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Effects of acoustic waves on a phase transformation in a metastable phase were investigated in our
previous work [S. R. Haqshenas, I. J. Ford, and N. Saffari, “Modelling the effect of acoustic waves
on nucleation,” J. Chem. Phys. 145, 024315 (2016)]. We developed a non-equimolar dividing sur-
face cluster model and employed it to determine the thermodynamics and kinetics of crystallisation
induced by an acoustic field in a mass-conserved system. In the present work, we developed a master
equation based on a hybrid Szilard-Fokker-Planck model, which accounts for mass transportation
due to acoustic waves. This model can determine the kinetics of nucleation and the early stage of
growth of clusters including the Ostwald ripening phenomenon. It was solved numerically to calculate
the kinetics of an isothermal sonocrystallisation process in a system with mass transportation. The
simulation results show that the effect of mass transportation for different excitations depends on the
waveform as well as the imposed boundary conditions and tends to be noticeable in the case of shock
waves. The derivations are generic and can be used with any acoustic source and waveform. Published
by AIP Publishing. https://doi.org/10.1063/1.5003021

I. INTRODUCTION

Acoustic waves propagate in a fluid through consecutive
compression and rarefaction cycles. The rarefaction cycle can
nucleate bubbles or induce a liquid-gas transition1–3 called
acoustic cavitation. In the case of a solid new phase (either a
liquid-solid transition or crystallisation from a solution), the
process of phase transition is called sonocrystallisation which
has been used for the production and purification of solid par-
ticles in various industries, e.g., pharmaceutical and food.4

During propagation of acoustic waves in the fluid, acoustic
energy may be partially converted into thermal energy through
different mechanisms, e.g., viscous losses and/or relaxational
losses.5–8 Therefore, depending on the excitation period, the
temperature may vary at some spatial locations. Furthermore,
acoustic waves may distort due to the nonlinearity in the equa-
tion of state of the fluid, and shock waves can be formed.8

The temperature, flow, and pressure fields at each spatial loca-
tion in the liquid old phase are comprised of the direct field
from the acoustic source and the indirect field generated by
acoustic cavitation when this phenomenon occurs. The lat-
ter is a localised effect which is limited to the vicinity of
bubbles. This effect can however be substantial if inertial
cavitation occurs.9–11 These varying temperature, flow, and
pressure fields imply that a phase transition in an acoustic
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field is unsteady and the use of conventional equations based
on the assumption of a stationary process is not justified in
general. This motivates the need to treat sonocrystallisation as
an unsteady process which shapes our vision for modeling.

We recently developed a new model that can describe the
thermodynamics of phase transition for small clusters.12 This
is important as the size of the critical cluster reduces with
an increase in the intensity of the acoustic field. Describing
the kinetics of cluster formation by the cluster dynamics, the
aggregative and non-aggregative mechanisms are the two main
governing mechanisms which determine the cluster distribu-
tion over time.13 Aggregative mechanisms include nucleation,
growth, and ageing, which give rise to the flux of the cluster
concentration along the size axis. The non-aggregative mech-
anism accounts for the change in the concentration of clusters
in a system driven by mass flux along the space parameter
axis, e.g., due to forced diffusion in an acoustic field. Such a
system is called a non-mass conserved system here. The ther-
modynamics and kinetics of phase transformation in a mass-
conserved system (overlooking the non-aggregative mecha-
nism) exposed to an acoustic field were studied in the preceding
work.12 The objective of the present paper is to cast a kinetic
model, both in discrete and continuous forms, which accounts
for the effects of wave propagation on both aggregative and
non-aggregative mechanisms of cluster dynamics.

The kinetics of cluster formation in a non-mass conserved
system has been studied in different applications, namely:
the theory of thin film condensation14–20 and phase transi-
tion and precipitation in flows.21–27 The convection-diffusion
equation is typically used to determine mass transportation
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in accord with hydrodynamics. This is incorporated into a
kinetic equation in order to compute the kinetics of nucleation
or reaction in an open system.28–30 The effect of hydrody-
namics on the molecular diffusion can be accounted for by
using the generic Fick’s equation which entails the effect of
pressure gradient, temperature gradient, and external forces on
the flux of solute molecules in a mixture.16,31,32 A simplified
form of the convection-diffusion equation was used to deter-
mine the radial concentration of the solute species in a binary
mixture undergoing a pressure gradient created by the ultra-
centrifugal force.33 This equation was also utilised to study
transportation of the solute species in a binary mixture around
an oscillating bubble excited by acoustic waves.34 Newman
and Eirich35 modified the Langevin equation to describe the
motion of a macromolecule in the solution exposed to an ultra-
centrifugal field, instead of Fick’s equation, and determined
the sedimentation constant. In another work, the reaction-
diffusion dynamics was modeled by a spatiotemporal master
equation constructed by a Markov state model for the diffusive
part.36

The effect of different types of acoustic fields on the spatial
distribution of particles in a fluid has been extensively stud-
ied.37–40 The main objective of these studies is to calculate the
radiation force applied on particles and mass transportation
in acoustic fields but not their effect on the thermodynam-
ics and kinetics of phase transition. The latter was considered
mainly in the context of acoustic cavitation: (i) to model recti-
fied diffusion of gas or vapour (evaporated at the liquid-bubble
interface) towards an oscillating bubble leading to its gradual
growth41–44 and (ii) to model the segregation of a gas mixture
inside an oscillating bubble driven by pressure and temperature
gradients.44,45

Here we aim to study the theory of sonocrystallisa-
tion in a non-mass conserved system. We will develop and
present a model which accounts for the effect of pressure
and temperature oscillations on both aggregative and non-
aggregative mechanisms. Furthermore, the developed model
can describe the non-stationary kinetics of crystallisation in
an arbitrary acoustic field, e.g., shock waves. The nucleation
model developed in the preceding work is represented in
Sec. II followed by the description of the cluster dynamics
in Sec. III. We present equations for calculating mass trans-
portation in an acoustic field in Sec. III B. A simplified form
of this equation is then incorporated into both the Szilard and
Fokker-Planck equations to achieve the kinetic model in a
non-mass conserved system. Using this model, we determine
the effect of different one-dimensional acoustic fields on the
spatial distribution of monomers (Sec. V B). Subsequently,
the nucleation work and kinetics are calculated and discussed
(Sec. V C).

II. CLUSTER MODEL AND THE WORK
OF CLUSTER FORMATION

The thermodynamics of phase transformation based on
the Gibbs droplet model with an arbitrary dividing surface
was studied in our preceding work.12 We quantified the effect
of variation in pressure, temperature, and composition of the
old phase on the work of formation of a cluster. We use the

same model here to define clusters and to calculate the work of
cluster formation in an acoustic field. The model is presented
in this section without delving into derivations. The reader is
referred to the previous work for the detailed discussion of the
model.

Figure 1 schematically presents the cluster model. A phase
transition takes place in the system which is considered to be a
volume element coupled to a heat and particle bath. The choice
of heat and particle bath essentially means that the tempera-
ture and volume of the system remain constant and the old
phase in the system has the same chemical potential as that
of the bath. Initially, the system consists of the homogeneous
old phase. After cluster formation, the system includes three
phases, namely, the core of the cluster taking the new phase
(labeled with suffix n), the old phase surrounding the new
phase, and an interface phase (labeled with suffixσ) which lies
on an arbitrary dividing surface (DS) between the new and old
phases. The interface phase is considered to be a zero volume
layer, i.e., a Gibbs geometrical surface. For a given cluster size
n, the properties of a cluster vary depending on the location of
the DS. Here, we will use the new surface defined in the work
of Haqshenas et al.12 as the DS. It is a non-equimolar dividing
surface (non-EDS) identified by a dimensionless parameter λ
and the size-independent surface tension γ∞ which is the equi-
librium macroscopic planar surface tension at the initial state.
Assuming clusters are spherical, λ = δ/R0 is a dimensionless
quantity that distinguishes an arbitrary dividing surface from
the EDS, where δ is the radial separation between the EDS and
the arbitrary DS (δ = RE

� R, where RE and R are the radii of
EDS and non-EDS clusters, respectively) and R0 is the radius
of a monomer in the new phase, considered to be a sphere. For
an EDS, we have by definition nσ = 0.13 As shown in the work
of Haqshenas et al.,12 the number of molecules in the interface
phase for spherical clusters is obtained by

nσ = kρG(nn) = kρ 3λ

(
n

2/3
n + λn

1/3
n +

λ2

3

)
. (1)

Here kρ = 1 � ρ/ρn is a dimensionless quantity, where ρ and ρn

are the molecular number density of the old phase and the new
phase, respectively. The total size (in molecules) of a cluster
then reads n = nn + nσ = nn + kρG(nn). Depending on the
density of new and old phases and the location of the dividing
surface, nσ can be positive or negative.

Using this model to define a cluster of condensed phase,
the work of cluster formation reads12

∆Ω = − n∆µ + Fσ,1, (2)

where Fσ ,1 = nσ∆µ + Ωσ is the excess free energy, Ω is the
thermodynamic grand potential, ∆µ = µ � µn is the difference

FIG. 1. Cluster formation in a system with constant volume, temperature,
and chemical potential. n′

Σ
and n

Σ
are the number of molecules in the system

before and after cluster formation, respectively. Refer to the text for details.
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in chemical potentials of the old and new phases. Ωσ is the
grand potential associated with the interface phase which we
represent by Aσγ∞, where Aσ is the interfacial surface area.
We consider that the system is initially in the silent condition,
i.e., there is no acoustic wave present, denoted by the nought
suffix. At the initial temperature T0 and pressure p0, we can
write ∆µ = kBT0 ln(r0), where kB is the Boltzmann constant
and r0 is the initial supersaturation ratio. For spherical clus-
ters, the surface area becomes Aσ = a0γ∞n

2/3
n , where a0 is the

surface area of a spherical monomer in the new phase. Sub-
stituting these formulas of ∆µ and Aσ in Eq. (2) yields the
work of cluster formation at a reference silent condition as
follows:

∆Ω0 = −nkBT0 ln(r0) + nσkBT0 ln(r0) + a0γ∞n
2/3
n . (3)

The cluster and nucleation models were validated by
applying them to the test case of water droplet nucleation from
vapour.12 The work of the formation of the same size cluster
when the pressure and temperature of the old phase fluctuate
is given by12

∆Ω(nn, nσ , p, T ) = ∆Ω0(nn, nσ) −
∫ T

T0

∆sexcdT −
∫ p

p0

ν∆nexcdp,

(4)

where ∆Ω0(nn, nσ) is given in Eq. (3), ∆sexc = �s(nn + nσ)
+ nnsn + nσsσ is the excess entropy gained by the system
through the formation of a cluster of size n (s represents entropy
per number of molecules and the suffices are explained above),
and∆nexc = kρnn + nσ is the excess number of molecules in the
cluster. When the new phase is denser than the old phase, we
have kρ > 0 and consequently ∆nexc > 0 and vice versa. In the
case of an incompressible solution and isothermal condition,
this equation simplifies to

∆Ω(nn, nσ , p) = ∆Ω0(nn, nσ) − ∆nexcν∆p, (5)

where ν = 1/ρ is the specific volume of a molecule in the old
phase and ∆p = p � p0 is the variation in pressure compared
to the reference pressure p0. The clustering work under this
circumstance is obtained by substituting Eq. (3) into (5) which
reads

∆Ω(nn, nσ , p) = − nkBT0 ln(r0) + nσkBT0 ln(r0)

− ∆nexcν∆p + a0γ∞n
2/3
n . (6)

These equations will be used to determine the kinetics of
cluster formation in Sec. III.

III. KINETICS OF NUCLEATION

The Szilard model explains cluster formation as a result
of a series of consecutive attachments and detachments of
monomers. This model describes the kinetics of nucleation, the
early stage of growth, and even the Ostwald-ripening regime46

as they are mainly driven by gaining and losing monomers. The
Szilard model is expressed by

For n = 1 :

dZ1(t)
dt

= − 2f1(t)Z1(t) + 2g2(t)Z2(t) +
N∑

n=3

gn(t)Zn(t)

−

N∑
n=2

fn(t)Zn(t) + K1(t) − L1(t), (7a)

for n ≥ 2 :

dZn(t)
dt

= fn−1(t)Zn−1(t) − gn(t)Zn(t) − fn(t)Zn(t)

+ gn+1(t)Zn+1(t) + Kn(t) − Ln(t), (7b)

where f n(t) and gn(t) are attachment and detachment frequen-
cies at time t, Zn(t) is the concentration of n-sized clusters, and
Kn(t) � Ln(t) reflects the non-aggregative change in the con-
centration of the cluster size n in a non-mass conserved system.
Kn(t) is the inward flux of n-sized clusters to the system from
the bath and Ln(t) is the outward flux of n-sized clusters to the
bath from the system. The Szilard model is a discrete equation.
The truncated second order Taylor expansion of this discrete
equation about point n produces the continuous form of the
Szilard model which is known as the Fokker-Planck Equation
(FPE) and reads

∂Z(n, t)
∂t

= −
∂

∂n

(
v(n, t)Z(n, t) −

1
2
∂ [d(n, t)Z(n, t)]

∂n

)
+ K(n, t) − L(n, t), (8)

where v(n, t) and d(n, t) are given by

v(n, t) = f (n, t) − g(n, t), (9)

d(n, t) = f (n, t) + g(n, t). (10)

v(n, t) is the drift velocity along the size axis, known as the
mean growth rate, specifying the rate of deterministic incre-
mentation of the cluster size n. d(n, t) is the rate of the random
change of cluster size along the size axis (dispersion of cluster
size along the size axis). The FPE is computationally favoured
if the concentration of large clusters is desired. However,
because of approximation in the derivation of FPE, it is inac-
curate with respect to the Szilard equation at small clusters.
Therefore a hybrid model is envisaged to take advantages of
both discrete and continuous descriptions of the cluster dynam-
ics.47 Subsequently, the cluster size axis n is divided up to two
sections, a discrete part n = 1, . . ., Nd and a continuous part
n = [Nd + 1, N], where Nd is the boundary between discrete and
continuous sections and N is the largest cluster size postulated.
Nd is chosen such that the simulation results are independent
of this choice and the FPE numerically converges to the result
of Szilard model. A boundary condition of the continuity of
cluster flux is applied at the transition point between the dis-
crete and continuous models. The cluster flux along the size
axis is defined as

jc
n(t) = fn(t)Zn(t) − gn+1(t)Zn+1(t). (11)

The hybrid method is schematically illustrated in Fig. 2.
In our previous study, we assumed that the system con-

serves mass. As such, for both discrete and continuous models,
we set K(n, t) = L(n, t) = 0. In this work, we relax this assump-
tion and include the effect of mass transportation mediated by
wave propagation. We will determine the net flux of clusters to
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FIG. 2. Schematic representation of the hybrid model. Nd is the boundary
between discrete and continuous sections and N is the largest cluster size
postulated. Zn(t) is the concentration of n-sized clusters.

the system, i.e., the term Kn � Ln in Eqs. (7) and (8), resulting
from wave propagation. To this end, the solution is modeled
as a mixture of the solute and solvent species. Therefore, in
Sec. III A, we will study the continuity equation for a mix-
ture and then proceed with the calculation of forced diffusion
created by wave propagation.

A. Conservation of mass in a mixture

Here, we consider only the contribution of mass trans-
portation to the kinetics of cluster formation, i.e., only the
non-aggregative mechanism in the kinetics of population evo-
lution without accounting for the coalescence of clusters. The
system, see Fig. 1, is a volume element fixed in space, and its
position relative to the origin of a fixed system of coordinates
is specified by the position vector r. All the physical variables
such as density, pressure, and temperature will therefore be
functions of space and time. Denoting the properties of the
solution, the solvent and the solute with suffices m, 1, and 2,
respectively, the mass density of the solution reads ρm(t, r)
= ρ1(t, r) + ρ2(t, r). The conservation of mass for the solution
is given by31

∂ρm(t, r)
∂t

= − ∇ · (ρm(t, r) u), (12)

which in the case of an incompressible fluid, i.e., a solution
with constant mass density, becomes

∇ · u = 0. (13)

Here u is the velocity vector in the Cartesian coordinate sys-
tem. Considering the cluster size as a discrete variable, we
can write the mass density of the solute species in terms of
concentration of different clusters as follows:

ρ2(t, r) =
M2

NA

N(t)∑
n=1

nZn(t, r) =
N(t)∑
n=1

Yn(t, r), (14)

where Yn(t, r) = M2
NA

nZn(t, r) is the mass density of n-sized
clusters in the solution, M2 is the molar mass of the solute, and
NA is Avogadro’s number. This equation states that the solute
can be considered to be made of N(t) species with mass den-
sities of Yn(t), n = 1, . . ., N(t). The quantity Zn (or Yn), and as
a result ρ2, changes in the system because of mass transporta-
tion. Hereafter we will use the superscript mt to distinguish the
effect of mass transportation. Also, the notation (t, r) will be
omitted for the sake of brevity, though concentrations and ther-
modynamic state variables vary temporally and spatially. The
conservation of mass for the nth component in the solution,
where n = 1, . . ., N(t), is given by31

∂

∂t
Ymt

n = − Ymt
n (∇ · u) − u · ∇Ymt

n − ∇ · j[n]. (15)

Here j[n] is the molecular mass flux of clusters of size n through
space and can be obtained using the generalized Fick’s equa-
tion in a multi-component system. Invoking the definition
of Yn and dividing both sides by nM2/NA, we arrive at the
concentration form of this equation as follows:

∂

∂t
Zmt

n = − Zmt
n ∇ · u − u · ∇Zmt

n −
NA

M2 n
∇ · j[n]. (16)

This equation expresses the rate of change in Zn as a result
of different mass transport mechanisms: the convective flux
(the first two terms on the RHS) and the molecular flux of
the solute species (the last term on the RHS). Convection rep-
resents mass transportation due to the average velocity of all
molecules which is the average velocity of the fluid as a whole.
Diffusion is viewed as mass transportation due to the instanta-
neously changing stochastic velocity of individual molecules,
compared to the averaged fluid velocity. For the transportation
of dilute species in a mixture where the solvent dominates the
momentum of the system, we can consider a reference veloc-
ity equal to the velocity of the dominant component, i.e., the
solvent here, and identify a diffusive flux and a convective flux
accordingly.

The change in the concentration of clusters due to non-
aggregative mechanism is therefore given by

Kn(t, r) − Ln(t, r) =
∂

∂t
Zmt

n (t, r). (17)

Replacing the RHS by Eq. (16) gives the discrete repre-
sentation of the net mass flux in the system. The equations
derived in this section are in a generic format and account
for the variation in the concentration of clusters of differ-
ent sizes because of mass convection and diffusion. A sim-
pler form of this equation can be obtained if we impose
some assumptions. Such an approximation is discussed in
Sec. III A 1.

1. Simplified conservation of mass equation

Considering that the concentration of monomers in the
system at the initial time and during nucleation is signifi-
cantly greater than that of n-mers, we can postulate that the
solute species is mainly constituted of monomers. This approx-
imates the solution as a binary mixture of the single species
solute of monomers and the solvent. This approximation is
also supported noting that larger clusters are less mobile as the
diffusivity is inversely proportional to n1/3. Moreover, it was
shown in Ref. 48 in a closed system, the presence of n-sized
clusters, 2 ≤ n ≤ 4, would change the nucleation rate by less
than one order of magnitude. Thus, the monomer mass flux
j[1] is required to determine mass transportation which reads
(see Appendix A)

j[1] = −
M1M2D
MmNA

∇Zmt
1 − DT

2 ∇ ln T

−
M1M2

2 D

MmNART
Zmt

1
*
,

V2

M2

−
1
ρm

+
-
∇p, (18)



024102-5 Haqshenas, Ford, and Saffari J. Chem. Phys. 148, 024102 (2018)

where D and DT
2 are the mass and thermal diffusivity of

monomers, respectively, V2 = M2/ρ2 is the partial molal vol-
ume, R is the gas constant, and Mm and M1 are the molar
mass of the solution and solvent, respectively. In the absence
of external forces, the mass flux of monomers consists of three
contributions,31 namely, ordinary diffusion driven by the spa-
tial concentration gradient of species (the first term on the
RHS), thermal diffusion term (the second term on the RHS)
which expresses mass diffusion because of the temperature
gradient, and pressure diffusion (the third term on the RHS)
which describes the tendency for the mass flux under the
influence of pressure gradient. The ratio of thermal diffusiv-
ity over (mass) diffusivity is called the Soret coefficient, i.e.,
ST = DT

2 /D.
The effect of a temperature gradient on mass transport

is usually considered negligible unless there is a steep tem-
perature gradient.31 Thus, this term can be neglected as far
as acoustic wave propagation in the solution is concerned.
In the case of inertial cavitation, a substantial temperature
rise at the centre of the collapsing bubble occurs which van-
ishes rapidly across space from the centre of the bubble as
time progresses.11,44,49 However, the temperature rise in the
solution in the vicinity of the surface of the bubble is much
lower. It is close to the temperature of the solution rather
than that of the core of the bursting bubble.50 In contrast,
the pressure gradient in the vicinity of the bursting bubble
is substantially greater than the temperature gradient.44,49–52

Furthermore, for an organic mixture and an aqueous solution,
the absolute value of the Soret coefficient is of the order of
|ST | ≈ 0.001–0.01 K�1.53 Consequently, the contribution of
the thermal diffusion term to mass transportation tends to be
much smaller than that of the concentration and pressure terms
and can therefore be overlooked. Equation (18) then reduces
to

j[1] = −
M2D
NA

*
,

M1

Mm

∇Zmt
1 +

M1

Mm

kp
j

T
Zmt

1 ∇p+
-

, (19)

where kp
j =

M2
R

(
V2
M2
− 1
ρm

)
. In general, the densities and con-

sequently kp
j are time and space dependent, which makes the

above equation nonlinear.
Considering that the solution is dilute, we can write Mm

≈ M1 and ρm ≈ ρ1; hence, the above equation becomes

j[1] = −
M2D
NA

*
,
∇Zmt

1 +
kp

j

T
Zmt

1 ∇p+
-

. (20)

Equations developed thus far in this section are based on
the assumption that the solute species is present mainly in
the form of monomers with a population considerably greater
than n-mers. This literally transforms mass transportation into
monomer transportation which yields

K1 − L1 =
∂

∂t
Zmt

1 ,

Kn − Ln = 0, n ≥ 2. (21)

Likewise, in the theory of thin film condensation, the sys-
tem is usually assumed non-mass conserved by including the

arrival and evaporation of monomers in the kinetics model of
the cluster formation.14–19

The net rate of monomer transportation in an incompress-
ible solution is obtained by combining Eqs. (13), (20), and (16)
which reads

∂

∂t
Zmt

1 = − u · ∇Zmt
1 + D ∇ · *

,
∇Zmt

1 +
kp

j

T
Zmt

1 ∇p+
-

.

(22)

The assumption of incompressibility for wave propagation in
an aqueous solution holds true for a vast range of excitation
pressures and frequencies.8 However, this condition may fail
when the pressure perturbation is generated from a violent
inertial cavitation or at a strong shock front with associated
acoustic Mach number of unity or higher.8,54 Equation (22) is
highly nonlinear. In favour of simplification in the mathemat-
ical implementation, following the work of Louisnard et al.,34

in the limit of a dilute and incompressible solution, we can con-
sider making an additional approximation where kp

j is constant
and only depends on the solution properties.

B. Hybrid model with mass transportation

Equations (16) and (17) give the variation in the concen-
tration of n-sized clusters because of mass transportation in a
non-mass conserved system. Considering the discrete repre-
sentations of cluster size, substituting these relationships into
Eq. (7) yields the Szilard equation which determines the kinet-
ics of cluster formation in a non-mass conserved system. This
equation for an n-sized cluster reads

∂

∂t
Zn = fn−1(t)Zn−1 − gn(t)Zn − fn(t)Zn + gn+1(t)Zn+1

− Zn ∇ · u − u · ∇Zn −
NA
M2 n

∇ · j[n]. (23)

The terms on the RHS are divided into two main categories:
the first four terms on the RHS which represent the aggregative
change in the cluster concentration and the last three terms on
the RHS indicating the non-aggregative change in the cluster
concentration governed by the convective and diffusive trans-
portation of clusters. The continuous format of this equation
(the FPE with mass transportation) is derived in Appendix B
and reads

∂

∂t
Z(n) = −

∂

∂n

(
v(n)Z(n) −

1
2
∂ [d(n, t)Z(n)]

∂n

)
−Z(n)∇ · u − u · ∇Z(n) −

NA
M2 n

(
∇ · j[n]

)
. (24)

For the simplified case presented in Sec. III A 1 where the
solute species is mainly made of monomers, we can construct
the following hybrid model:

for n = 1 :

∂

∂t
Z1 = −2f1(t)Z1 + 2g2(t)Z2 +

N∑
n=3

gn(t)Zn −

N∑
n=2

fn(t)Zn

− Z1∇ · u − u · ∇Z1 −
NA
M2

∇ · j[1], (25a)
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for 1 < n ≤ Nd :

∂

∂t
Zn = fn−1(t)Zn−1 − gn(t)Zn − fn(t)Zn + gn+1(t)Zn+1, (25b)

for Nd < n ≤ N :

∂

∂t
Z(n) = −

∂

∂n

(
v(n, t)Z(n) −

1
2
∂ [d(n, t)Z(n)]

∂n

)
, (25c)

where the monomer mass flux j[1] is given in Eq. (18).
From the perspective of thermodynamics and fluid

mechanics, the following assumptions are made in this hybrid
model: (i) cluster formation is governed by the association
and depletion of monomers, (ii) monomers have the same
convective velocity as that of the flow and the no-slip con-
dition holds, and (iii) the solution is a continuum medium
modeled as a binary mixture. Since none of these assump-
tions restrict the temporal application of these equations, this
hybrid model should be valid for describing the cluster dynam-
ics during transient processes, e.g., under a rapid pressure
fluctuation in the vicinity of a collapsing bubble or shock
waves.

This model tells that the concentration change over time
is determined by two fluxes, the flux along the size axis n
representing the aggregative process, see Eq. (11), and the
mass flux along the space axis r modeling the contribu-
tion of the non-aggregative mechanism, Eq. (17). In a mass-
conserved system, the latter flux disappears and the flux of
clusters over the size axis (aggregative mechanism) will be the
only driving mechanism of the cluster dynamics. It should
be noted that these two mechanisms are coupled because
intercluster transition frequencies are functions of the con-
centration of monomers, which will be shown in Sec. IV. This
implies that these fluxes cannot be solved for independently.
Nonetheless, the question that arises here is whether or not
these two fluxes occur at comparable rates? If not, it would
be physically reasonable to overlook the slower process in
favour of further simplifications. This is further discussed in
Sec. V C.

In the special case of an incompressible solution, the
first line of this hybrid model, i.e., Eq. (25a), can be further
simplified using Eq. (22) which becomes

∂

∂t
Z1 = − f1(t)Z1 + 2g2(t)Z2 +

N∑
n=3

gn(t)Zn −

N∑
n=2

fn(t)Zn

− u · ∇Z1 + D∇ · *
,
∇Z1 +

kp
j

T
Z1∇p+

-
. (26)

Finally, neglecting the Ostwald ripening process, this equation
can be further simplified to

∂

∂t
Z1 = − f1(t)Z1 + g2(t)Z2 − u · ∇Z1

+ D∇ · *
,
∇Z1 +

kp
j

T
Z1∇p+

-
. (27)

In summary, Eqs. (25a), (26), and (27) allow the deter-
mination of the concentration of monomers in a non-mass
conserved system for the following situations, respectively:
(i) accounting for the Ostwald ripening, the compressibil-
ity of the solution and all mechanisms contributing to mass

transportation, (ii) accounting for the Ostwald ripening but not
the Soret effect and the compressibility of the solution which is
assumed to be dilute, and (iii) overlooking the Ostwald ripen-
ing process, the Soret effect, and the compressibility of the
dilute solution. Each of these situations can be taken to study
the kinetics of the cluster formation in a non-mass conserved
system under sonication when the underlying assumptions
hold. For instance, the Ostwald ripening takes place towards
the end of nucleation when the supersaturation ratio is reduced
significantly and the concentration of large clusters is consid-
erable. Therefore, Eq. (27) should adequately model the effect
of lower amplitude excitations, or weak transient pressure
waves, on the kinetics of nucleation (see the work of Haqshenas
et al.12 for more information about the Ostwald ripening in an
acoustic field). To solve the hybrid model, we need to deter-
mine the cluster transition frequencies which are addressed in
Sec. IV.

IV. CLUSTER TRANSITION FREQUENCIES

The attachment of monomers to a condensed-phase cluster
depends on the state of the old phase. The governing mech-
anisms of monomer attachment in solutions are as follows:13

(i) the volume or surface diffusion of molecules and (ii) the
interface transfer. Both mechanisms may take place depending
on the cluster size. Studying the homogeneous nucleation of
solids from a dilute solution exposed to acoustic waves, we
assume that the volume diffusion is the dominant monomer
attachment mechanism for all cluster sizes. Here, a continuum
model of the volume diffusion is taken which is formulated as
follows for a spherical n-sized condensed cluster:13

fn(t) = kf (nn)Z1(t), (28)

where

kf (nn) = 4παnDR0(1 + n−
1/3

n )(1 + n
1/3
n ), (29)

where αn is the sticking coefficient which is nearly unity in a
dilute solution and R0 is the radius of a monomer in the new
phase, considered to be a sphere. Here, both the cluster and
monomers are considered to be mobile and to diffuse through
the medium. The Stokes-Einstein equation is used to calculate
the diffusivity of a cluster. The diffusivity and concentration of
monomers are the main factors affecting the attachment rate.
The effect of pressure on diffusivity is almost negligible due to
weak pressure dependence of viscosity and incompressibility
of solution. Mass transportation influences the spatial concen-
tration of monomers; hence, the attachment frequency varies
temporally and spatially.

The rate at which monomers detach from an n-sized clus-
ter can be estimated following the Zeldovich method which
is based on the detailed balance at the equilibrium state, i.e.,
jc
n,eq = 0. Employing the Zeldovich method and considering

that the cluster size is a discrete variable, the detachment fre-
quency for the case of time-varying chemical potential of the
old phase and a quasi-equilibrium condition reads55

gn(t) = fn−1(t) exp

(
∆Ωn(t) − ∆Ωn−1(t)

kBT (t)

)
. (30)
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Substituting Eqs. (3), (5), and (28) into this equation gives a
generic equation for the detachment frequency in an acoustic
wave field; see the work of Haqshenas et al.12 The simplified
form of this equation for a cluster defined by the new surface
in a dilute and incompressible solution exposed to isothermal
pressure fluctuations reads

gn(p, T , x) = kf (nn) Cern′σ (nn)
0 exp

(
2
3

a0γ∞
kBT0

n−
1/3

n n′n(nn)

)
× exp

(
−
ν∆p
kBT0

∆n′exc

)
, (31)

where Ce is the equilibrium concentration at temperature T0

(solubility). The approximation of r0 ≈ Z1/Ce was used in this
equation which is justified as the solute is mainly comprised
of monomers at the initial stage. ∆n′exc = 1 − ρ

ρn
n′n(nn) and

quantities n′σ(nn) and n′n(nn) are the first derivatives of nσ and
nn with respect to the cluster size n, respectively, which are
obtained using Eq. (1). As shown in the work of Haqshenas
et al.,12 these equations are valid for both discrete and con-
tinuous cluster size variables and hence can be used for all
equations in the hybrid model.

V. SIMULATION RESULTS

We have established the required equations to determine
the kinetics of nucleation while accounting for the effect of
fluctuations in the thermodynamic state of the old phase. Our
objective in this section is to evaluate our new model in a non-
mass conserved system exposed to acoustic waves. Simula-
tions in a mass-conserved system were already presented in the
work of Haqshenas et al.,12 and the numerical implementation
of the hybrid model was validated there.

In all the simulations presented here, the reference state
is considered to be at room temperature and atmospheric
pressure, T0 = 293 K and p0 = 0.1 MPa, respectively, and
sonocrystallisation in an aqueous environment is considered
to be an isothermal process. The physicochemical properties
of the solution, the new phase, and water at the reference state
are listed in Tables II and III in Appendix C. These prop-
erties are the same as those used in our previous work.12

Likewise, the initial supersaturation is r0 = 30, and clusters
are defined to be non-EDS with λ = 0.35, unless otherwise
stated.

In a non-mass conserved system, the fluid dynamics must
be calculated to determine mass transportation in the sys-
tem. The system’s characteristics (e.g., boundary conditions)
influence the fluid dynamics in the system. Therefore, a sim-
ilar acoustic source tends to produce different effects on a
phase transition in different systems. We will consider var-
ious scenarios of one-dimensional wave propagation in the
bath. Considering one-dimensional wave propagation in an
unbounded system, the simulations presented here does not
account for acoustic streaming. This section is continued by
calculating acoustic wave propagation in the solution followed
by the determination of mass transportation. Subsequently, the
kinetics of crystallisation in a non-mass conserved system are
computed and discussed.

A. Acoustic wave propagation

The equations derived in this work are not limited to a
specific source type and are generic in this sense. For the
sake of simplicity, we consider finite amplitude plane acoustic
waves emitted from an infinite plate oscillating harmonically
in the direction normal to the plate. The radiated waves propa-
gate through a semi-infinite dissipative and nonlinear aqueous
medium. We will consider up to the second order approx-
imation in the equation of state for density terms. Due to
the nonlinearity of the medium, the wave can distort and
form a shock wave. The simplest second order wave equation
which describes the combined effects of dissipation and non-
linearity on the propagation of plane waves is Burgers’ equa-
tion.8 Burgers’ equation can be formulated in the following
format:56

∂v

∂t
+ v

∂v

∂ξ
=

δ0

2
∂2v

∂ξ2
, (32a)

v = u + c − c0, (32b)

ξ = x − c0t, (32c)

δ0 =
η

ρ1

(
4
3

+
ηB

η
+

(γs − 1)κ
ηCp

)
, (32d)

where u is the fluid particle velocity, c is the local wave speed,
c0 is the wave speed in the initial undisturbed condition, x is
the distance from the source, ξ is the retarded distance (spatial
propagation delay), δ0 is the sound diffusivity, η is the dynamic
(shear) viscosity, ηB is the bulk viscosity, γs is the specific
heat ratio, κ is the thermal conductivity, and Cp is the specific
heat at constant pressure. With respect to the dilute solution
assumption, we postulate that the hydrodynamic properties of
the wave medium are similar to those of the solvent. This is a
legitimate assumption within the range of the driving frequen-
cies which will be used in this work, i.e., f ≤ 2 MHz. The source
oscillates harmonically with an angular frequency of ω = 2πf
and a velocity magnitude of um. This results in the boundary
condition of p(t, 0) = pm sin(ωt), where pm/um = ρ1c0. The lat-
ter uses the specific acoustic impedance relationship for plane
waves.

Burgers’ equation is widely used to calculate the pro-
gressive plane wave field in a lossy and nonlinear medium
within the limitation of the weak shock theory. The con-
dition for the weak shock is met if Ma � 1, where Ma

= u0/c0 is the acoustic Mach number. We will solve Burgers’
equation and check this condition for the range of parame-
ters used in this work. Several methods have been developed
to solve Burgers’ equation analytically and numerically in
either the frequency domain or the time domain. Here, we
will use Mitome’s exact solution56 which allows determina-
tion of pressure in the pre- and post-shock regions in the
time domain. The derivation and the numerical implemen-
tation of Mitome’s solution are skipped here for the sake
of brevity, and the reader is referred to Ref. 57 for more
details.

A relatively strong pressure field is required to con-
siderably influence the thermodynamics of phase transi-
tion.12 Considering the simulations presented in the preceding
work,12 we set pm = 50 MPa and calculate the pressure field.
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FIG. 3. Plane wave field across space up to 4xs at τw = 2π with f = 1 MHz
and pm = 50 MPa.

Figure 3 shows the wave propagating across space at the end
of an excitation period for the driving condition f = 1 MHz, pm

= 50 MPa. The abscissa is the non-dimensionalised distance
with respect to the lossless shock distance, i.e., x = x/xs, where
xs = c0/βωMa = c2

0 /βωum and β is the coefficient of non-
linearity. We can see in the pre-shock region, i.e., x < 1, the
wave field can be safely approximated by a harmonic traveling
wave as the distortion is negligible. However, around the shock
formation distance (henceforth, shock distance), the wave-
form distorts and gradually develops into an N-shaped wave-
form (henceforth, N-wave) in the far field. Thus, as long as
x � xs, the harmonic traveling wave equation is sufficient
to accurately represent the acoustic field. The acoustic Mach
number for the wave shown in Fig. 3 is Ma = 0.02 which
satisfies the weak shock condition.

The temperature in an aqueous medium while only
accounting for the absorption of a plane wave energy was
determined before,8,57 confirming that the plane wave prop-
agation can be considered to be isothermal if (i) the system is
located in the pre-shock zone or (ii) the acoustic irradiation is
short or pulsed for systems in x > xs. Simulation parameters
will be chosen such that the isothermal condition holds for the
results presented in this work.

B. Mass transportation in the acoustic wave field

We will study mass transportation created by acoustic
waves in the system, without a phase transformation, for dif-
ferent excitations by solving the non-dimensionalised form of
Eq. (22). We will then solve the coupled problem of sonocrys-
tallisation in a non-mass conserved system for the situation
where mass transportation is more considerable.

The simplified non-dimensionalised equation of mass
transportation in a one-dimensional acoustic field reads (the
derivation is presented in supplementary material)

∂

∂τ
Z1 = − u

∂Z1

∂xd

+
1
Pe

∂2Z1

∂xd
2

+
β

Pe
∂Z1

∂xd

∂p
∂xd

+
β

Pe
Z1

∂2p

∂xd
2

.

(33)

Here xd refers to the dimensionless location.
We will initially present the simulation results of the

transportation of monomers in an acoustic field with different
pressure amplitudes and frequencies. We will then proceed to
determine the kinetics of crystallisation over time and across
space for a case where mass transportation is more substantial.
The acoustic pressure amplitude is chosen to be 10 MPa and

TABLE I. Non-dimensionalisation constants. The details are explained in the
supplementary material.

tc lc vc pc Pe β

(ns) (nm) (m s�1) (MPa) (DL) (DL)

pm = 10 MPa,
6.6 44.7 6.75 10 302 �0.12

f = 1 MHz

pm = 50 MPa,
1.32 44.7 33.74 50 1509 �0.61

f = 1 MHz

pm = 50 MPa,
4.18 141.4 33.74 50 4773 �0.61

f = 100 kHz

50 MPa. Simulations with pm = 50 MPa were conducted in
two different frequencies of 100 kHz and 1 MHz. This range
of acoustic parameters is selected in harmony with parameters
used in our previous work.12

The values of non-dimensionalisation constants for dif-
ferent excitation parameters are shown in Table I. The den-
sity of the solute species in an aqueous solution typically
falls in the range of 1000 < ρmass ,2 < 2500 kg m�3. We
choose ρmass ,2 = 2000 kg m�3 and employ the following equa-
tion to estimate the molar mass for the solute species, i.e.,
M2 = 4πR3

0NAρmass,2/3 = NAνnρmass,2.
Finally, for all simulations, a von Neumann bound-

ary condition and a spatially uniform initial concentration
of monomers will be considered. See supplementary mate-
rial for details of numerical implementation and boundary
conditions.

First, we consider a situation where x < xs and model the
local pressure by p = pa + p0, where pa = pm sin(ωt − kwx)
and kw is the wavenumber. The variation in the supersaturation
ratio in the acoustic field is determined by defining the quantity
∆Z1 as follows:

∆Z1 =
Z1

r0

− 1, (34)

and subsequently, we can write r(x, t) = Z1 = r0

(
1 + ∆Z1

)
,

where r(x, t) is the spatially and temporally variable supersat-
uration ratio.

Figure 4 shows the contour plot of the variation in the
concentration of monomers across one wavelength in the pre-
shock region over one period of oscillation. Although the
pressure magnitude is relatively large, it has a negligible effect
on the spatial distribution of monomers. This result is expected
as the pressure diffusion is typically a slow process and may

FIG. 4. Change in the concentration of monomers across a wavelength cen-
tred about 0.5xs over one period in a traveling wave field with pm = 50 MPa
and f = 1 MHz.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-035802
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-035802
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-035802
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-035802
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become noticeable only over a large time scale or in the pres-
ence of a significant pressure gradient. The concentration hot
spot (the location where the concentration is maximum) is
formed around x = 0.48, at τw = π. The heavier species moves
towards the high-pressure region, and consequently, the hot
spot smears as the acoustic wave travels.

For a harmonic wave, the gradient and Laplacian of the
pressure field are proportional to kw and k2

w , respectively. This
implies that a stronger/weaker effect on the concentration is
anticipated at higher/lower excitation frequencies. However,
the pressure source terms in the convection-diffusion mass
transportation equation are linearly proportional to the pres-
sure magnitude. Consequently, ∆Z1 is linearly proportional to
the pressure magnitude. More simulations at different f and
pm are presented in the supplementary material.

Now, we will consider a shock in x = 2xs at τw = 0. In
this region, a full N-wave is present and a sharp pressure gra-
dient takes place at the shock location at each time instant.
This creates a narrow high-concentration zone right after the
shock with a peak of about two orders of magnitude larger
than the same wave in the pre-shock zone; see Fig. 5. This
increase is followed immediately by a reduction in ∆Z1. As
time progresses and the shock translates to an adjacent point
in space, the concentration rises but it is about two orders of
magnitude smaller than the peak and hence less identifiable in
the plot. This can be better observed in Fig. 6 which illustrates
∆Z1 in the few time instances. In particular, we can see in Fig.
6(b) that ∆Z1 settles around about 4 × 10�9 which is of the
same order of magnitude of its peak in the pre-shock region;
see Fig. 4.

A similar narrow variation in the density of medium
was also reported for the propagation of weak and strong
shock waves in a gaseous medium.58,59 They showed that if
the sonication carries on for a long time, these narrow high
concentration points will disperse. A similar trend is observed
here when we run the simulation over a longer time. This

FIG. 5. (a) Change in the concentration of monomers across a wavelength
centred about 2xs over one period in a traveling wave field with pm = 50 MPa
and f = 1 MHz. (b) Magnified around 2xs.

FIG. 6. (a) Snapshots of the contour plot shown in Fig. 5 in few time instances.
(b) Zoomed in around 2xs.

is presented in Fig. 7 which shows ∆Z1 across a space of
about four wavelength long and over ten cycles, i.e., 20π, with
pm = 50 MPa and f = 1 MHz. This figure clearly shows that
the effect of an acoustic field on the transportation of a typical
solute species in a typical aqueous solution (with properties
listed in Table II) tends to be negligible. Nevertheless, this
effect may become noticeable in the post-shock region and
over a large time scale.

The forced mass transportation in this acoustic field is
substantially larger (by seven orders of magnitude) than mass
transportation by ordinary diffusion. Thus, the effect of ordi-
nary diffusion is negligible and the increased concentration
of the solute species is mainly proportional to the gradient of
forced mass flux [the second term on the RHS of Eq. (20)].
This can also be deduced from the high value of Pe = 1509 for
this driving condition.

If the solute species is made of heavier molecules, a more
significant ∆Z1 is expected for a given driving pressure.31,34,60

Invoking Eq. (33), we can see that the pressure gradient is
weighted by β/Pe which depends on the solute density and
the molecular weight. The latter can take larger values than
the former, and its influence on the weight coefficient is per-
haps more substantial. To evaluate this effect, we will keep
the density constant, i.e., ρmass ,2 = 2000 kg m�3, and choose

FIG. 7. Change in the concentration of monomers across four wavelengths
and over ten periods in a traveling wave field with pm = 50 MPa and
f = 1 MHz.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-035802
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FIG. 8. Change in the concentration of monomers in a pre-shock zone for a
solute species with relatively large molecules, R0 = 10 nm. The simulation is
performed across a wavelength centred about 0.5xs and over one period in a
traveling wave field with pm = 50 MPa and f = 1 MHz.

a relatively large macromolecule with molecular radius of
R0 = 10 nm (this is nearly 44 and 80 000 times larger in
molecular radius and volume than the ones taken so far). This
results in νn = 4000 nm3, M2 = NAνnρmass,2 = 5045 kg mol−1,
and D = 2 × 10�11 m2 s�1 (calculated by the Stokes-Einstein
equation). For the acoustic excitation with pm = 50 MPa and
f = 1 MHz, we arrive at β = −51 801 and Pe = 10 316.
Consulting the data listed in Table I for the same driving
condition, we can see that β and the Péclet number are
increased by 5 orders of magnitude and roughly 1 order of
magnitude, respectively, producing a rise in β/Pe by almost 5
orders of magnitude. Figures 8 and 9 depict ∆Z1 computed
for the solute made of this large molecule in the pre- and
post-shock regions. We can observe an enhancement in ∆Z1

of the order of nearly 3 at both locations. As before, a very
high Péclet number confirms that ordinary diffusion can be
overlooked in comparison with the acoustically induced mass
transportation.

Now, we need to estimate the effect of variation in the
concentration and hence the supersaturation ratio on the ther-
modynamics of the phase transition. Following our discussion
in Sec. II and employing Eq. (34), the contribution of the vari-
able supersaturation ratio to the dimensionless work of the
formation of the EDS cluster, i.e., ∆Ω/kBT, reads

∆µ

kBT
= ln(r) = ln(r0(1 + ∆Z1)) = ln(r0) + ln(1 + ∆Z1).

(35)

As shown above, ∆Z1 oscillates around zero and is a rel-
atively small number. Thus, the Taylor series expansion of
the second term around zero gives the following first order
approximation:

FIG. 9. Change in the concentration of monomers in the post-shock region for
a solute species with relatively large molecules, R0 = 10 nm. The simulation
is performed across a wavelength centred about 2xs and over one period in a
traveling wave field with pm = 50 MPa and f = 1 MHz.

∆µ

kBT
≈ ln(r0) + ∆Z1 + O(∆Z1

2
). (36)

For example, around the shock region, setting the initial super-
saturation ratio r0 = 30 which was used in the previous simu-
lations gives ∆µ/kBT ≈ ln(r0) + ∆Z1 = 3.40 ± 10−7. In the
same situation, the contribution of pressure to the dimension-
less work of cluster formation for the same cluster is about
∆ν∆p/kBT = 5 × 10�21/4 × 10�21 ≈ 1.24. Considering the
acoustic field and the bath used in the simulations, the effect
of mass transportation on ∆µ and consequently the work of
cluster formation is of O(10−7) and is therefore tentatively
negligible, especially in comparison with the pressure effect
which is of O(1).

On the kinetics of cluster formation, the attachment and
detachment frequencies are proportional to r and rnσ ′(nn),
respectively; see Eqs. (29) and (31). Given that the varia-
tion in r is small, we anticipate an infinitesimal contribution
to transition frequencies. For the EDS cluster, nσ ′(nn) = 0
and the detachment frequency is predicted to be independent
of the supersaturation ratio and mass transportation. To thor-
oughly investigate this matter, the complete hybrid model in
a non-mass conserved system will be solved in Sec. V C for
the driving condition in which mass transportation is more
noticeable.

C. Kinetics of sonocrystallisation in a non-mass
conserved system

Preceding results showed that mass transportation may
become noticeable at around x = 1.99. Since at this location
absorption is the highest, a long excitation will tend to vio-
late the isothermal assumption. Thus, we will solve the cluster
dynamics over one wave period. This time is too short for very
large clusters to be nucleated, so we can set the largest cluster
size to a small value to reduce the number of ordinary differen-
tial equations (ODEs) and facilitate the numerical calculations.
Here N = 1000 with Nd = 250 and a = 0.01 are chosen which
gives the largest cluster size of almost 9000 molecules. Clus-
ter transition frequencies are determined using instantaneous
supersaturation ratio r.

The time-varying supersaturation ratio in a non-mass con-
served system in the post-shock region is shown as a contour
plot in Fig. 10 and in some spatial points in Fig. 11. The non-
dimensionalisation coefficients (shown in the supplementary
material) are used for numerical calculations. Unlike the pre-
ceding simulations, time is scaled by the coefficient of the
attachment frequency, i.e., tc = f −1

c . The results are presented
on this time axis instead of τw .

FIG. 10. Concentration of monomers (equivalent to the supersaturation ratio)
across a wavelength over time.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-035802
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-035802
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FIG. 11. Concentration of monomers over time at some locations; see Fig. 10.

At locations where initially the pressure amplitude is pos-
itive, i.e., points in the rear of the initial location of the shock
x < 2.1, nucleation is enhanced which results in a greater
reduction of the supersaturation ratio than those locations
beyond the shock location. As time progresses, the shock trav-
els in the positive direction of x axis and therefore pressure
behind the shock drops. Consequently, the effect of pres-
sure on nucleation at those locations is initially constructive
which gradually weakens and becomes repressive when the
rarefaction cycle begins.

At the same locations, the concentration of supercritical
clusters over time is computed and depicted in Fig. 12. The
nucleation time lags (τn) are calculated and shown by the ver-
tical dashed lines. One can see that across a wavelength, they
vary by about two orders of magnitude. Given that the time con-
stant is tc = 3.48 µs, τn changes in the range of nanoseconds to
microseconds. This implies that nuclei are created over differ-
ent time intervals across the wave field, and hence, they will
grow to different sizes over the same time. The rate of nucle-
ation is proportional to the inverse of the exponential of the
nucleation work which is the lowest just before the shock and
the highest just after the shock. Figure 13 displays the spatial
distribution of the concentration of supercritical clusters across
a wavelength at the end of one period of excitation. Together
with Fig. 12, it can be observed that the concentration of super-
critical clusters is initially the highest just before the shock (i.e.,
the blue dashed-dotted curve in Fig. 12) and remains the high-
est at the end of the sonication period; see Fig. 13. This suggests
that during one cycle of excitation, the effect of pressure on
the nucleation rate is more significant than the effect of mass
transportation.

Figures 14 and 15 show cluster size distributions (CSDs)
right before and after the initial location of the shock. The ver-
tical dashed lines display the time-varying size of the critical

FIG. 12. Concentration of supercritical clusters over time at different loca-
tions. Vertical dashed lines indicate the beginning of the nucleation stage at
different locations. A similar colour code as the curves is used for these vertical
lines.

FIG. 13. Concentration of supercritical clusters across space at the end of the
first cycle of sonication.

clusters (n∗). Since the simulation time is equal to only one
period, these plots only depict the concentration of clusters
just in the beginning of nucleation; hence, the growth stage
and the Ostwald ripening regime are not observable.

The size of the critical cluster is the extremum of
the equilibrium equation which can be found by solving
d∆Ω/dn = 0 for n. Thus, differentiating Eq. (6) with respect to
n gives

∂∆Ω

∂n
= −kBT0 ln(r)(1− n′σ(nn)) + a0γ∞

2
3

n−
1/3

n n′n(nn)∆n′excν∆p,

(37)

which has the following solution for an EDS nucleus:

n∗e =
*....
,

2
3

a0γ∞
kBT0

ln(r) +
kρν∆p

kBT0

+////
-

3

. (38)

For a non-EDS nucleus, the solution of Eq. (37) ought to be
found numerically. Here, the supersaturation ratio is denoted
by r instead of r0 as it refers to the time-varying supersaturation
and includes the effect of mass transportation; see Eq. (35). In
both EDS and non-EDS clusters, we can see that the depen-
dence of n∗ on mass transportation and the pressure amplitude
are given by ∆Z1 [of first order accuracy by using Eq. (36)]
and kρν∆p/kBT0, respectively. Taking the range of ∆Z1 into
account and given that the smallest size of n∗ at both locations
are equal, we may deduce that the effect of mass transporta-
tion on the size of nuclei is negligible compared to the pressure
effect [the former is of O(10−7) whereas the latter is of O(1)
with the value of 1.24]. Consequently, we may extend this con-
clusion and correlate the spatial variation of the CSD to mainly
the pressure field.

We have studied the effect of pressure magnitude and
mass transportation on the nucleation work under an isother-
mal condition. It was shown that for the considered pressure

FIG. 14. CSD at x = 1.99. Vertical dashed line shows the size of the critical
cluster.
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FIG. 15. CSD at x = 2.02. Vertical dashed line shows the size of the critical
cluster.

field, the effect of mass transportation was negligible com-
pared to the pressure effect. Now, we are interested to evaluate
their effect on the excess free energy. In the case of the con-
ventional form of the classical nucleation theory (CNT), the
excess free energy reads Fσ,cl = a0γ∞n2/3 and only varies
with size when the temperature is constant. Thus, the excess
free energy modeled in the conventional form of the CNT
is independent of both time-varying supersaturation ratio and
pressure amplitude. Considering isothermal wave propagation
in an incompressible solution, the excess free energy can be
obtained by manipulating Eq. (6). Using ∆nexc = kρnn + nσ
and n = nn + nσ , Eq. (6) re-arranges to

∆Ω(nn, nσ , p) = − n
(
kBT0 ln(r) + kρν∆p

)
+ nσ

(
kBT0 ln(r) + kρν∆p

)
− nσν∆p

+ a0γ∞n
2/3
n . (39)

The terms inside the brackets are the instantaneous difference
in chemical potentials in the wave field, i.e.,∆µ(r, p), account-
ing for the effect of the instantaneous supersaturation ratio
(r) and pressure amplitude (p) on chemical potentials. Com-
paring Eq. (39) with Eq. (4), we can deduce the excess free
energy of cluster formation which entails pressure and mass
transportation effects as follows:

Fσ,1(r, p) = nσ
(
kBT0 ln(r) + kρν∆p

)
− nσν∆p + a0γ∞n

2/3
n .

(40)

This equation was used to determine the excess free
energy for the simulation condition explained above, i.e.,
across a wavelength in a post-shock region with the driving
condition of pm = 50 MPa and f = 1 MHz (see Figs. 10–15).
The excess free energy of a cluster of size n = 10 (see the
supplementary material for n = 1000) identified with λ = 0.35
is depicted in Fig. 16. For this supersaturated solution (with

FIG. 16. Excess free energy of a cluster of size n = 10 over time at two
locations; just before the shock x = 1.99 (the black solid curve) and just after
the shock x = 2.01 (the blue dashed curve). Fσ ,1 is calculated by Eq. (40).

FIG. 17. The ratio of the excess free energy for the non-EDS cluster with
λ = 0.35 to the excess free energy of the EDS cluster of the same size (Fσ ,cl),
calculated at x = 1.99. Curves present readings at different time instants shown
in the legend. The dotted curve in magenta is the ratio of the contribution of
the surface tension term and the cyan solid curve is Fσ ,1 with a constant
supersaturation ratio in the absence of pressure; see the text for details.

kρ > 0) and acoustic parameters, the following points can be
deduced from this result: (i) the excess free energy fluctuates
out of phase with pressure, (ii) the effect of mass transportation
on Fσ ,1 is negligible as we could not identify a noticeable dif-
ference in the extremum values at different locations, and (iii)
Fσ ,1 becomes a minimum behind the shock and a maximum
right after the shock.

To further elaborate on these results and the effect of λ,
the ratio of the excess free energy of these non-EDS clusters
calculated by Eq. (40) at location x = 1.99 to the excess free
energy of the EDS clusters of the identical size, i.e., Fσ ,cl, is
calculated and exhibited in Fig. 17. The magenta dotted curve
in this figure compares the contribution of the surface tension
term to the excess free energy in the non-EDS cluster relative to
the classical cluster, i.e., a0γ∞n

2/3
n /Fσ,cl. The cyan solid curve

displays the excess free energy calculated at the constant initial
supersaturation ratio of r0 = 30 in the absence of pressure, i.e.,
Fσ,1 = nσkBT0 ln(r0) + a0γ∞n

2/3
n , and hence does not account

for variation in the supersaturation ratio due to mass transporta-
tion and nucleation, as well as the pressure effect. The other
curves show dynamic excess free energy with time-varying
supersaturation ratio and pressure amplitude at different time
instants, i.e., Fσ ,1 given by Eq. (40). This figure shows that
for this solution and acoustic field: (i) the dynamic excess free
energy, i.e., Fσ ,1(r, p), fluctuates around Fσ ,1(r0) and (ii) the
contribution of mass transportation and the pressure magni-
tude to the excess free energy of clusters is less pronounced
than the supersaturation ratio itself (the amplitude of this oscil-
lation is fairly small). Furthermore, we can see that the excess
free energy of non-EDS clusters is substantially greater than
the excess free energy of classical clusters for these param-
eters, i.e., kρ > 0 and λ = 0.35. It is shown by Haqshenas
et al.12 that the effective surface tension based on the non-
EDS cluster model is determined by γeff = γ∞Fσ ,r , where
Fσ ,r = Fσ ,1/Fσ ,cl. Therefore, scaling the curves shown in
Fig. 17 by γ∞ (evaluated at the initial equilibrium state) would
give us an estimation of the size-dependent and time-varying
surface tension including the effects of dynamic pressure and
supersaturation ratio.

VI. CONCLUSION

We studied the thermodynamics and kinetics of sonocrys-
tallisation in a non-mass conserved system. This work was the

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-035802
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extension of our previous paper.12 Here, we formulated the
evolution of cluster concentration over time in a non-mass
conserved system by including mass transport in the hybrid
kinetics model; see Eqs. (16), (23), and (24). In the limit of
a dilute solution where we can reasonably assume that only
monomers transport through the system, the hybrid model
simplifies to Eq. (25) which transforms into Eqs. (26) and
(27) for incompressible solutions with and without the Ost-
wald ripening process, respectively. These equations together
with equations derived for cluster transition frequencies in
an acoustic field [see the work of Haqshenas et al.12 for
generic formulas or Eqs. (28) and (31) for an isothermal con-
dition] allow us to model the effects of acoustic waves on the
aggregative and non-aggregative mechanisms of the kinetics
of sonocrystallisation.

Utilising this model under an isothermal condition in a
non-mass conserved system, we observed that the boundary
conditions, the driving parameters of the acoustic field, and
the spatial location of the system (i.e., at a pre- or post-shock
location) are important and can influence the thermodynamics
and kinetics of cluster formation. However, in the present case,
the effect of the pressure field is more significant on the ther-
modynamics of phase transition than the mass transportation.
Therefore, acoustic waves influence nucleation and growth
through thermodynamic effects associated with pressure fluc-
tuations (the aggregative mechanism in the kinetics model)
rather than hydrodynamic effects. Nonetheless, this conclu-
sion should be tempered as mass transportation may vary
when the boundary conditions change or the acoustic stream-
ing is accounted for in the mass transportation equation, e.g.,
in the near-field of an oscillating bubble34 or close to a hard
wall in a confined system.61 This highlights the importance
of the profound and accurate characterisation of the system in
experiments which is usually overlooked in the sonocrystalli-
sation literature.

Simulations with a solute of different molecular weight
showed that the higher the molecular weight of the solute
species, the more considerable is the effect of mass trans-
portation. Nevertheless, this results in a lower mobility of
monomers which reduces the attachment frequency and con-
sequently may weaken the effect of mass transportation on the
kinetics of nucleation. These results suggest that sonocrystalli-
sation can be more effective for producing solid particles with
higher molecular weights.

The excess free energy of cluster formation in an acoustic
field was also calculated using the non-EDS cluster model
developed in our previous work.12 It was shown that both
the pressure magnitude and the supersaturation ratio influence
the excess free energy, and it is noticeably different from the
predictions of the conventional form of the CNT. Since the
acoustic field and the supersaturation ratio vary spatially, the
excess free energy of cluster formation, likewise the clustering
work, will vary spatially in an acoustic field.

Although we used a one-dimensional acoustic field for
numerical simulations, the model is generic and can be used to
determine the thermodynamics and kinetics of cluster forma-
tion for the EDS or non-EDS clusters in an arbitrary acoustic
field. Simulations presented in this work based on this sim-
ple one-dimensional acoustic wave model showed that the

contribution of the non-aggregative mechanism depends on
the magnitude and wavelength of acoustic waves and gener-
ally tends to be negligible unless shock waves are present or
a special boundary condition is imposed. Studying the effect
of acoustic streaming and different boundary conditions on
the kinetics of sonocrystallisation will be the subject of the
forthcoming paper.

SUPPLEMENTARY MATERIAL

See supplementary material for the details of the non-
dimensionalisation of the master equation and numerical
implementation. Additional simulation results are presented
as well.
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APPENDIX A: MONOMERS MASS FLUX

Considering only monomers transport in the solution, the
solution can be considered as a binary mixture. The molecular
mass flux for an ideal binary solution in the absence of external
forces becomes31

j[1] = −
C2

m

ρm

M1M2 D∇x2 − DT
2 ∇ ln T

−
C2

m

ρmRT
M2

2 M1 Dx2
*
,

V2

M2

−
1
ρm

+
-
∇p, (A1)

where j[1] is the molecular mass flux of monomers, Cm = C1

+ C2 = ρm/Mm is the total molar concentration of the solution
(the molar density of the solution), D, x2, and DT

2 are the diffu-
sivity, the mole fraction, and the thermal diffusion coefficient
of the solute in the solution, respectively. V2 = M2/ρ2 is the
partial molal volume, and Mm and M1 are the molar mass of
the solution and solvent, respectively. Approximating the mole
fraction by the number concentration ratio of monomers gives
x2 = Zmt

1 /CmNA, and substituting this in the above equation
results in Eq. (18).

APPENDIX B: NON-MASS CONSERVED
FORM OF THE FPE

Equation (23) shows the Szilard equation in a non-
mass conserved system. This equation is reproduced in the
following:

∂

∂t
Zn = fn−1(t)Zn−1 − gn(t)Zn − fn(t)Zn + gn+1(t)Zn+1

−Zn∇ · u − u · ∇Zn −
NA
M2 n

∇ · j[n]. (B1)

Following the work of Kashchiev,13 we can derive the contin-
uous format of this equation by writing the truncated Taylor
series expansion of f n�1(t)Zn�1 and gn+1(t)Zn+1 terms about
point n,

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-035802
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f (n − 1, t)Z(n − 1, t) = f (n, t)Z(n, t)

+
∂

∂n
[
f (n, t)Z(n, t)

]
(n − 1 − n)

+
1
2
∂2

∂n2

[
f (n, t)Z(n, t)

]
(n − 1 − n)2

(B2)

and

g(n + 1, t)Z(n + 1, t) = g(n, t)Z(n, t)

+
∂

∂n
[
g(n, t)Z(n, t)

]
(n + 1 − n)

+
1
2
∂2

∂n2

[
g(n, t)Z(n, t)

]
(n + 1 − n)2 .

(B3)

Inserting these two equations into Eq. (B1) yields

∂

∂t
Z(n) = −

∂

∂n

(
(f (n, t) − g(n, t))Z(n)

−
1
2
∂

[
(f (n, t) + g(n, t))Z(n)

]
∂n

)
− Z(n) ∇ · u

− u · ∇Z(n) −
NA
M2 n

(
∇ · j[n]

)
, (B4)

and employing the definitions of the dispersion and growth
rates, Eq. (9), simplifies this equation to the following format:

∂

∂t
Z(n) = −

∂

∂n

(
v(n)Z(n) −

1
2
∂ [d(n, t)Z(n)]

∂n

)
− Z(n) ∇ · u

− u · ∇Z(n) −
NA
M2 n

(
∇ · j[n]

)
. (B5)

This is the non-mass conserved form of the FPE.

APPENDIX C: MATERIAL PROPERTIES

The physiochemical properties of a generic aqueous solu-
tion at room temperature (T = 293 K) and atmospheric
pressure were used in the simulations of crystal nucleation.
These properties are taken from Table 6.1 in the work of
Kashchiev.13 Following this reference, we consider the new
phase to be denser than the old phase with a typical value of
∆ν = 10�28 m3. This gives kρ = 0.66. All these parameters are
summarised in Table II.

Additionally, following Ref. 34, we choose the average
value of ρmass ,2 = 2000 kg m�3 for the mass density of the solute
species and calculate M2 by M2 =NAνnρmass,2 = 0.06 kg mol−1.

For simulations including pressure variations, the ref-
erence state is considered to be at room temperature and

TABLE II. Solution properties at T = 293 K and atmospheric pressure.

Parameter Value Parameter Value

νn (nm3) 0.05 ν (nm3) 0.15
ρn (nm�3) 20.0 ρ (nm�3) 6.67
kρ (DL) 0.66 R0 (nm) 0.23
Ce (m�3) 1023 γ (mJ m�2) 100
D (m2 s�1) 10�9

TABLE III. Water properties at T = 293 K and atmospheric pressure.

Parameter Value

M(H2O) (kg mol�1) 0.018 015a

ρ(H2O) (kg m�3) 998.24a

β (DL) 3.5a

ηB (Pa s) 2.4 × 10�3 b

η (Pa s) 1.0020 × 10�3 c

c0 (m s�1) 1482.2c

Cp (J K�1) 75.377c

κ (W m�1 K�1) 0.598c

aFrom Ref. 8.
bFrom Ref. 62.
cFrom Ref. 63.

atmospheric pressure, T0 = 293 K and p0 = 0.1 MPa, respec-
tively. Therefore, the values reported in this table refer to the
physicochemical properties at the reference state.

Burgers’ and mass transportation equations are solved
under isothermal condition at T = 293 K. The properties of
water are given in Table III.
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