Urban Birth, Urban Living, and Work Migrancy: Differential Effects on Psychotic Experiences Among Young Chinese Men

Jeremy W. Coid1, Junmei Hu2, Constantinos Kallis3, Yuan Ping3, Juying Zhang3, Yueying Hu4, Tianqiang Zhang1, Rafael Gonzalez5, Simone Ullrich*,1, Peter B. Jones6, and James B. Kirkbride7

1Violence Prevention Research Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK; 2West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China; 3West China School of Public Health, Sichuan University, Chengdu, China; 4Chengdu Academy of Social Sciences, Chengdu, China; 5Faculty of Medicine, Imperial College London, London, UK; 6Department of Psychiatry, University of Cambridge, Cambridge, UK; 7Division of Psychiatry, University College London, London, UK

*To whom correspondence should be addressed; Centre for Psychiatry, Wolfson Institute of Preventive Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; tel: +44-7981-1479-79, e-mail: s.ullrich@qmul.ac.uk

Background: Urban birth and urban living are associated with increased risk of schizophrenia but less is known about effects on more common psychotic experiences (PEs). China has undergone the most rapid urbanization of any country which may have affected the population-level expression of psychosis. We therefore investigated effects of urbanicity, work migrancy, and residential stability on prevalence and severity of PEs. Methods: Population-based, 2-wave household survey of psychiatric morbidity and health-related behavior among 4132 men, 18–34 years of age living in urban and rural Greater Chengdu, Sichuan Province, China. PEs were measured using the Psychosis Screening Questionnaire. Results: 1261 (31%) of young men experienced at least 1 PE. Lower levels of PEs were not associated with urbancity, work migrancy or residential stability. Urban birth was associated with reporting 3 or more PEs (OR: 1.63; 95% CI: 1.25–2.11), after multivariable adjustment, with further evidence (P = .01) this effect was restricted to those currently living in urban environments (OR: 1.78; 95% CI: 1.16–2.72). Men experiencing a maximum of 5 PEs were over 8 times more likely to have been born in an urban area (adjusted odds ratio [AOR] 8.81; 95% CI 1.50–51.79). Conclusions: Men in Chengdu, China, experience a high prevalence of PEs. This may be explained by rapid urbanization and residential instability. Urban birth was specifically associated with high, but not lower, severity levels of PEs, particularly amongst those currently living in urban environments. This suggests that early and sustained environmental exposures may be associated with more severe phenotypes.

Key words: urban birth/urban living/work migrancy/psychotic experiences

Introduction

Social adversity and living in urban locations are associated with increased rates of psychotic illness. Links have been observed between schizophrenia and urban birth, urban upbringing, and urban residence in temporal proximity to illness presentation but less is known about associations with psychotic experiences (PEs). PEs are relatively common in the general population and thought to be on a continuum with psychotic symptoms in clinical samples. Associations between urbancity and psychosis are far from new. Historical data suggest increases in incidence of schizophrenia in all western countries during the 19th century which coincided with the industrial revolution a period of rapid urbanization and industrialization coupled with mass population displacement from rural to urban areas. This hypothesis suggests that risk factors associated with urban living may result in increased incidence, and could result in increased prevalence of PEs in such locations. Because persistence of PEs and later development of psychotic disorder correspond to prevalence of PEs measured at baseline, stressors associated with abrupt displacement to an urban environment could affect both the population and clinical expression of psychosis phenotypes.

Contemporary naturalistic studies in populations undergoing rapid industrialization, urbanization, and rural-urban migration may allow us to test whether and why rates of psychotic illness and PEs increase during periods of major socioeconomic transformation. No previous study has investigated effects of both urban birth and internal work migrancy on clinical psychosis and PEs within a country undergoing rapid urban development. The People’s Republic of China (PRC...
has undergone the most rapid process of urbanization of any country from the mid-20th century onwards and the prevalence of (detected) schizophrenia is thought to be increasing.14 Persons recorded as living in urban areas increased from 13\% to 53\% between 1952 and 2012, with rural-urban labor migration providing the backbone for long-term economic transformation. Chinese migrant workers, however, experience considerable acculturative stress,15 social marginalization16 and individual-level risks for poor mental health,17–19 although specific associations with psychosis have not been confirmed. Previous surveys have observed that prevalence of schizophrenia is high in Chinese urban areas,20,21 but studies investigating effects of population displacement, rural-urban migration, and birth on heterogeneity in these rates are missing.

We conducted a large representative survey of PEs among young adult men in Sichuan Province, PRC. The aims of the study were to investigate whether: (1) urban birth and living were associated with increased prevalence of PEs; (2) being a migrant worker modified effects of birth and current residence; and (3) effects of place of birth, living, migrancy, and residential stability differed across severity of PEs.

\textbf{Methods}

\textit{Participant Sampling}

We carried out a survey of men aged 18–34 years in 2 waves in 2011 and 2013, based on stratified multistage sampling to correspond to a previous UK survey22 to achieve a representative sample of Chinese men living in rural and urban settings in Sichuan province, PRC. This method was preferred given the absence of a simple sampling frame. First, we stratified Greater Chengdu into 3 concentric rings delineating (1) the city centre (exclusively urban “districts”); (2) suburbs (mixed rural “counties” and urban “districts”); and (3) rural areas (exclusively rural “counties”). Our sampling strategy varied according to concentric ring (strata) and administrative organization of households.

Total numbers of selected households in urban and rural areas were 1152 and 1260, respectively. Different districts and villages were included randomly in the 2 waves, without replacement, to avoid duplication of any district being sampled more than once. All sampling frames were derived using official data provided by the Chengdu Government website (http://jcpt.chengdu.gov.cn/chengdushi/).

\textit{Data Collection}

A self-administered questionnaire used in a previous UK survey22 was adapted and translated into Mandarin. The questionnaire was then back-translated into English before final modifications for usage. Informed consent was obtained from all survey respondents. Respondents completed pencil and paper questionnaires in privacy and were given gifts to the value of 50 yuan for participation.

Ethical approval to carry out the survey was obtained from the Medical Ethics Committee of the University of Sichuan.

\textit{Survey Measures}

The Psychosis Screening Questionnaire (PSQ)23 assessed 5 common PEs: hypomania, thought interference, paranoid delusions, strange experiences, and auditory and visual hallucinations. We reported descriptive statistics (ie, prevalence) on those endorsing 1 or more, 3 or more, or all 5 PEs. To examine the associations between severity of PEs and exposure and other survey variables, we treated PEs as both a nominal (0, 1–2, 3–4, 5 PEs) and binary variable (3–5 vs 0–2); the latter represented our previously used cut-off to indicate potentially clinically relevant psychosis.22

Questions from the Structured Clinical Interview for DSM-IV personality disorder (SCID-II) screening questionnaire24 probed for antisocial personality disorder. The Hospital Anxiety and Depression Scale (HADS)25 identified anxiety and depressive disorder based on scores of \geq11 in the past week. The psychometric properties of the Mandarin version of the HADS have been previously found to be good.26 Scores of \geq20 on the Alcohol Use Disorders Identification Test (AUDIT),27 and \geq25 on the Drug Use Disorders Identification Test (DUDIT),28 were used to identify alcohol or drug dependence respectively. The AUDIT tool demonstrated good psychometric properties in Mandarin-speaking samples.29 The DUDIT had not previously been assessed in a Mandarin-speaking sample, but we followed recommendations from the authors for translation (http://www.emcdda.europa.eu/best-practice/eib/dudit).

Participants were asked about lifetime history of suicidal attempts, consultations with a medical practitioner for mental health problems, and impairment in daily living.

\textit{Exposure Variables}

All participants were asked about place of birth and whether this was a rural or urban area; this is formally defined under the household registration section of PRC. They were asked about the urban/rural status of their current living location, length of time in current location (in years, as a marker of residential instability) spent there, and whether they were a migrant worker.

\textit{Statistical Analysis}

To ensure a sample representative of the region, weights were constructed based on probabilities of circle, district, street, and community. All descriptive statistics and subsequent statistical comparisons are based on weighted
data using survey commands in Stata 14. To examine the
association between exposures, other survey variables
and PEs, we used logistic regression for our binary out-
come (0–2 vs 3–5 PEs) and multinomial logistic regres-
sion for nominal data (0, 1–2, 3–4, 5 PEs), with no PEs
as reference group. Results were presented with adjusted
odds ratios (AORs) and 95% CIs. Statistical significance
was set at \(P < .05 \).

Results

Demography and Sampling

The combined weighted sample included 4132 men,
18–34 years of age, 2867 in the first and 1265 in the sec-
ond wave. Of the total sample, 2853 (69.3%) reported
rural birth and 1262 (30.7%) urban birth; 2104 (51.2%)
current rural living, and 2005 (48.8%) current urban liv-
ing; 1604 (40.4%) reported they were migrant workers.
Median time spent in current location was 0.5 years (IQR
0.2–1.7). For descriptive purposes, we used the conven-
tional cut-off of the last quartile (at least 1.7 years) as the
threshold to define long time period at current location.
In regression models, we included time at current loca-
tion as continuous measure to increase power in detecting
effects of this exposure variable.

Urban-born men were younger, and more likely to be
single, completed higher education, misused alcohol and
drugs, and consulted a medical practitioner than those
born in rural areas (table 1). However, urban-born men
reported lower levels of depression than their rural-born
counterparts. Men currently living in an urban area were
also more likely to be single, to have completed higher
education, and were less likely to be depressed than those
living in a rural area. No associations were found between
work migrancy and demography. Finally, shorter length
of time living in current location was associated with
younger age, lower educational level, single marital sta-
tus, ethnic minorities, and history of suicide attempts.

Prevalence and Distribution of PEs by Exposure Status

In the total sample, 1261 (31.1%; 95% CI: 25.8%–37.0%)
described experiencing 1 or more PEs within the last year,
with an annual prevalence of people screening positive
for psychosis (PSQ ≥ 3) of 5.0% (95% CI: 3.7%–6.7%).
Initial inspection suggested prevalence of 1 or more PEs
did not vary by urban birth, current living or migrancy
status (table 1). Length of time at current location was
associated with prevalence of 1 or more PEs, such that
greater residential stability was associated with a lower
likelihood of PEs (AOR: 0.69; 0.54–0.88). By contrast,
prevalence of 3 or more PEs was associated with urban
birth (AOR: 1.90; 1.28–2.82), urban living (AOR: 2.05;
1.46–2.88), and time at current location (AOR: 0.38; 0.19–
0.74). Further inspection of this data (figure 1) suggested
that the proportion of people exposed to urban birth,
current living and migrant status increased with greater
endorsement of PEs, particularly amongst participants
endorsing all 5 PEs. Residential instability (indicated by
decreasing length of time at current location) showed a
linear association with number of PEs, although this was
not sustained at 5 PEs. There was also some evidence of a
synergistic relationship between urban birth and current
urban living, such that most men with 5 PEs (79.4%) were
exposed to both variables (supplementary figure 1).

**Association Between PEs and Other Clinical and
Demographic Characteristics**

Table 2 shows associations between levels of PEs, demog-
raphy and other psychiatric morbidity. There were no sig-
nificant associations between demography and levels of
PEs. However, men who reported an increasing number
of PEs were more likely to receive comorbid diagnoses of
anxiety disorder, alcohol and drug misuse, antisocial per-
sonality disorder, although not depressive disorders; they
were also more likely to report both impairment in daily
living and consulting a medical practitioner due to men-
tal health problems. These patterns were present across
all levels of PEs, including when considering 3 or more
PEs as a cut-off for clinical symptoms.

Regression Modeling

We found no associations between migrant worker status
and PEs (table 3). Current urban living was initially asso-
ciated with reporting 5 PEs (Models I and II, table 3), but
this effect was attenuated following mutual adjustment
for urban birth and other exposures including age, anxi-
ety disorder, alcohol misuse, drug use, suicide attempt,
and antisocial personality disorder (Model III). Men
who reported experiencing all 5 PEs were 8.81 (95% CI:
1.50–51.79) times more likely to have been born in an
urban area than men reporting no PEs, after multivari-
able adjustment. Similar patterns were observed when
we considered 3 or more PEs as an indicator for pos-
sible clinical psychosis (table 3). Thus, after adjustment
for all other variables (Model III) we found urban birth
was associated with increased odds of reporting 3 or
more PEs (OR: 1.63; 1.25–2.11), with weak evidence that
greater residential stability was associated with reduced
odds of psychosis (OR: 0.76; 0.58–1.01; \(P = .056 \)). We
found evidence to support a synergistic effect between
urban birth and current living, with excess risk limited
to those exposed to both variables (OR: 1.78; 1.16–2.72;
\(P = .01 \); figure 2).

Discussion

The annual prevalence of 1 or more PEs in this sample of
young Chinese men was high. This suggests that young
Chinese men may have been exposed to more risk factors
than elsewhere, including the marked social and economic
Table 1. Univariable Associations of Urbanicity and Migrancy Characteristics With Demography, Psychotic Experiences, and Other Psychiatric Morbidity

<table>
<thead>
<tr>
<th>Urbanicity and Migrancy Characteristics</th>
<th>Urban Birth</th>
<th>Urban Living</th>
<th>Migrant Worker</th>
<th>Time at Current Location (Ordinal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>AOR (95% CI)</td>
<td>n</td>
<td>AOR (95% CI)</td>
<td>n</td>
</tr>
<tr>
<td>Single marital status</td>
<td>782 62.0</td>
<td>1.71 (1.27-2.29)***</td>
<td>1162 58.0</td>
<td>1.49 (1.04-2.14)*</td>
</tr>
<tr>
<td>Higher education level</td>
<td>568 46.2</td>
<td>2.61 (2.12-3.20)***</td>
<td>906 46.0</td>
<td>4.17 (2.73-6.37)***</td>
</tr>
<tr>
<td>Ethnic minority</td>
<td>44 3.5</td>
<td>1.52 (0.93-2.47)</td>
<td>65 3.2</td>
<td>1.57 (0.61-4.04)</td>
</tr>
<tr>
<td>Age—mean (SD)</td>
<td>25.1 4.8</td>
<td>0.96 (0.93-0.98)***</td>
<td>25.6 4.6</td>
<td>0.98 (0.95-1.01)</td>
</tr>
<tr>
<td>Other psychiatric morbidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depressive disorder</td>
<td>128 10.3</td>
<td>0.63 (0.41-0.97)*</td>
<td>166 8.4</td>
<td>0.39 (0.25-0.61)***</td>
</tr>
<tr>
<td>Anxiety disorder</td>
<td>126 10.1</td>
<td>1.14 (0.74-1.75)</td>
<td>214 10.8</td>
<td>1.44 (1.01-2.05)*</td>
</tr>
<tr>
<td>Alcohol misuse</td>
<td>124 10.2</td>
<td>1.96 (1.32-2.91)**</td>
<td>148 7.6</td>
<td>1.25 (0.80-1.98)</td>
</tr>
<tr>
<td>Drug misuse</td>
<td>28 2.3</td>
<td>2.94 (1.66-5.20)***</td>
<td>28 1.4</td>
<td>1.31 (0.80-2.16)</td>
</tr>
<tr>
<td>Suicide attempt</td>
<td>110 9.4</td>
<td>1.08 (0.75-1.56)</td>
<td>190 9.8</td>
<td>1.25 (0.87-1.80)</td>
</tr>
<tr>
<td>Antisocial personality disorder</td>
<td>62 5.0</td>
<td>1.21 (0.88-1.68)</td>
<td>95 4.8</td>
<td>1.18 (0.92-1.50)</td>
</tr>
<tr>
<td>Psychotic experiences (1+)</td>
<td>396 32.0</td>
<td>1.03 (0.87-1.22)</td>
<td>605 30.6</td>
<td>0.93 (0.66-1.30)</td>
</tr>
<tr>
<td>Psychotic experiences (3+)</td>
<td>91 7.4</td>
<td>1.90 (1.28-2.82)**</td>
<td>132 6.7</td>
<td>2.05 (1.46-2.88)***</td>
</tr>
<tr>
<td>Impairment in daily living</td>
<td>19 1.5</td>
<td>1.15 (0.96-1.38)</td>
<td>23 1.2</td>
<td>1.07 (0.83-1.39)</td>
</tr>
<tr>
<td>Consulted medical practitioner</td>
<td>71 5.9</td>
<td>2.09 (1.04-4.17)*</td>
<td>75 3.9</td>
<td>1.01 (0.60-1.69)</td>
</tr>
</tbody>
</table>

Note: AOR, adjusted odds ratios for survey wave. All estimates are based on weighted data.

*For descriptive purposes absolute and relative frequencies of the last quartile were reported, the continuous score was used for ordinal regression.

*P < .05, **P < .01, ***P < .001.
Effects of Urban Birth/Living and Work Migrancy on PEs

changes in China. When we investigated this in relation to urban birth, current living status, and work migrancy, we found evidence that men who reported experiencing 3 or more PEs were 63% more likely to have been born in urban than rural areas, after adjustment for several possible confounders. We also found evidence to suggest that this excess was restricted to men who were born and remained living in urban areas at the time of the survey. For men reporting all 5 PEs, urban birth was associated with over an 8-fold elevation in risk.

Urban birth was also independently associated with alcohol and drug misuse. Surprisingly, urban living and residential stability, as measured by length of time in current location, were not generally associated with other psychiatric morbidity, although residential instability was associated with reported suicide attempts. The negative associations we observed between urbanicity and depression correspond to the higher prevalence consistently observed in rural areas in China. Linear relationships between increasing levels of PEs and all forms of psychiatric morbidity, except depression, correspond to studies showing that PEs in western countries are explained substantially by other conditions and that most individuals with PEs have current diagnoses primarily of mood or anxiety, but also substance misuse and self-harm. Despite previous studies showing associations between work migrancy and poor mental health, we found no associations in this study.

Urban Birth and Urban Living

In our study, urban birth was a stronger predictor of more severe PEs than urban living, though we found some evidence that persistent exposure to urban environments was associated with greatest risk. We found little evidence to suggest that either exposure was associated with lower levels of PEs in our sample of Chinese men. This suggests that, in this population, factors associated with urban birth and living are not associated with the extended psychosis phenotype, which is thought to lie on a continuum with clinical psychosis in the general population. In contrast, we found that urban birth was associated with more severe psychotic conditions, represented by both our definition of 3 or more PEs in the past year, as well as endorsement of all 5 PEs measured using the PSQ. These results are consistent with previous studies which suggest that urban birth is associated with clinical psychosis, but weaker for subclinical PEs.

In our study, reporting of more PEs was strongly associated with greater impairment and medical consultations, indicative of a categorical psychosis construct. Although our cross-sectional method could not ultimately determine whether transition had progressively occurred from PEs to a clinical psychotic state, an ongoing process of transition from lower levels over time was unlikely due to lack of associations observed between urban birth and lower levels of PEs in our sample.

The Effects of Work Migrancy and Residential Instability

We did not find independent associations between migrancy status and PEs, but there was weak evidence (P = .056) that shorter time in current location (whether urban or rural) was associated with a higher likelihood of reporting 3 or more PEs. China’s

Fig. 1. Distribution of urbanicity/migrancy across different levels of psychotic experiences.
Table 2. Univariable Associations Between Psychotic Experiences and Demographic and Clinical Variables

<table>
<thead>
<tr>
<th>Number of Psychotic Experiences</th>
<th>0 (Ref.)</th>
<th>1–2</th>
<th>3–4</th>
<th>5</th>
<th>3–5*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2789, 68.9%)</td>
<td>(1058, 26.1%)</td>
<td>(167, 4.1%)</td>
<td>(36, 0.9%)</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>AOR</td>
<td>n</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-------</td>
<td>----</td>
</tr>
<tr>
<td>Demography</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single marital status</td>
<td>1394</td>
<td>50.0</td>
<td>621</td>
<td>58.7</td>
<td>1.35 (1.09–1.68)**</td>
</tr>
<tr>
<td>Higher education level</td>
<td>889</td>
<td>32.8</td>
<td>292</td>
<td>28.3</td>
<td>0.79 (0.55–1.12)</td>
</tr>
<tr>
<td>Ethnic minority</td>
<td>83</td>
<td>3.0</td>
<td>15</td>
<td>1.4</td>
<td>0.45 (0.14–1.48)</td>
</tr>
<tr>
<td>Age—mean (SD)</td>
<td>26.1</td>
<td>4.9</td>
<td>25.4</td>
<td>4.9</td>
<td>0.98 (0.94–1.01)</td>
</tr>
<tr>
<td>Other psychiatric morbidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depressive disorder</td>
<td>356</td>
<td>12.9</td>
<td>165</td>
<td>15.8</td>
<td>1.27 (0.78–2.08)</td>
</tr>
<tr>
<td>Anxiety disorder</td>
<td>125</td>
<td>4.5</td>
<td>154</td>
<td>14.6</td>
<td>3.49 (2.31–5.25)***</td>
</tr>
<tr>
<td>Alcohol misuse</td>
<td>133</td>
<td>4.9</td>
<td>87</td>
<td>8.5</td>
<td>1.81 (1.22–2.68)**</td>
</tr>
<tr>
<td>Drug misuse</td>
<td>24</td>
<td>0.9</td>
<td>20</td>
<td>1.9</td>
<td>2.29 (0.90–5.79)</td>
</tr>
<tr>
<td>Suicide attempt</td>
<td>141</td>
<td>5.3</td>
<td>122</td>
<td>12.0</td>
<td>2.45 (1.78–3.39)***</td>
</tr>
<tr>
<td>Antisocial personality disorder</td>
<td>85</td>
<td>3.1</td>
<td>64</td>
<td>6.1</td>
<td>2.03 (1.56–2.64)***</td>
</tr>
<tr>
<td>Impairment in daily living</td>
<td>20</td>
<td>0.7</td>
<td>20</td>
<td>2.0</td>
<td>1.62 (1.35–1.95)***</td>
</tr>
<tr>
<td>Consulted medical practitioner</td>
<td>71</td>
<td>2.7</td>
<td>44</td>
<td>4.4</td>
<td>1.57 (0.50–4.94)</td>
</tr>
</tbody>
</table>

Note: AOR, adjusted for survey wave. All estimates are based on weighted data.
*Versus 0–2 PEs.
*P < .05, **P < .01, ***P < .001.
The migrant worker population reached 211 million in 2009 (National Health and Family Planning Commission of PRC; http://en.nhfpc.gov.cn/) and the mental health status of migrants is considered generally poorer, particularly among those who move between cities and become unemployed. Rural-to-urban migrants experience stressful living conditions and social stigma which interferes with reconstruction of social capital. Shorter time in current location, rather than migrant status per se, may therefore correspond to difficulty re-establishing protective effects against PEs; alternatively shorter time in current location could be a result of PEs and associated psychopathology (reverse causation). However, our lack of observed associations between PEs, other psychiatric morbidity, and work migrancy may have been due to bias inherent in cross-sectional studies of migrants: sick and unhealthy migrants are observed to return to their home towns and villages leading to general over-estimate of the health status of rural-urban migrants. Additionally, migrant workers in the Chengdu region may have experienced better mental health, observed elsewhere, associated with economic mobility and improved opportunities.

Table 3. Effects of Urbanicity, Migrancy, and Residential Stability on Number of Psychotic Experiences Following Multivariable Regression

<table>
<thead>
<tr>
<th>Number of Psychotic Experiences</th>
<th>1–2</th>
<th>3–4</th>
<th>5</th>
<th>3–5*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AOR</td>
<td>95% CI</td>
<td>P</td>
<td>AOR</td>
</tr>
<tr>
<td>Model I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban birth</td>
<td>0.88</td>
<td>0.73–1.07</td>
<td>.180</td>
<td>0.55–2.96</td>
</tr>
<tr>
<td>Currently lives in urban</td>
<td>0.80</td>
<td>0.55–1.16</td>
<td>.215</td>
<td>1.01–2.63</td>
</tr>
<tr>
<td>environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migrant worker</td>
<td>1.03</td>
<td>0.77–1.38</td>
<td>.810</td>
<td>0.57–2.31</td>
</tr>
<tr>
<td>Time at current location in years</td>
<td>0.81</td>
<td>0.64–1.02</td>
<td>.070</td>
<td>0.39–0.89</td>
</tr>
<tr>
<td>Model II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban birth</td>
<td>0.90</td>
<td>0.74–1.10</td>
<td>.277</td>
<td>0.47–3.12</td>
</tr>
<tr>
<td>Currently lives in urban</td>
<td>0.73</td>
<td>0.46–1.16</td>
<td>.167</td>
<td>0.78–3.15</td>
</tr>
<tr>
<td>environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migrant worker</td>
<td>0.99</td>
<td>0.69–1.43</td>
<td>.974</td>
<td>0.53–1.78</td>
</tr>
<tr>
<td>Time at current location in years</td>
<td>0.83</td>
<td>0.64–1.09</td>
<td>.169</td>
<td>0.41–0.86</td>
</tr>
<tr>
<td>Model III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban birth</td>
<td>1.07</td>
<td>0.82–1.40</td>
<td>.573</td>
<td>0.47–2.51</td>
</tr>
<tr>
<td>Currently lives in urban</td>
<td>0.73</td>
<td>0.47–1.15</td>
<td>.163</td>
<td>0.47–1.73</td>
</tr>
<tr>
<td>environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migrant worker</td>
<td>0.92</td>
<td>0.58–1.47</td>
<td>.701</td>
<td>0.55–1.32</td>
</tr>
<tr>
<td>Time at current location in years</td>
<td>0.75</td>
<td>0.51–1.11</td>
<td>.135</td>
<td>0.41–0.85</td>
</tr>
</tbody>
</table>

Note: All estimates are based on weighted data. **Reference group:** no psychotic experiences. **Model I:** adjusted for survey wave and age. **Model II:** further adjusted for anxiety disorder, alcohol misuse, drug use, suicide attempt and antisocial personality disorder. **Model III:** further adjusted for other urbanicity/migrancy characteristics.

Versus 0–2 PEs.

Fig. 2. Combined effect of urban-rural birthplace and current living status on experience of 3 or more psychotic experiences (PEs). Chinese men born in urban areas and living in urban areas at the time of the survey had elevated odds of experiencing 3 or more PEs compared with men born and living in rural areas. No other differences in risk were observed. Wald P value for interaction: P = .01. Model adjusted for age, anxiety disorder, alcohol misuse, drug use, suicide attempt, antisocial personality disorder, migrant status, time resident in current area and survey wave. Three or more PEs on PSQ has been previously used to define the presence of clinically relevant psychosis. d: number of people endorsing 3+ PEs; N: total sample; AOR: adjusted odds ratio.
Psychotic disorders are increasingly seen as symptomatic expressions of more than 1 disease process, with different aetiologies leading to the same presentation. Our study findings are new and suggest 2 different disease processes leading to PEs in our sample. Firstly, the extended processes leading to PEs in our sample. Firstly, the extended

Implications

Psychotic disorders are increasingly seen as symptomatic expressions of more than 1 disease process, with different aetiologies leading to the same presentation. Our study findings are new and suggest 2 different disease processes leading to PEs in our sample. Firstly, the extended

Supplementary Material

Supplementary data are available at Schizophrenia Bulletin online.
Funding
The study was supported by funding from the East London National Health Service Foundation Trust, UK and the Opening Project of Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, China (102249). J.B.K. is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (101272/Z/13/Z).

Acknowledgment
The authors have declared that there are no conflicts of interest in relation to the subject of this study.

References

