release characteristics, dependent on polymer 

composition, were fabricated. This included a polyvinyl alcohol/polyethylene glycol graft 

copolymer (PVA-PEG graft-copolymer, immediate release), hydroxypropylcellulose (HPC, 

non-ionic water-soluble), ethylcellulose (EC, non-soluble sustained release) and 

hydroxypropyl methylcellulose acetate succinate LG (HPMCAS, pH dependent). The 

capsular devices were prepared with different lengths (2.65mm diameter x 8.6mm length 

and 2.65 mm diameter x 3.2 mm length) to evaluate the cut off size of gastric emptying of 

solid dosage forms in rats. The selected shell was designed to be 0.5mm thick in order to 

develop formulations that were more resistant to the contractions of the GI tract. In addition, 

the shell would provide a more reliable drug release profile of the different regions of the GI 

tract. These 3DP devices were characterised by microPET/CT in order to evaluate their in 

vivo performance in rats. To the authors’ knowledge, there are currently no previous 

examples of in vivo studies regarding FDM 3D printed formulations using rodent models. 

Therefore, the work reported is the first study of its kind to evaluate the feasibility of using 

fused microPET/CT technologies as a method of investigating the passage and 

disintegration of novel FDM 3D printed devices. 
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2. Materials and methods 

 

Materials 

Fluorodeoxyglucose (18F-FDG) TRACERlab MX synthesizer (GE Healthcare®) was used as 

a tracer. 

 

Four types of polymers were investigated as the main excipient: polyvinyl 

alcohol/polyethylene glycol graft copolymer – PVA/PEG (Kollicoat® IR, an immediate release 

polymer) was obtained from BASF, Germany; hydroxypropylcellulose - HPC (Klucel® EF, a 

non-ionic water soluble polymer), ethylcellulose – EC (Aqualon® N7, a non-soluble polymer) 

and hydroxypropylmethylcellulose acetate succinate - HPMCAS LG (Aquasolve®-LG, a pH 

dependent polymer with a pH threshold of 5.5 (Rowe, Sheskey and Quinn 2009)) were 

obtained from Ashland, UK. D-Mannitol (Sigma-Aldrich, UK) and methylparaben NF grade 

(Amresco, USA) were used as a plasticizer. Magnesium stearate and Talc (Sigma-Aldrich, 

UK) were used as lubricants. 

AquaCem® a light-yellow, translucent glass-ionomer luting material consisting of a blend of 

alumino-silicate glass and polyacrylic acid was used as a cement to seal the devices 

(Dentsply, UK.). 

 

 
Methods 

Preparation of filaments by hot melt extrusion (HME) 

Filaments of different polymers were prepared via hot melt extrusion. The appropriate 

excipients were weighed and mixed using a pestle and mortar to produce a uniform powder 

of 40g in weight (Table 1). The mixture was then extruded using a single-screw filament 

extruder (Noztec Pro hot melt extruder, Noztec, UK) in order to obtain the filament (extrusion 

temperature 105-145°C, Table 1, nozzle diameter 1.75mm, screw speed 15rpm). The 

extruded filaments were protected from light and kept in a vacuum desiccator until printing.  
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3D Printing of the devices  

Devices were fabricated from the extruded filaments using a standard MakerBot Replicator 

2X Desktop 3D Printer (MakerBot Inc., USA). The templates used to print the devices were 

designed with 123D Design Software (Autodesk Inc., USA) and exported as a 

stereolithography file (.stl) into the 3D printer software (MakerWare v. 2.4.1, MakerBot Inc., 

USA).  

 

The device design selected (8.6mm length x 2.65mm diameter, shell thickness of 0.5mm, 

Figure 1) is an adaptation from a size 9 capsule used for dosing of small rodents. Smaller 

capsular devices with a length of 3.2 mm x 2.65mm diameter were also prepared. 

 

 

Figure 1. 3D representation of the capsular device (8.6mm length x 2.65mm diameter - 

0.5mm shell thickness), cross section (front) and complete (back) 

 

The printer settings were as follows: the infill percentage of the shell was 100%, a high 

resolution with the raft option was activated and, the speed whilst extruding was 3mm/s, the 

speed while traveling was 25mm/s, the z-axis travel speed was at 23mm/s, the number of 

 Table 1. Composition of the filaments produced via HME 

Formulation 
Kollicoat 

IR (%) 

Klucel 

EF (%) 

Aqualon 

N7 (%) 

Aquasolve

LG (%) 

Methylparaben 

(%) 

Mannitol 

(%) 

Talc 

(%) 

Extrusion 

Temperature 

(C) 

Kollicoat IR 45 -  - 20 20 10 145 

Klucel EF - 73.75  - - 21.25  130 

Aqualon N7   75  20   120 

Aquasolve-LG - -  70 15 - 10 105 

 *5% Magnesium Stearate was used in all the formulations as a lubricant 
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shells was 2 and the layer height set at 0.10mm. Printing temperatures were modified 

depending on the type of filaments used to print the device (Table 2).  

 

Table 2. Printing settings for the filaments 

Formulation  
Printing Temperature 

(C) 

Platform 

Temperature (C) 

Kollicoat IR 155 40 

Klucel EF 160 0 

Aqualon N7 160 0 

Aquasolve LG 175 0 

 

 

X-ray Micro Computed Tomography (Micro-CT) 

A high-resolution X-ray micro computed tomography scanner (SkyScan1172, Bruker-

microCT, Belgium) was used to 3D visualize the structure of the 3D printed devices. 

Samples were scanned without the use of a filter at a resolution of 2000x1048 pixels. Image 

reconstruction was performed using NRecon software (version 1.7.0.4, Bruker-microCT). 

Beam hardening, ring artefacts and post alignments were adjusted to achieve the best 

possible images. 3D model rendering and viewing were performed using the associate 

program CT-Volume (CTVol version 2.3.2.0) software. The collected data was analysed 

using the software CTVox (CTVox version 3.2).  

 

Device morphology characterisation 

Pictures of the devices were taken with a Nikon CoolpixS6150 with the macro option 

activated. 

 

In vivo microPET/CT studies 

Once printed, the devices were cut 1mm from the end using a scalpel and filled with 

approximately 5µL of 18F-FDG with an activity of 3MBq using a HPLC syringe. The dental 

cement (AquaCem®) was used to close the devices. One spatula of adhesive powder 

(approx. 100mg) was mixed with two drops of water (approx. 30mg) to prepare the adhesive 

paste. The paste was applied using a small spatula onto the removed portions of the devices 

that were reattached to the larger section in less than 2min after mixing of the adhesive. 

Once applied, the devices were allowed to dry for 10min for the solidification of the 

adhesive.  
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This study was carried out on male Sprague-Dawley rats with an average weight of 300g 

supplied by the animal facility at the University of Santiago Compostela (USC). During the 

experiment, the animals were kept in individual cages with free access to food and water in 

a room under controlled temperature (22±1ºC) and humidity (60±5%) conditions and with 

day-night cycles regulated by artificial light (12/12h). For the administration of the 3D printed 

devices, the animals were placed in a gas chamber containing 2% isoflurane in oxygen to 

induce anaesthesia. The radiolabelled devices were introduced directly into the stomach of 

the rats using a Torpac® dosing syringe for rodents. Four rats were used for testing each 

type of device. 

 

MicroPET/CT acquisition 

PET/CT images were acquired using an Albira microPET/CT Preclinical Imaging System 

(Bruker Biospin, Woodbridge, Connecticut, United States). The PET subsystem comprises 

three rings of eight compact modules based on monolithic crystals coupled to multi-anode 

photomultiplier tubes (MAPMTs), forming an octagon with an axial FOV of 40mm per ring 

and a transaxial FOV of 80mm in diameter. The computed tomography (CT) system 

comprises a microfocus x-ray tube and a CsI scintillator 2D pixelated flat panel detector. 

Immediately after the administration of the device, the animals were positioned onto the bed 

of the scanner to allow dynamic PET acquisitions at predetermined time intervals. Rats 

remained conscious for most of the experiment and only were anesthetized during PET/CT 

acquisition. No contrast or prokinetic agents were administered to the rats.  

 

PET/CT image analysis 

Firstly, device disintegration was assessed by visual inspection of the spread of the tracer. 

Furthermore, CT images were obtained for evaluation of the gastric retention and fused 

PET/CT images were used to track the devices along the gastrointestinal tract. Quantitative 

analysis was carried out by using Regions of Interest (ROIs) manually delineated on the 

position of the device. This was obtained from the first PET image frame and overlapped on 

subsequent image frames. The average activity of the radiotracer in the device was 

gathered over time. The effect of the radioactive decay was calculated (110min halftime for 

18F-FDG) and removed from the measurements. Results are presented as the % of 

radioactivity remaining in the device over time. 

 

Results and Discussion 

 

Four types of 3D printed devices were fabricated with filaments obtained by hot melt 

extrusion (HME) using four base polymers, namely an immediate-release polymer (Kollicoat 
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IR, PVA-PEG copolymer), a non-ionic water-soluble polymer (Klucel EF, HPC), an insoluble 

polymer (Aqualon N7, EC) and a pH dependent polymer with a pH threshold of 5.5 

(Aquasolve-LG, HPMC-AS LG) (Figure 2).  

 

 

Figure 2. From left to right pictures of 3D printed devices of Kollicoat IR, Klucel EF, Aqualon 

N7 and Aquasolve-LG (units are cm). 

 

These polymers were selected based on their different dissolution characteristics. Alongside 

the chosen polymer, the filaments further incorporated a plasticiser (methylparaben or 

mannitol) and a lubricant (talc or magnesium stearate) (Table 1). The inclusion of 

plasticisers and lubricants in the correct ratios was crucial to obtain filaments that would 

have the required properties for printing capsular devices of such small a size. In a previous 

study (Melocchi et al. 2016), disks fabricated by FDM printing with similar types of polymers 

were used as a simple model to evaluate the performance of printed barriers when in 

contact with aqueous fluids using an in vitro test cell assembly. It was found that the 

optimisation of the formulation with the use of plasticisers and lubricants was required to 

enhance the printability of these filaments, and thus, refined the printing characteristics of 

smaller objects. The optimal printing temperature and settings were determined and are 

outlined in the printing results (Table 2).  

 

MicroCT images revealed that all fabricated devices were not compromised and showed no 

visible holes in the surface of the shells (Figure 3). The Aquasolve-LG devices appeared to 

be less uniform in its deposition, however, exhibiting a more deformed shape. Visual 

analysis of the Aquasolve-LG device showed a slight reduction in its volume when compared 

with the other FDM printed devices.  
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Figure 3. Micro-CT images of 3D printed devices made of: A) Kollicoat IR, B) Klucel EF, C) 

Aqualon N7 and D) Aquasolve-LG 

 

In order to evaluate their release properties, the 3D printed devices were cut and 

reassembled following the introduction of the 18F-FDG marker. It might have been possible 

to load the tracer into the capsular devices using a dual FDM 3D printer with two filaments; 

one for the external shell and other for the core (Markl et al. 2017, Okwuosa et al. 2017, 

Goyanes et al. 2015c). However, in our study, we followed a manual approach for two 

reasons; firstly, to avoid the contamination of the printers with the radiotracer and; secondly, 

due to the short half-life of 18F-FDG. This was necessary as the printing process and the 

PET study were performed at different institutions. It has been reported that it is possible to 

print the body and cap of a capsule separately and then join them together after filling 

(capsule size 11.95mm length x 8mm diameter) (Melocchi et al. 2015). However, this 

A) 

B) 

C) 

D) 
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approach was not feasible with the current study due to the small size of the devices needed 

for administration to rodents. 

 

The devices were placed into the stomach of the rats and the behaviour of the devices within 

the GI tract were evaluated by PET/CT imaging. The results indicated that the disintegration 

of the devices were identified at different times following oral administration in rats, although 

this was dependent on the type of device (Figure 4). 

 

 

Figure 4. Coronal views of PET images after oral administration of radiolabelled Kollicoat IR, 

Klucel EF, Aqualon N7 and Aquasolve-LG devices. The black hue indicates high levels of 

radioactivity. 

 

The combination of PET and CT technologies allowed the location of the device in the GI 

tract to be visualised. The in vivo disintegration of the Kollicoat and Klucel devices 

demonstrated similar release behaviours, occurring in the stomach between 60min and 

120min after administration (Figure 5). Kollicoat IR is a pharmaceutical excipient that was 

specifically designed to manufacture instant release tablets (Janssens et al. 2007). The 

thickness of the device (approximately 0.5mm), however, is much thicker than the regular 

polymeric coatings of tablets (in the range of 20-100µm (Liu et al. 2009), therefore delaying 

device disintegration 

.  
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Aqualon-based devices remained unchanged and did not exhibit any signs of disintegration 

after 11 hours. Although the polymer is not soluble, Aqualon is normally incorporated to 

manufacture sustained release tablets where the drug dissolution rate is controlled by drug 

diffusion through the coating of the tablet. In this case, the diffusion of tracer was not 

observed through the wall of the capsular device, indicating that the wall was too thick. It has 

been established that drug release is dependent on barrier thickness (Melocchi et al. 2016, 

Okwuosa et al. 2017) and therefore, the preparation of devices with thinner walls could 

represent a strategy to achieve the release of the tracer from the devices over time. Finally, 

the disintegration of Aquasolve was clearly delayed, showing a disintegration time between 

420 to 540min.  

 

Figure 5. Dynamic study of disintegration behaviour of the four capsular devices (n=4).  

 

Fused PET/CT images taken after the administration of Kollicoat, Klucel, Aqualon and 

Aquasolve devices showed that all the devices were retained in the stomach without passing 

to the small intestine prior to disintegration. As an example, Figure 6 shows the fused 

PET/CT images after administration of the Klucel-based device. 
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Figure 6. Fused image PET/CT. a) Prior to the administration of the Klucel device b) 10min 

c) 120min and d) 360min post-administration. 

 

The long disintegration lag time of Aquasolve (more than 420 minutes) could be explained 

by the fact that the devices did not empty the stomach. Aquasolve-LG is known to dissolve 

at pH 5.5, however, the gastric pH of the rat is between 3 and 5 (Hatton et al. 2015, 

McConnell, Basit and Murdan 2008), and thus, provides a rationale for its retarded 

dissolution. A possible explanation for the lack of gastric emptying in rats might be related to 

the size of the dosage form. The study was repeated with smaller Aquasolve devices with a 

length of 3.2mm (compared with the standard 8.6mm length of x 2.65mm diameter). After 

administration of these smaller devices to the rats, however, the results surprisingly showed 

that none of these formulations emptied from the stomach either.  

 

The gastric emptying or retention of orally-administered dosage forms in rodent models are 

currently poorly understood and are subject to varying parameters such as: gastric mobility 

(Dalziel et al. 2017), size of dosage form (Dalziel et al. 2016), the effect of anaesthesia 

(Yamashita et al. 2011) and potentially pre- or post-prandial states (Mori 1989), to name a 

few. A study, for example, demonstrated that enteric-coated gelatine size 9 capsules were 

able to empty from the stomach of a rat between 2 to 8h after administration (Albrecht et al. 

2006). With the use of single-PET/CT x-ray technology, another study demonstrated that 

enteric-coated capsules emptied from the stomach and liberated the nanoparticle contents in 

the proximal region of the small intestine (Sonaje et al. 2010). In other studies, enteric 

coated capsules were reported to be released in the lower GI tract (Hatch et al. 2006, Shah, 

Nutan and Khan 2004, Oveisi et al. 2004). Despite a number of studies suggesting that size 

9 coated capsules do empty from the stomach, contention still remains to whether these 

devices are the optimum dimensions or geometries. A study showed that only capsules up 

Initial 10 min 120 min 360 min 
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to 3.5mm in diameter and 4.8mm in length are able to do so (Saphier et al. 2010). In the 

same study, capsules emptied more rapidly from fed stomachs when compared with fasted 

rats. This finding was unexpected as food is generally considered to delay gastric emptying 

(Varum, Hatton and Basit 2013). Therefore, a better understanding of gastric emptying and 

retention can be explored through 3DP due to its capabilities of fabricating varying shapes 

and sizes, which can also manipulate drug release characteristics (Goyanes et al. 2015c). 

 

3. Conclusions  

 

This is the first study to demonstrate the viability of FDM 3DP as a meaningful and feasible 

method of manufacturing of small capsular devices, as evaluated in vivo studies with the 

utilisation of microPET/CT imaging. The devices were successfully 3D printed using four 

different polymer filaments: Kollicoat IR (immediate release), Klucel EF (water soluble), 

Aqualon N7 (insoluble polymer) and Aquasolve-LG (pH dependent). MicroPET/CT imaging 

offered valuable in vivo data of the behaviour of 3DP devices, using the rat as a model 

animal. Kollicoat IR and Klucel EF devices disintegrated within 1 to 2h, whilst Aquasolve-LG 

devices took longer than 7h to disintegrate. Aqualon N7 devices did not disintegrate or 

release the tracer and gastric emptying was not observed for any of the devices. In addition, 

this study contributed to the identified inconsistencies regarding the lack of gastric emptying 

of modified release in in vivo studies. Therefore, this pilot study confirmed that 3DP is 

capable of printing solid dosage forms, however, further work should be employed to 

fabricate different geometries and smaller devices to successfully empty from the stomach of 

rats. In summary, the work has highlighted the potential of FDM 3DP in the design of 

formulations suitable for pre-clinical testing of drugs, and thus, offer advantages towards 

targeted release and personalised dosing.    
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