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Abstract

In this paper, we propose a new filtering framework called discriminatively

guided image filtering (DGF), for hyperspectral image (HSI) classification. DGF

integrates a discriminative classifier and a generative classifier by the guided fil-

tering (GF), considering the complementary strength of these two types of clas-

sification paradigms. To demonstrate the effectiveness of the proposed frame-

work, the combination of support vector machine (SVM) and linear discrimina-

tive analysis (LDA), which serve as a discriminative classifier and a generative

classifier respectively, is investigated in this paper. Specifically, the original

HSI is projected into the low-dimensional space induced by LDA to serve as

guidance images for filtering the intermediate classification results induced by

SVM. Experiment results show the superior performance of the proposed DGF

compared with that of the principal component analysis (PCA)-based GF.
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1. Introduction1

Classification of pixels in hyperspectral images (HSIs) is an important and2

challenging task in remote sensing [1]. Recently, many classifiers have been3

developed on the basis of state-of-the-art machine learning techniques such as4

support vector machine (SVM) [2, 3], manifold and subspace learning [4, 5,5

6, 7], sparse representation [8, 9, 10], collaborative representation [11], active6

learning [12, 13, 14], multitask learning [15], domain adaptation [16], object-7

based classifiers [17] and deep learning [18].8

Because HSIs contain rich information in both spectral and spatial dimen-9

sions, the strategies simultaneously exploiting them prevail in the processing10

and analysis of HSIs [3, 19, 20, 21, 22, 23, 24]. In the pixel-wise classification, it11

often happens with undesired salt and pepper appearance if the spatial smooth-12

ness has not been adequately addressed [25, 26], therefore it is appealing to13

introduce an image filtering process to relieve this issue. Recently in 2D im-14

age processing, a new method called guided filtering (GF) [27] has proved an15

effective approach to edge-preserving smoothing (now a function imguidedfilter16

in the Image Processing Toolbox of MATLAB, The MathWorks, Inc.). The GF17

uses the content of a guidance image to guide the smoothing of the input image.18

It has been pioneered by [28] to facilitate the HSI classification. They first use19

SVM to classify the HSI resulting in binary classification maps for each class,20

then adopt GF to filter the classification maps. To build the guidance image,21

they conduct principal component analysis (PCA) on the HSI, and project the22

data onto the first principal component to obtain a virtual greyscale guidance23

image (or onto the first three principal components for a virtual colour guidance24

image). They show that the resultant PCA-based GF (short as PGF hereafter)25

can improve the classification performance of SVM on the HSI.26

However, we shall show that PGF can be further revised, methodologically27

and empirically, if we can design a better-founded scheme to produce a superior28

guidance image for classification. In terms of classification, an ideal guidance29

image should be as similar as possible to the ground-truth map: it should be30
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able to not only preserve edges, but also provide the between-class discrimina-31

tive information that is crucial to classification. However, the PCA adopted32

by PGF is an unsupervised feature-extraction approach which does not con-33

sider the discriminative information between classes. In contrast, we would34

consider generative classifiers, which can serve as supervised feature-extraction35

approaches and have the capability of exploiting the labelling information of the36

training samples, a capacity that PCA lacks. Moreover, to the discriminative37

classifiers like the SVM adopted by PGF, the generative classifiers can pro-38

vide complementary discriminative strength, another capacity that PCA lacks;39

for the complementarity of these two types of classifiers and the advantages of40

combining them together, see [29, 30, 31, 32, 33].41

Therefore, in this paper we propose a new filtering framework for classifica-42

tion, which enables the integration of a discriminative classifier, such as SVM,43

and a generative classifier, which can construct an complementary guidance44

image for GF to be used in classification. We call this new framework the45

discriminatively guided filtering (DGF). Specifically, we adopt linear discrimi-46

native analysis (LDA) as a generative classifier to demonstrate the effectiveness47

of the proposed DGF. For a C-class HSI classification problem, the LDA-based48

DGF can be implemented as follows: we first perform multi-class LDA to obtain49

C − 1 directions of projection, then we project the HSI onto the first leading50

direction to build the virtual greyscale guidance image (or onto the first three51

leading directions for the virtual colour guidance image). In this way, the ob-52

tained guidance image preserves the discriminative information among multiple53

classes. It is also worth noting that the proposed framework of DGF is a prin-54

cipled framework, which is flexible and can be adapted to the combinations of55

any discriminative classifiers and generative classifiers that suit the HSI classifi-56

cation. The combination of SVM and LDA adopted here serves more as a case57

study to demonstrate the use and effectiveness of DGF. Experimental results58

show that the proposed DGF outperforms the PCA-based GF of [28], and both59

of them improve the performance of SVM substantially for HSI classification.60
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2. Guided filtering61

2.1. Greyscale guided filtering62

For an input image p (e.g. in our case a classification map resulted from63

SVM), the guided filtering (GF) [27] is assumed to bridge its filtering output64

q and the guidance I by using a local linear model. For a greyscale image p,65

the output q is assumed to be a linear transformation of I in a local window ωk66

centred at the pixel k:67

qi = akIi + bk, ∀i ∈ ωk, (1)

where i indexes a pixel in ωk such that qi and Ii are the (scalar) values of pixel68

i in q and I, and (ak, bk) are coefficients to be estimated for ωk. This model69

preserves ∇q = a∇I, which ensures that q preserves the edges in I.70

Although (1) is a simple linear regression model, the coefficients ak and bk71

are solved by a ridge regression model to minimise the following optimisation72

function:73

E(ak, bk) =
∑
i∈ωk

{
(akIi + bk − pi)2 + εa2k

}
, (2)

where ε is the smoothing parameter to penalise ak, and pi is the filtering input.74

The solution of (2) is given by75

ak =

1
|ωk|

∑
i∈ωk

Iipi − µkp̄k

σ2
k + ε

, bk = p̄k − akµk, (3)

where µk and σ2
k are the mean and variance of pixel values in ωk of the guidance76

image I, |ωk| is the total number of pixels in ωk, and p̄k = 1
|ωk|

∑
pi denotes77

the mean in ωk of the input image p . Once ak and bk are solved, the filtering78

output qi in (1) can be obtained.79

2.2. Multi-band guided filtering80

The GF has been extended to a colour guidance image (i.e. with three bands)81

in [27]. Similarly, it has no difficulty to generalise to a multi-band guidance82

image of d bands by rewriting the local linear model (1) as83

qi = aT
k Ii + bk,∀i ∈ ωk, (4)
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where Ii is a d-dimensional vector for pixel i, ak is a d-dimensional coefficient84

vector, and qi and bk are still scalars. Then the GF with a multi-band guidance85

image becomes86

ak = (Σk + εU)−1

(
1

|ωk|
∑
i∈ωk

Iipi − µkp̄k

)
, bk = p̄k − aT

k µk, (5)

where µk is a d × 1 mean vector, and Σk is a d × d covariance matrix, of the87

multi-band guidance image I in window ωk, and U is a d× d identity matrix.88

3. Discriminatively guided filtering (DGF)89

As pioneered by [28], the GF not only can be used as an edge-preserving90

smoothing operator, but also can help HSI classification. In this direction, we91

propose a new filtering framework called discriminatively guided image filtering92

(DGF), to combine a discriminative classifier and a generative classifier by the93

GF. Specifically, to incorporate the discriminative information from HSI into the94

GF, we use LDA as the generative classifier to construct the guidance image.95

In 2D image processing, the guidance Ii in (1) (or Ii in (4)) is a greyscale96

value (or RGB values) of pixel i in a local window ωk. However in the PGF [28]97

and the proposed DGF, the guidance Ii (or Ii) is the projection of pixel i in the98

lower dimensional space induced by PCA and LDA, respectively.99

3.1. Methodology of DGF100

An HSI classification problem usually needs to address multiple classes (i.e. C101

classes with C > 2). An HSI of N pixels can be denoted by a B × N matrix102

X with each pixel being of B features, and N > B as usual. For such a103

multi-class problem, the multi-class LDA seeks C − 1 directions (or say C − 1104

linear combinations of the B features), the subspace spanned by which can best105

separate the classes [34].106

These directions are the first C − 1 leading eigenvectors (corresponding to107

the largest eigenvalues) of108

S−1W SB , (6)
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where SW is the pooled within-class scatter matrix over all C classes, and SB109

is the between-class scatter matrix. We use W to denote a B × (C − 1) matrix110

whose columns are these B × 1 eigenvectors. Given W, each class can have a111

unified multi-band guidance image for the GF. To align with the PCA-based112

GF [28], we also adopt the two strategies below.113

3.1.1. DGF-g: DGF with a greyscale guidance image114

We use the projection of the HSI on the first leading eigenvector (wg, a B×1115

vector) in W as the greyscale guidance image:116

Ig = wT
g X, (7)

where Ig is a 1 × N vector representing the greyscale guidance image of N117

pixels. The filtering output for each class is then obtained by the greyscale118

guided filtering in (1).119

3.1.2. DGF-c: DGF with a colour guidance image120

We use the projection of the HSI on the first three leading eigenvectors (Wc,121

a B × 3 matrix) in W as the colour guidance image:122

Ic = WT
c X, (8)

where Ic is a 3×N matrix representing the colour guidance image. The filtering123

output for each class is then obtained through the multi-band guided filtering124

in (4).125

3.2. Classification algorithm based on DGF126

The diagram of DGF for classification of an HSI is illustrated in Fig. 1,127

similar to the procedure in [28] but with a different filtering strategy. The128

whole HSI is firstly classified by SVM to obtain initial classification results129

called classification maps, one for each class, which contains the probability of130

the pixels belonging to the class, e.g. Cj .131
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Figure 1: The proposed DGF methods for HSI classification.

Then to improve these initial spectrum-based classification results, the pro-132

posed DGF aims to incorporate spatial structure information, by using edge-133

preserving GF, and discriminative information, by using LDA to generate the134

guidance image.135

Finally the C filtered classification maps are merged into a final classification136

map: The label of a test pixel xtest is137

l(xtest) = argmax
j

fj(xtest), for j = 1, . . . , C, (9)

where fj(xtest) is the filtered classification results of xtest for class Cj , meaning138

that xtest is classified into class Cj if fj(xtest) has the highest value among all139

the C classes.140

The DGF-based classification algorithm is in Algorithm 1.141
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Algorithm 1 Classification of an HSI based on DGF

Input:

A vectorised HSI X ∈ RB×N ; training HSI pixels Xtrain ∈ RB×Ntrain and

their labels ytrain ∈ RNtrain×1.

The radius of the local window size r and the smoothing parameter ε, for GF.

Output: A classification map L(X), a N × 1 vector.

Training phase:

• Train a classifier Φ (e.g. SVM) using
{
Xtrain,ytrain

}
.

• Train a multi-class LDA model by (6).

Test phase:

• Classify X using the trained classifier Φ and obtain the initial classifica-

tion maps M1, . . . ,MC .

• Obtain the DGF guidance image:

– either Ig of X using DGF-g (7), or

– Ic of X using DGF-c (8).

• Filter M1, . . . ,MC by Ig as the greyscale guided filtering (1), or by Ic as

the colour guided filtering (4).

• Classify each test pixel in X by (9) and obtain L(X).
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4. Experiments142

4.1. Data and compared methods143

The experiments are carried out on a real hyperspectral dataset: the AVIRIS144

Indian Pines dataset, which is publicly available [35] and has been widely used as145

a benchmark dataset for HSI classification including those involving GF [28, 36].146

The dataset (Fig. 4(a)) consists of 145×145 pixels with 200 spectral bands after147

removing the water absorption bands. To make fair comparison with [28], for148

each of the 16 ground-truth classes (Fig. 4(b)), we randomly select the same149

number of labelled pixels as training samples and the rest as test samples which150

is utilised in [28], as listed in Table 1.151

In our experiments, five methods are compared, including SVM, PGF-g [28],152

PGF-c [28], DGF-g and DGF-c. Among these methods, PGF-g represents the153

method using SVM as a spectral classifier and adopting the first principal com-154

ponent of the HSI as a virtual greyscale guidance image for GF (referred to as155

EPF-G-g in [28]). Similarly, PGF-c represents the method using the first three156

principal components as a virtual colour guidance image (EPF-G-c in [28]).157

Correspondingly, DGF-g and DGF-c represent our proposed methods in (7)158

and (8).159

As with [28], the LIBSVM toolbox [37] is used to execute SVM. A dimen-160

sion reduction toolbox (http://lvdmaaten.github.io/drtoolbox) is adopted to161

perform PCA and LDA. The Image Processing Toolbox of MATLAB is used to162

run GF. We also employ three standard performance measures: the overall ac-163

curacy (OA), the average accuracy (AA) and the κ coefficient [38] for evaluating164

the classification performances of the compared methods.165

LDA has a limitation with the potential singularity of the pooled within-166

class scatter matrix SW [39]. The singularity occurs when the data dimension167

B is larger than the number of training samples Ntrain. In our case, B is168

much smaller than Ntrain, and the singularity problem does not happen in our169

experiments. Nevertheless, we note that our approach is applicable when there170

are sufficient training samples. In the case of B > Ntrain, we can perform a171
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preliminary dimension reduction before applying LDA to avoid the singularity172

issue.173

4.2. Parameter settings174
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Figure 2: Overall classification accuracies over window radius r and smoothing parameter ε

for (a) PGF-g [28], (b) PGF-c [28], (c) DGF-g, and (d) DGF-c.

There are parameters of SVM and GF. For SVM, we use the polynomial175

kernels with 20-fold cross validation to tune the parameters. The optimal values176

of parameters C and γ of the kernel function are tuned to be 5.66 and 0.16,177

respectively.178

For GF, two parameters should be tuned: the radius r of the local window ω179

and the smoothing parameter ε. The influence of these two parameters on the180

overall classification performances of the compared methods are demonstrated181

in Fig. 2. The range of r is from 1 to 9 and the range of ε covers 10−6 to 102. We182
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can observe that the optimal performances of PGF-g and PGF-c occur at about183

r = 4 (shown in Fig. 2(a)-2(b)). Hence we set r = 4 for PGF-g and PGF-c, and184

as with [28] we set ε = 0.01 for them. For the proposed DGF-g and DGF-c, we185

set r = 3 and ε = 10 as the optimal performances roughly occur there (shown186

in Fig.2(c)-2(d)).187

4.3. Classification results188

SVM PGF-g PGF-c DGF-g DGF-c

O
A

0.8

0.85

0.9

0.95

Figure 3: Boxplots of the overall classification accuracies on Indian Pines.

To have a reliable evaluation and fair comparison, we repeat the experi-189

ments under these parameter settings for 50 times through performing 50 ran-190

dom training-test splits while keeping the same numbers of samples for training191

and testing. For illustrative purposes, the classification results for one of the192

50 experiments are given in Table 1 and depicted in Figs. 4(c)-4(g), respec-193

tively. Moreover, all of methods’ overall classification accuracies are recorded194

and boxplotted in Fig. 3.195

From these results, we can observe at least two clear patterns. Firstly, all196

PGF-g, PGF-c, DGF-g and DGF-c improve the performance of SVM substan-197

tially, which confirms that incorporating the guided filtering process can help198

the spectral-based classifier. Secondly, the proposed DGF-g and DGF-c out-199

perform PGF-g and PGF-c in OA and κ. It indicates that the discriminative200

information provided by LDA (but unable by PCA) to GF can further improve201

classification performance.202
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Table 1: Indian Pines: Ground-truth label, training set, test set, and the classification accura-

cies (%) obtained by SVM, PGF-g [28], PGF-c [28], DGF-g and DGF-c. The best performance

is in bold.

Class Train Test SVM PGF-g PGF-c DGF-g DGF-c

1 25 21 100.00 100.00 100.00 100.00 100.00

2 83 1345 77.70 93.68 92.49 95.46 95.17

3 78 752 73.40 93.88 91.76 94.02 94.68

4 68 169 87.57 100.00 98.82 100.00 100.00

5 79 404 93.81 98.27 96.29 97.03 96.53

6 78 652 95.86 99.85 99.69 100.00 100.00

7 4 24 4.17 0.00 0.00 0.00 0.00

8 66 412 99.51 100.00 100.00 100.00 100.00

9 2 18 0.00 0.00 0.00 0.00 0.00

10 81 891 74.86 97.87 97.64 98.77 98.77

11 99 2356 66.47 92.19 90.32 94.27 94.10

12 73 520 90.00 100.00 99.23 100.00 99.81

13 70 135 99.26 99.26 100.00 100.00 99.26

14 90 1175 90.21 98.13 97.62 97.45 97.62

15 65 321 79.44 99.07 94.39 99.07 99.07

16 46 47 95.74 97.87 93.62 87.23 93.62

Total 1007 9242

OA 79.81 95.55 94.31 96.27 96.25

AA 76.75 85.63 84.49 85.21 85.54

κ 0.770 0.949 0.945 0.957 0.957

Table 2: Overall classification accuracies (%). Methods with ∗ indicates that their OAs are

obtained from [28] under their optimal parameters settings via 5-fold cross-validation.

WLS* NC* JBF-g* PGF-g DGF-g JBF-c* PGF-c DGF-c

94.93 95.20 95.42 95.55 96.27 95.41 94.31 96.25
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Figure 4: Indian Pines: (a) mean image shown in the false colour; (b) ground-truth labels.

Classification maps (and OA) of (c) SVM (79.81%); (d) PGF-g (95.55%); (e) PGF-c (94.31%);

(f) DGF-g (96.27%); (g) DGF-c (96.25%).
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For further assess whether the difference of the performances of DGF and203

PGF is statistical significant, we also perform the Wilcoxon signed-rank test,204

a widely-used non-parametric statistical hypothesis test for paired samples. In205

this paper, the test is designed for testing whether the paired classification206

performances, i.e. 50 OAs (or 50 AAs) of PGF and that of DGF, differs at the207

1% significance level. Specifically, for OAs (or AAs), we conduct two tests: one208

for PGF-g versus DGF-g and the other for PGF-c versus DGF-c. The obtained209

p-values of the two tests of OAs are 8.0e-10 and 7.5e-10; this indicates strong210

evidence that DGF is significantly better than PGF in terms of OA, confirming211

the observation from Fig. 3 and Table 1. The corresponding p-values for AAs212

are 0.011 and 7.6e-10; this provides strong evidence that DGF-c is significantly213

better than PGF-c in terms of AA, while no strong evidence that DGF-g is214

significantly worse than PGF-g, also in line with what is revealed by Table 1.215

From Table 1, we also note that all GF-based methods (and SVM itself)216

fail for classes 7 and 9. This is due to the lack of training samples for these217

two class, which are only 4 for class 7 and 2 for class 9. Also, classes 7 and218

9 cover a narrow region in the dataset, and the filtering of these two classes219

can be dominated by other classes adjacent and thus misclassified. The bad220

performance of the methods in identifying classes 7 and 9 make a big influence221

on AA but little influence on OA, because the number of test pixels of these222

two class are also small. This explains why OA are higher than AA for all the223

compared methods listed in Table 1.224

For further evaluation, we also compare DGF with some other modern225

edge-preserving smoothing methods, such as the weighted least squares (WLS)226

method, the normalised convolution (NC) filter and the joint bilateral filter227

(JBF). These methods are also compared in [28]. Since our experiment settings228

are exactly the same as [28], we compare the performance of our proposed DGF229

directly with those reported in [28], as listed in Table 2. We can observe that230

our proposed method DGF-g and DGF-c still outperform the other compared231

edge-preserving methods, which shows the superiority of the proposed idea to232

combine the discriminative classifier and the generative classifier by GF for the233
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HSI classification.234

5. Summary and future work235

In this paper, a new filtering framework called discriminatively guided filter-236

ing (DGF) has been proposed, which integrates a discriminative classifier and a237

generative classifier by the guided filtering for hyperspectral image classification.238

The combination of SVM and LDA has been adopted illustrating the effective-239

ness of DGF, which also inspires us to investigate the performance of other240

generative-discriminative combinations as a direction of our future research.241

Furthermore, there are other reports using the Indian Pines dataset for eval-242

uation of classification performance, for example, our recent work called JSM-243

DKSVD which focuses on dictionary learning [10]. We shall note that it may244

not be fair to directly compare the proposed DGF to such a dictionary learning-245

based classification method, since the latter has an extra learning process to246

learn the dictionary. Nevertheless, we believe that the proposed GDF frame-247

work can be improved by incorporating such a learning process, which leads to248

another direction meriting our future research.249
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