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KINETIC THEORY OF PARTICLE INTERACTIONS MEDIATED
BY DYNAMICAL NETWORKS∗

JULIEN BARRÉ† , PIERRE DEGOND‡ , AND EWELINA ZATORSKA§

Abstract. We provide a detailed multiscale analysis of a system of particles interacting through
a dynamical network of links. Starting from a microscopic model, via the mean field limit, we for-
mally derive coupled kinetic equations for the particle and link densities, following the approach of
[P. Degond, F. Delebecque, and D. Peurichard, Math. Models Methods Appl. Sci., 26 (2016), pp.
269–318]. Assuming that the process of remodeling the network is very fast, we simplify the de-
scription to a macroscopic model taking the form of a single aggregation-diffusion equation for the
density of particles. We analyze qualitatively this equation, addressing the stability of a homoge-
neous distribution of particles for a general potential. For the Hookean potential we obtain a precise
condition for the phase transition, and, using the central manifold reduction, we characterize the
type of bifurcation at the instability onset.
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1. Introduction. Cellular materials [20], mucins [7], polymers [6, 3], and social
networks [17, 1] are only a few of the numerous examples of systems involving highly
dynamical networks. A detailed modeling of these systems would require understand-
ing complex chemical, biological, or social phenomena that are difficult to probe.
Nevertheless, one common feature of these systems is the strong coupling between the
dynamical evolution of the individual agents (cells or monomers, for instance) with
that of the network mediating their interactions. The mathematical modeling of this
strongly coupled dynamics is a challenging task (see, for example, [26]) but it is a
necessary step toward building more complete models of complex biological or social
phenomena.

The purpose of this paper is to provide a detailed multiscale analysis—from a
microscopic model to a macroscopic description, and its qualitative analysis—of a
system of particles interacting through a dynamical network, in a particularly simple
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INTERACTIONS MEDIATED BY DYNAMICAL NETWORKS 1295

setting: the basic entities are just point particles with local cross-links modeled by
springs that are randomly created and destructed. In the mean field limit, assuming a
large number of particles and links as well as propagation of chaos, we derive coupled
kinetic equations for the particle and link densities. The link density distribution
provides a statistical description of the network connectivity which turns out to be
quite flexible and easily generalizable to other types of complex networks. See, e.g.,
another application of this methodology to networks of interacting fibers in [16]. A
distinctive feature of our modeling is that the agents interact only through the net-
work, which is described explicitly; this is an important difference with the opinion
dynamics model in [1], where agents may “meet” (i.e., interact) even when they are
not connected through the network.

We focus on the regime where the network evolution triggered by the linking
and unlinking processes happens on a very short time scale. In other words we are
interested in observing dynamical networks on a long time scale compared with the
typical remodeling time scale. In this regime the link density distribution becomes a
local function of the particle distribution density. The latter evolves on the slow time
scale through an effective equation which takes the form of an aggregation-diffusion
equation, known also as the McKean–Vlasov equation [23, 14]. The applications
of such an equation with different types of diffusion range from models of collective
behavior of animals through granular media and chemotaxis models to self-assembly of
nanoparticles; see [28, 22, 24, 9] and the references therein. In contrast to many of the
aggregation-diffusion equations studied in the literature [5, 18, 13, 4] the model derived
here features a compactly supported potential. This model yields a very rich behavior,
depending on two main parameters describing the interaction range and the stiffness
of the connecting links, that we investigate using both linear and nonlinear techniques.
In particular, we identify the parameter ranges for the linear stability/instability of
the spatially homogeneous steady states. Moreover, the nonlinear analysis based
on the central manifold reduction [21] provides us with a characterization of the
type of bifurcation that appears at the instability onset. Such bifurcations were
previously studied in [14] from a “thermodynamical” point of view, i.e., by looking
at the minimizers of the free energy functional; we present here a dynamical point
of view and make the connection with the thermodynamical approach. In the case
without diffusion, this free energy functional reduces to the interaction energy, whose
minimizers have been studied in [8, 28, 12]; for numerical studies in this direction we
refer to [11]. In particular, global minimizers exist provided the associated potential is
H-unstable, a classical notion in statistical mechanics linked to the phase transitions in
the system [19, 27]. Moreover, it was shown in [8] that the minimizers are compactly
supported for potentials with certain growth conditions at infinity. Generalization of
these results to the case of compactly supported attraction-repulsion potential and
linear diffusion, as in the system derived here, is a purpose of future work.

The outline of the paper is the following. In the preliminaries of section 2 we
introduce an individual-based model for the point particles and the network, with
rules for particles dynamics and network evolution. Then, in subsection 2.2, we de-
rive kinetic equations in a formal way following the approach from [16] developed for
systems of interacting fibers, when the number of particles N and the number of links
K tend to infinity. In particular, we will assume that the ratio K/N converges to
some fixed positive limit ξ that might be interpreted as an averaged number of links
per particle. At the level of derivation of these equations, the precise character of
particle interactions is not used and so the limit equations hold for a wide range of
symmetric and integrable potentials. In section 3, we further simplify the description
by assuming that the process of creating/destroying links is very fast. This enables
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1296 JULIEN BARRÉ, PIERRE DEGOND, AND EWELINA ZATORSKA

us to derive a macroscopic model involving only the particle density, which takes
the form of an aggregation-diffusion equation. In section 4, we analyze qualitatively
this macroscopic equation, addressing the stability of a homogeneous distribution of
particles for a general potential, and in section 5 we address the same question for
the Hookean potential, for which we obtain a precise condition for the bifurcation.
Finally, in section 6 we investigate via nonlinear analysis the character of the bi-
furcation, both for a rectangular (nondegenerate unstable eigenvalue) and a square
(degenerate unstable eigenvalue) domain. In the last part of the paper, we illustrate
the criterion distinguishing between supercritical and subcritical bifurcations for the
Hookean potential and make connections with the very different approach by Chayes
and Panferov in [14]. Our model is intended to provide a comprehensive treatment
of a dynamical interaction network in a simple setting, and it does not allow for any
meaningful quantitative comparison with real systems yet. Nevertheless, it does have
some qualitative implications, which we will briefly discuss.

2. Modeling framework.

2.1. Preliminaries. The link between two particles located at the points Xi and
Xj can be formed if their distance is less than a given radius of interaction R. If this
condition is met the link is created in a Poisson process with probability νNf ; it can
also be destroyed with the probability νNd ; both of them depend on N—the number
of the particles in the whole system. This means that within a small time interval ∆t,
if two particles are located sufficiently close to each other (the distance between them
is less than R), the link can be created with probability νNf ∆t. If the two particles
are already connected, the link between them can be destroyed with the probability
νNd ∆t (independently of the distance between the particles). The Poisson hypothesis
is chosen for the sake of simplicity. When cross-linked, the particles interact with each
other subject to a pairwise potential

V (Xi, Xj) = U (|Xi −Xj |) .(1)

For the moment we do not specify the character of interactions between the particles,
trying to keep our derivation on a maximally general level.

We will first characterize the system of fixed number of particles, denoted by N ,
and fixed number of links, denoted by K. The equation of motion for each individual
particle in the so-called overdamped regime, between two linking/unlinking events, is

dXi = −µ∇XiWdt+
√

2DdBi, i = 1, . . . , N.(2)

Above, Bi is a two-dimensional Brownian motion Bi = (B1
i , B

2
i ) with a positive

diffusion coefficient D > 0, µ > 0 is the mobility coefficient, and W denotes the
energy related to the maintenance of the links related to the potential V as follows:

W =
K∑
k=1

V
(
Xi(k), Xj(k)

)
,

where i(k), j(k) denote the indexes of particles connected by the link k. Plugging this
definition into expression (2), we obtain

dXi = −µ
K∑

k=1:i(k)=i

[
∇x1V (Xi(k), Xj(k)) +∇x2V (Xi(k), Xj(k))

]
dt+

√
2DdBi(3)

= −µ
K∑
k=1

[
δi(k)(i)∇x1V (Xi(k), Xj(k)) + δj(k)(i)∇x2V (Xi(k), Xj(k))

]
dt

+
√

2DdBi.
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INTERACTIONS MEDIATED BY DYNAMICAL NETWORKS 1297

Our ultimate aim is to describe the systems of large numbers of particles. From
the point of view of numerical simulations, the system of N SDEs (2) for large N ,
although fundamental, is too complex and thus costly to handle; it is also difficult to
get a qualitative understanding of the behavior of particles from (2). Therefore, in
the next section we look for a “kinetic” description using probability distribution of
particles and links rather than certain positions of each of the particles and links at
a given time.

2.2. Derivation of the kinetic model. We introduce the empirical distribu-
tions of the particles fN (x, t) and of the links gK(x1, x2, t), when the numbers of
particles and links are finite and equal N and K, respectively. They are equal to

fN (x, t) =
1
N

N∑
i=1

δXi(x);(4)

gK(x1, x2, t) =
1

2K

K∑
k=1

[
δXi(k),Xj(k)(x1, x2) + δXj(k),Xi(k)(x1, x2)

]
,

where the symbol δXi(x) is the Dirac delta centered at Xi(t), with a similar definition
for the two-point distribution. The above measures contain the full information about
the positions of particles and links at time t.

Remark 2.1. gK is directly related to the adjacency matrix of the underlying
network (Aij)Ni,j=1, through the equation

gK(x1, x2, t) =
1

2K

N∑
i,j=1

Aijδ(x1 −Xi)δ(x2 −Xj).

For the sake of completeness we also introduce the two-particle empirical
distribution

hN (x1, x2, t) =
1

N(N − 1)

∑
i6=j

δXi(t),Xj(t)(x1, x2).(5)

Obviously, the two distributions hN and gK are different, because not every pair of
points is connected by a link.

The first part of this article is concerned with the derivation of the kinetic model
obtained from (2) in the mean-field limit. This process is roughly speaking a derivation
of equations for the limit distributions f and g, obtained from fN and gK , by letting
N and K to infinity, i.e.,

f(x, t) := lim
N→∞

fN (x, t), g(x1, x2, t) = lim
K→∞

gK(x1, x2, t).

The purpose of this section is to derive the equations for evolutions of particle
and links distributions f and g in the limit of large number of particles and fibers.
We have the following formal theorem.

Theorem 2.2. The kinetic system

∂tf(x, t) = D∆xf(x, t) + 2µξ∇x · F (x, t),
∂tg(x1, x2, t) = D (∆x1g(x1, x2, t) + ∆x2g(x1, x2, t))

+ 2µξ
(
∇x1 ·

(
g(x1, x2)
f(x1)

F (x1, t)
)

+∇x2 ·
(
g(x1, x2)
f(x2)

F (x2, t)
))

+
νf
2ξ
h(x1, x2, t)χ|x1−x2|≤R − νdg(x1, x2, t),(6)

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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1298 JULIEN BARRÉ, PIERRE DEGOND, AND EWELINA ZATORSKA

where

F (x, t) =
∫
g(x, y, t)∇x1V (x, y)dy,

and

f(x, t) := lim
N→∞

fN (x, t),

g(x1, x2, t) = lim
K→∞

gK(x1, x2, t), h(x1, x2, t) = lim
K→∞

hN (x1, x2, t),

νf = lim
N→∞

νNf (N − 1), νd = lim
N→∞

νNd ,

is a formal limit of the particle system (2) as N,K →∞, provided that

lim
K,N→∞

K

N
= ξ > 0.

Proof. The strategy of the proof is to first derive the equations for distribution of
the particles fN (x, t) and of the links gK(x1, x2, t) in the situation when the number
of each is finite and equal to N and K. This happens between two linking/unlinking
events in the time interval (t, t+ ∆t). We will consider the behavior of the system in
this interval first and come back to the issue of creation of the new and destruction
of the old links in the end of the proof.

Step 1. Let us first introduce the notation that will allow us to identify both f
and g with certain distributions. Following [16, Appendix A] we first introduce the
one-particle and two-particle compactly supported observable functions, Φ(x) and
Ψ(x1, x2), respectively, and the corresponding weak formulations 〈fN (x, t),Φ(x)〉 and
〈〈gK(x1, x2, t),Ψ(x1, x2)〉〉 for equations of fN and gK (4).

Step 2. We derive the equation for the distribution of particles. Taking the time
derivative of 〈fN (x, t),Φ(x)〉 we get

d

dt

〈
fN (x, t),Φ(x)

〉
=

1
N

N∑
i=1

d

dt
Φ(Xi(t)).

We expand this equation using (3) and Itô’s formula. Since dBi’s are pairwise inde-
pendent and are independent of ∇xΦ(Xi(t)), thus assuming, for instance, that the
test functions have bounded derivatives, we obtain for large N

d

dt

〈
fN (x, t),Φ(x)

〉
= − µ

N

N∑
i=1

∇xΦ(Xi(t))

×
K∑
k=1

[
δi(k)(i)∇x1V (Xi(k), Xj(k)) + δj(k)(i)∇x2V (Xi(k), Xj(k))

]
+D

1
N

N∑
i=1

∆Φ(Xi).

Exchanging the order of the sums with respect to i and k, using the symmetry of
potential V , and integration by parts we get

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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INTERACTIONS MEDIATED BY DYNAMICAL NETWORKS 1299

d

dt

〈
fN (x, t),Φ(x)

〉
=

2µK
N

〈〈
∇x1 ·

(
gK(x1, x2)∇x1V (x1, x2)

)
,Φ(x1)

〉〉
+D

〈〈
∆fN ,Φ

〉〉
=

2µK
N

∫
∇x1 ·

(∫
gK(x1, x2)∇x1V (x1, x2)dx2

)
Φ(x1)dx1

+D

∫
∆fN (x1)Φ(x1)dx1.(7)

Letting N,K to infinity, assuming that K
N → ξ and that there exist the limits

lim
N→∞

fN = f and lim
K→∞

gK = g,

we obtain (after change of variables x1 → x, x2 → x′) a distributional formulation of
equation for f . The differential form of this equation is

∂tf(x, t) = 2µξ∇x · F (x, t) +D∆f, F (x1, t) =
∫
g(x1, x2, t)∇x1V (x1, x2)dx2.(8)

Step 3. After deriving the equation for distribution of particles f we want to derive
the equation for g in the analogous way. We remark that the noise in (3) transforms
directly into a linear diffusion term for f , and all other contributions vanish in the
large N limit. It is not difficult to see that the same simplification takes place for gK

in the K →∞ limit. Thus, to reduce the computations we will first use (3) without
noise and reintroduce the diffusion term in the end.

Taking the time derivative of 〈〈gK(x1, x2, t),Ψ(x1, x2)〉〉, we obtain

d

dt

〈〈
gK(x1, x2, t),Ψ(x1, x2)

〉〉
(9)

=
1

2K

K∑
k=1

[
∇x1Ψ(Xi(k), Xj(k)) ·

d

dt
Xi(k) +∇x1Ψ(Xj(k), Xi(k)) ·

d

dt
Xj(k)

]

+
1

2K

K∑
k=1

[
∇x2Ψ(Xi(k), Xj(k)) ·

d

dt
Xj(k) +∇x2Ψ(Xj(k), Xi(k)) ·

d

dt
Xi(k)

]
= E1 + E2.

We now present how to treat E1; E2 can be handled analogously. We first use (3)
(without noise) and transformations similar to the ones used in Step 2 to obtain

E1 =
−µ
2K

K∑
k′=1

{
∇x1V (Xi(k′), Xj(k′))×

K∑
k=1

[
δi(k′)(i(k))∇x1Ψ(Xi(k), Xj(k))(10)

+ δi(k′)(j(k))∇x1Ψ(Xj(k), Xi(k))
]}

× −µ
2K

K∑
k′=1

{
∇x1V (Xj(k′), Xi(k′))×

K∑
k=1

[
δj(k′)(i(k))∇x1Ψ(Xi(k), Xj(k))

+ δj(k′)(j(k))∇x1Ψ(Xj(k), Xi(k))
]}

.
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1300 JULIEN BARRÉ, PIERRE DEGOND, AND EWELINA ZATORSKA

We see that the first sum with respect to k in (10), i.e.,

K∑
k=1

[
δi(k′)(i(k))∇x1Ψ(Xi(k), Xj(k)) + δi(k′)(j(k))∇x1Ψ(Xj(k), Xi(k))

]
,(11)

does not vanish if either i(k) = i(k′) or j(k) = i(k′). To understand it better let us
look at the link number k′. Its beginning is i(k′) and it is a certain fixed particle, as
was the link.

If we now compute the above sum neglecting the Kronecker symbols we get 2K
different elements. But for the Kronecker symbols included we act in the following
way: we take the first link k = 1 and check if i(1) = i(k′); if yes, then definitely
j(1) 6= i(k′) and thus the first element of the sum is equal to ∇x1Ψ(Xi(1), Xj(1)), but
if i(1) 6= i(k′), then we check if j(1) = i(k′), and if yes the first element of the sum
equals ∇x1Ψ(Xj(1), Xi(1)). Finally, if i(k′) 6= i(1) and i(k′) 6= j(1), the above sum
reduces to the subset k ≥ 2. Hence the maximal number of elements of the above
sum is K, but in fact it will be equal to the number of links connected to i(k′) and it
may be less than the number of all links K.

We now introduce a number of links connected to i(k′),

Ci(k′) = #{k | i(k) = i(k′) or j(k) = i(k′)}.

Thus, dividing (11) by Ci(k′) and letting K → ∞ gives rise to a certain probability
associated with i(k′), we have

lim
K→∞

1
Ci(k′)

K∑
k=1

[
δi(k′)(i(k))∇x1Ψ(Xi(k), Xj(k)) + δi(k′)(j(k))∇x1Ψ(Xj(k), Xi(k))

]
(12)

= 2
∫

(∇x1ΨP )(Xi(k′), x2)dx2,

where

P (Xi(k′), x2) =
g(Xi(k′), x2)∫
g(Xi(k′), x2)dx2

is a conditional probability of finding a link, provided one of its ends is at Xi(k′).
We can also estimate the limit of the mean number of links per particle when

N,K →∞, K
N → ξ more directly. Around the point Xi(k′) we have

Ci(k′) =
K
∫
gK(Xi(k′), x2)dx2

NfN (Xi(k′))
,

therefore

lim
K,N→∞, KN→ξ

Ci(k′) = ξ

∫
g(Xi(k′), x2)dx2

f(Xi(k′))
.(13)

Combining (12) and (13), we obtain

lim
N,K→∞, KN→ξ

K∑
k=1

[
δi(k′),j(k)∇x1Ψ(Xi(k), Xj(k)) + δi(k′),i(k)∇x1Ψ(Xj(k), Xi(k))

]
=

2ξ
f(Xi(k′))

∫
(∇x1Ψg)(Xi(k′), x2)dx2,
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INTERACTIONS MEDIATED BY DYNAMICAL NETWORKS 1301

thus the limit of (10) reads

lim
K,N→∞, KN→ξ

E1 = lim
K→∞

−µξ
K

K∑
k′=1

[
∇x1V (Xi(k′), Xj(k′)) ·

∫
(∇x1Ψg)(Xi(k′), x2)dx2

f(Xi(k′))

+∇x1V (Xj(k′), Xi(k′)) ·
∫

(∇x1Ψg)(Xj(k′), x2)dx2

f(Xj(k′))

]
= −2µξ

〈〈
g,∇x1V (x1, x2) ·

∫
(∇x1Ψg)(x1, x2)dx2

f(x1)

〉〉
.

Now, coming back to (9) and performing the same procedure for E2 we obtain

d

dt
〈〈g(x1, x2, t),Ψ(x1, x2)〉〉 = −2µξ

〈〈
g,∇x1V (x1, x2) ·

∫
(∇x1Ψg)(x1, x2)dx2

f(x1)

〉〉
− 2µξ

〈〈
g,∇x1V (x1, x2) ·

∫
(∇x2Ψg)(x2, x1)dx2

f(x1)

〉〉
.

Integrating by parts, changing the variables and order of integrals we easily obtain

d

dt
〈〈g(x1, x2, t),Ψ(x1, x2)〉〉

= 2µξ
〈〈
∇x1 ·

(
g(x1, x2)
f(x1)

∫
g∇x1V (x1, x2)dx2

)
,Ψ(x1, x2)

〉〉
+ 2µξ

〈〈
∇x2 ·

(
g(x1, x2)
f(x2)

∫
g∇x1V (x2, x1)dx1

)
,Ψ(x1, x2)

〉〉
.

Therefore, the differential form of equation for g reads

∂tg(x1, x2, t) = D (∆x1g(x1, x2, t) + ∆x2g(x1, x2, t))(14)

+ 2µξ∇x1 ·
(
g(x1, x2)
f(x1)

F (x1, t)
)

+ 2µξ∇x2 ·
(
g(x1, x2)
f(x2)

F (x2, t)
)
,

where we have reintroduced the diffusion terms due to the noise in (3), and F (x1) is
the same one as defined as in (8); recall

F (x1, t) =
∫
g(x1, x2, t)∇x1V (x1, x2)dx2,

F (x2, t) =
∫
g(x2, x1, t)∇x1V (x2, x1)dx1.

Step 4. Equations (8) and (14) do not take into account the phenomena of creation
and destruction of links. According to the description at the beginning of this paper,
our model describes a process of creation of links with the probability νNf , provided
the two particles are sufficiently close to each other. Surely, the number of new links
will be proportional to the number of couples of the particles such that one of them is
close to x1 and the other one is close to x2, whose distance is less than R, this number
is equal to

N(N − 1)
2

h(x1, x2, t)χ|x1−x2|≤R dx1 dx2 dt,
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1302 JULIEN BARRÉ, PIERRE DEGOND, AND EWELINA ZATORSKA

where h(x1, x2, t) = limN→∞ hN and hN = hN (x1, x2, t) is the two-particle distribu-
tion defined in (5). This number has to be decreased by the number of couples that
are already connected by existing links:

Kg(x1, x2, t) dx1 dx2 dt.

Therefore, the number of the new links created during the time interval [t, t + dt[
between two points x1 and x2 is equal to

νNf

(
N(N − 1)

2
h(x1, x2, t)χ|x1−x2|≤R −Kg(x1, x2, t)

)
dx1 dx2 dt.

Dividing this expression by K used for normalization of function g and letting N,K →
∞ so that K

N → ξ and νNf (N − 1) → νf we obtain the probability of creation of the
new link equal to

νf
2ξ
h(x1, x2, t)χ|x1−x2|≤R.

Similarly, the probability that the existing link will be destroyed in the same time
interval [t, t+ dt[ is equal to

νdg(x1, x2, t),

where we used νd = limN→∞ νNd . If we now include these source terms in (14), we get

∂tg(x1, x2, t) = D (∆x1g(x1, x2, t) + ∆x2g(x1, x2, t))(15)

+ 2µξ
(
∇x1 ·

(
g(x1, x2)
f(x1)

F (x1, t)
)

+∇x2 ·
(
g(x1, x2)
f(x2)

F (x2, t)
))

+
νf
2ξ
h(x1, x2, t)χ|x1−x2|≤R − νdg(x1, x2, t).

This together with (8) gives the system (6). Theorem 2.2 is proved.

Note that system (6) is not closed, since all the three distributions f, g, and h
are a priori unknown. In order to close this system we will have to introduce some
closure assumption; this will be done in the next section.

3. Derivation of the macroscopic equations. The equations of distributions
of particles and links in the form introduced in Theorem 2.2 do not reveal anything
more than relations between certain mechanisms leading to evolution in time of f and
g. To get somehow deeper insight into the behavior of the system we introduce the
characteristic values of the physical quantities appearing in the system. We denote by
t0 the unit of time and by x0 the unit of space. A straightforward scaling argument
allows us to interpret (8) and (15) obtained in the previous section as scaled equations.
Upon choosing time and space units, we can also interpret the coefficients as scaled
coefficients in these units. From now on we will use time and space units such that

µ = 1 and D = 1.

The next step is to introduce the macroscopic scaling for these units using small
parameter ε << 1: x′′0 = ε−1/2x0, t′′0 = ε−1t0. Then the new variables and unknowns
are
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INTERACTIONS MEDIATED BY DYNAMICAL NETWORKS 1303

x′′ = ε1/2x, t′′ = εt, f ′′(x′′) = ε−1f(x),

g′′(x′′1 , x
′′
2) = ε−2g(x1, x2), h′′(x′′1 , x

′′
2) = ε−2h(x1, x2).

Then, we also introduce the scaling of the potential (1). This time, we assume a small
intensity of interactions, therefore V (x1, x2) ≈ V ′′(x′′1 , x′′2), and moreover,

∇xV (x1, x2) = ε1/2∇x′′V ′′(x′′1 , x′′2),

∇x1F (x1) = ∇x1

∫
g(x1, x2)∇x1V (x1, x2)dx2

= ε1/2∇x̃1

∫
ε2g′′(x′′1 , x

′′
2)ε1/2∇x′′1 V

′′(x′′1 , x
′′
2)ε−1dx′′2

= ε2∇x′′1 F
′′(x′′1),

so when we compare the terms of order ε2 in expansion of f in (8) with µ,D = 1, we
basically get the same equation for f ′′,

∂t′′f
′′ = ∆x′′f

′′ + 2ξ∇x′′ · F ′′.(16)

Our basic assumption is that the diffusion and the Hookean force time scales are long
compared to the network remodeling time scale. A good biological example for this
kind of assumption would be the process of growth of adipose tissue studied in [26].
It takes about 100 days for a nascent adipocyte to grow to its maximum size, while
for the extracellular matrix complete remodeling takes up to 15 days. Bearing this
example in mind we take

ν′′f = ε2νf , ν′′d = ε2νd,

and noticing that χ|x1−x2|≤R = χ|x′′1−x′′2 |≤R′′ , we have

ε3∂t′′g
′′ = ε3∆g′′(17)

+ 2ξ
[
ε1/2∇x′′1 ·

(
ε2g′′

εf ′′(x′′1)
ε3/2F ′′(x′′1)

)
+ ε1/2∇x′′2 ·

(
ε2g′′

εf ′′(x′′2)
ε3/2F ′′1 (x′′2)

)]
+ ε2

(
νf
2ξ
h′′χ|x′′1−x′′2 |≤R′′ − νdg

′′
)

= ε3
(

∆g′′ + 2ξ
[
∇x′′1 ·

(
g′′

f ′′(x′′1)
F ′′(x′′1)

)
+∇x′′2 ·

(
g′′

f ′′(x′′2)
F ′(x′′2)

)])
+
(
ν′′f
2ξ
h′′χ|x′′1−x′′2 |≤R′′ − ν

′′
d g
′′
)
.

Our purpose now is to let ε to zero in (16) and (17). Assuming again that f ′′, g′′, and
h′′ exist we denote fε = f ′′, gε = g′′, hε = h′′; we then have the following proposition.

Proposition 3.1. Assume that hε(x1, x2) = fε(x1)fε(x2) and that V (Xi, Xj) =
U(|Xi −Xj |); then provided the limits

f := lim
ε→0

fε, g := lim
ε→0

gε

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

01
/1

2/
18

 to
 1

28
.4

1.
61

.1
99

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



1304 JULIEN BARRÉ, PIERRE DEGOND, AND EWELINA ZATORSKA

exist, they formally satisfy

∂tf(t, x) = ∆xf(t, x) +
νf
νd
∇x · (f(t, x)∇x(Ṽ ∗ f)(t, x)),(18a)

g(t, x, y) =
νf

2ξνd
f(t, x)f(t, y)χ|x−y|≤R(18b)

for some compactly supported potential Ṽ specified below.

Proof. Let us start with the limit equation for the distribution of links. From
(17), using the assumption on small correlations we obtain

νf
2ξ
fε(t, x)fε(t, y)χ|x−y|≤R − νdgε(t, x, y) = O(ε3).

Letting ε → 0 in the above formula, we formally obtain (18b), which is an explicit
formula for g. Therefore, plugging this relation into (16) and dropping the tildes again
we obtain the equation for f :

∂tf = ∆xf +∇x · F, F =
νf
νd
f(x)

∫
f(y)∇xV (x, y)χ|x−y|≤Rdy.

Taking into account the form of the potential, we can rewrite the above equation in
slightly different form,

∂tf = ∆xf +
νf
νg
∇x ·

(
f(x)

∫
∇Ṽ (x− y)f(y)dy

)
(19)

for some Ṽ such that

∇iṼ (x) = U ′(|x|)χ|x|≤R~ei, i = 1, 2,

which gives (18a).

Remark 3.2. The assumption hε(x1, x2) = fε(x1)fε(x2) amounts to neglecting
spatial correlations for particles; this is a reasonable assumption if each particle in-
teracts with many others. The link distribution described by (18b) looks like that of
a random geometric graph, where particles are linked whenever they are distant less
than a certain threshold [25]; in this case, particles distant less than R are actually
linked only with a certain probability.

Remark 3.3. Equation (19) is an example of an aggregation-diffusion equation
with attractive-repulsive potential Ṽ . It is difficult to calibrate this equation against
any particular phenomena. Let us mention, however, that swarming models often
make use of attractive-repulsive potentials such as the one obtained here in the macro-
scopic description; see, e.g., [10, 15, 29].

4. Analysis of the macroscopic equation: General potential.

4.1. Remark about the free energy. The above system, particularly (18a),
is well known in the literature as an aggregation-diffusion equation and as a McKean–
Vlasov equation. For analytical and numerical results devoted to solvability and
asymptotic analysis of solutions, depending on the shape of the potential Ṽ , see,
for instance, [14, 9]. Concerning the steady states, an exhaustive analysis of this
problem would require finding the minima of the following energy functional associated
with (18a):
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INTERACTIONS MEDIATED BY DYNAMICAL NETWORKS 1305

F(f) =
∫ (

f log f +
1
2
νf
νd
f(Ṽ ∗ f)

)
dx.(20)

It is easy to check that F(t) is dissipated in time:

d

dt
F(f) =

∫ (
∂tf log f + ∂tf +

νf
νd
∂tf(Ṽ ∗ f)

)
dx

=
∫ (

∆f log f +
νf
νd
∇ · (f∇(Ṽ ∗ f)) log f +

νf
νd

(Ṽ ∗ f)∆f

+
(
νf
νd

)2

∇ · (f∇(Ṽ ∗ f))(Ṽ ∗ f)
)
dx

= −
∫ (

|∇f |2

f
+
(

2
νf
νd

)
∇(Ṽ ∗ f) · ∇f +

(
νf
νd

)2

f |∇(Ṽ ∗ f)|2
)
dx

= −
∫ (

∇f
f1/2 +

νf
νd
f1/2∇(Ṽ ∗ f)

)2

dx ≤ 0.

4.2. Constant steady states. In this note, we want to focus only on the con-
stant steady states, i.e., f? = const, which, on bounded domains, have an interpreta-
tion as probability measures. It turns out that the stability or instability of the steady
states for (18a) is related to the notion of H-stability of the potential Ṽ . According to
the definitions from classical statistical mechanics, the compactly supported potential
Ṽ is H-stable provided the integral

∫
R2 Ṽ (x) dx is positive; otherwise it is not H-stable

(unstable) [27]. For the H-stable potentials, the aggregation part of (18a) acts as dif-
fusion, so, any initial perturbation is smoothed infinitely fast. For potentials that are
not H-stable, the asymptotical behavior of the solution is much more interesting. For
our system in its general form we only prove the following criterion for instability of
the constant steady states.

Lemma 4.1. Let the potential Ṽ be integrable and let

M =
∫

R2
Ṽ (x) dx < 0.

Then the constant steady state f? is unstable if

f? >
−1
M

νd
νf
.(21)

Proof. In order to check the stability of the constant steady state f? > 0, we
linearize (18a) around f?. We assume that f is a small perturbation of f? (f << f?)
and thus f satisfies

∂tf(t, x) = ∆xf(t, x) + f?
νf
νd

∆x((Ṽ ∗ f)(t, x)).(22)

Then we apply the Fourier transform in space to both sides of (22); we obtain

∂tf̂(t, y) = −y2f̂(t, y)− 2πf?
νf
νd
y2 ˆ̃V f̂(t, y).(23)

The Taylor expansion around zero of the Fourier transform of Ṽ is equal to

ˆ̃V (y) =
1

2π

∫
R2
Ṽ (x) dx+O(y) =

M

2π
+O(y).
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1306 JULIEN BARRÉ, PIERRE DEGOND, AND EWELINA ZATORSKA

Plugging it into (23) we obtain

∂t log f̂(t, y) = −
(

1 + f?
νf
νd
M

)
y2 +O(y3),(24)

and so, for negative M , we can always find sufficiently large f? leading to instability
of the steady state f?. More precisely, for (21) the right-hand side (r.h.s.) of (24) for
sufficiently small y is larger than some positive constant c; thus

f̂(t) ≥ f̂0ect →∞ for t→∞,

and so the steady state f? is unstable.

5. Analysis of the macroscopic equation: Hookean potential.

5.1. Preliminaries. Until this moment, the exact form of potential (1) did not
play any role and we could work assuming only its symmetricity and integrability. Let
us now focus on a particular form. If we imagine that the links between the particles
act like springs, the interaction potential is given by the Hooke law

V (x1, x2) =
κ

2
(|x1 − x2| − l0)2 ,

where l0 denotes the rest length of the spring and the intensity parameter κ is a
positive number, characteristic of the spring. We then have∫

f(y)χ|y−x|≤R∇xV (x, y)dy =
∫
f(y)κ(|x− y| − l0)

x− y
|x− y|

χ|x−y|≤Rdy.

We now want to find Ṽ such that the equation for f is in the form (19). In our case
Ṽ (x) satisfies ∇iṼ (x) = κ(|x| − l0)χ|x|≤R~ei, where x ∈ R2, moreover Ṽ (x) = 0 for
|x| > R. First, it is easy to see that Ṽ (x) is a radially symmetric function, and thus
we can introduce U(|x|) = Ṽ (x); second, since the potential U(r) vanishes for r ≥ R
we have

U(2R)− U(r) =
∫ R

r

(s− l0)ds =
κ

2
[
(R− l0)2 − (r − l0)2

]
.

Therefore, U(r) = κ
2

[
(r − l0)2 − (R− l0)2

]
, and so

Ṽ (x) =


κ

2
[
(|x| − l0)2 − (R− l0)2

]
for |x| < R,

0 for |x| ≥ R;
(25)

see Figure 1.
Let us now compute the integral of our potential Ṽ given in (25). We have∫

R2
Ṽ (x)dx =

κ

2

∫
R2

[
(|x| − l0)2 − (R− l0)2

]
χ|x|<R dx

= πκ

∫ R

0

[
(r − l0)2 − (R− l0)2

]
r dr

= πκ

(
r4

4
− 2r3l0

3
− R2r2

2
+Rl0r

2
)∣∣∣∣R

0

= πκR3
(
l0
3
− R

4

)
;
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l
0

R

r

-(R-l
0
)
2

0

2R*l
0
-R

2

U(r)

Fig. 1. Potential U(r) with κ = 2 for Hookean interacations; l0 denotes the rest length of the
spring and R is the radius of interactions.

therefore, according to the definition given above, Ṽ is H-stable if the condition
l0 >

3R
4 is satisfied. Lemma 4.1 provided a special criterion for the constant steady

state to be unstable, and this is basically all the information we can get for the whole
space case. However, if we now consider the same problem on the space periodic
domain the criteria obtained in Lemma 4.1 will have to include the size of the do-
main. Moreover, it can happen that even if unstable, the steady state might be only
weakly unstable, meaning that only one mode from a countable set of modes will be
unstable, while the rest of them will be stable. The intention of the linear analysis in
the whole space case presented below is to provide some intuition on the behavior of
the potential, so that it is more intuitive how to “select” the unstable modes in the
second part of this section.

5.2. Linear analysis in the whole space. To understand the behavior of the
solutions close to the stability/instability threshold (21) we come back to (23) and we
compute the Fourier transform of Ṽ given by (25),

ˆ̃V (y) =
1

2π

∫
R2
e−ix·yṼ (x) dx.

Due to the radial symmetry of Ṽ , our transform gives radially symmetric function
ˆ̃V (y) = ˆ̃V (s), where s = |y|, that satisfies

ˆ̃V (s) =
1

2π

∫ 2π

0

∫ ∞
0

e−isr cos(θ)Ṽ (r)r dr dθ(26)

=
∫ R

0
Ṽ (r)J0(sr)r dr =

κ

2

∫ sR

0

[(
h

s
− l0

)2

− (R− l0)2
]
J0(h)

h

s2
dh

=
κ(2l0 −R)R

2s2

∫ sR

0
hJ0(h) dh

− κl0
s3

∫ sR

0
h2J0(h) dh+

κ

2s4

∫ sR

0
h3J0(h) dh,

where J0 is the Bessel function of the first kind of order 0. In order to compute
integrals of the type

∫H
0 hαJ0(h) dh for α = 1, 2, 3, we recall the Maclaurin series for
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1308 JULIEN BARRÉ, PIERRE DEGOND, AND EWELINA ZATORSKA

the Bessel function of order i,

Ji(x) =
∞∑
m=0

(−1)m

m!Γ(m+ 1 + i)

(x
2

)2m+i
,

and for the Struve functions of order i,

Hi(x) =
∞∑
m=0

(−1)m

Γ(m+ 3/2)Γ(m+ i+ 3/2)

(x
2

)2m+i+1
.

Using this notation (26) gives

ˆ̃V (s) = κ

(
J0(sR)

R2

s2
− J1(sR)

2R
s3

+
πRl0
2s2

[J1(sR)H0(sR)− J0(sR)H1(sR)]
)
.

Therefore, the general equation (23) now has the following form:

∂t log f̂(t, y) = −y2 − 2πf?
νf
νd

(
J0(|y|R)R2 − J1(|y|R)

2R
|y|

+
πRl0

2
[J1(|y|R)H0(|y|R)− J0(|y|R)H1(|y|R)]

)
.

We now write an explicit form of the solution emanating from the initial data f(0)=f0,

f̂(t, y) = f̂0(y)e−G(y)t,

where the exponent G = G(y,R, l0, κ, νf , νd, f?) is given by

G = y2 + 2πf?
νf
νd

(
J0(|y|R)R2 − J1(|y|R)

2R
|y|

(27)

+
πRl0

2
[J1(|y|R)H0(|y|R)− J0(|y|R)H1(|y|R)]

)
.

From Lemma 4.1 we know exactly when G ceases to be nonnegative close to y = 0.
Let us now see what happens slightly further from the origin. To this purpose, we
rewrite (27) in the following form:

G(z)R2 = z2 + 2πf?
νf
νd
R4
(
πl0
2R

[J1(z)H0(z)− J0(z)H1(z)]− J2(z)
)
,

where z = |y|R. To investigate the minima of G(z) we check the minima of another
function, namely,

Fα,β(z) = G(z)R2 = z2 + β
(πα

2
[J1(z)H0(z)− J0(z)H1(z)]− J2(z)

)
,(28)

where the parameters α, β > 0 are related to R, l0, κ, νf , νd, f? in the following way:

α =
l0
R
, β =

2πκf?νfR4

νd
.(29)

The interesting range for parameter α is [0, 1] and for the parameter β we take
[0,∞). In Figure 2, we present the graphs of the two functions π

2 [J1(z)H0(z)− J0(z)
H1(z)] and −J2(z) that are included in the definition of Fα,β(z) from (28). Note
that from (28) it is clear that Fα,β(0) = 0 for all values of α, β. On the other hand,
the picture above suggests that changing the values of parameters α, β may cause
that Fα,β will achieve negative values. In particular, by choosing a sufficiently small
value for parameter α we would get a negative value of πα

2 [J1H0 − J0H1] − J2 close
to zero. This is nothing other than rephrasing the criterion from Lemma 4.1 in terms
of α and β.
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5 10 15 z

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
π/2[J

1
(z)H

0
(z)-J

0
(z)H

1
(z)]

- J
2
(z)

Fig. 2. The graph of functions π
2 [J1(z)H0(z)− J0(z)H1(z)] and −J2(z). Decreasing the value

of parameter α in (28) decreases the amplitude of the oscillations marked with the continuous line
which leads to negative value of Fα,β(z) close to z = 0.

Proposition 5.1. Let α and β be given as in (29); then if (α, β) ∈ UR2 , where

UR2 =
{

(α, β) ∈ [0, 1]× [0,∞) : α <
3
4
, β >

24
3− 4α

}
,

the steady state f? is unstable, and otherwise it is stable.

Proof. Instability of the steady state follows as previously from expansion of
Fα,β(z) in the neighborhood of z = 0. After lengthy but straightforward calcula-
tions we obtain

Fα,β(z) =
(

4 + β
2α
3
− β 1

2

)(z
2

)2
+O(z4).

Finally, we see that taking α < 3
4 we can always find sufficiently large β (i.e., β >

24
3−4α ), so that the first term is negative and hence, for small enough z, the whole
Fα,β(z) is negative as well. The fact that for parameters (α, β) /∈ UR2 , the steady state
is stable is shown numerically. In Figure 3, we present the minimum of Fα,β with
respect to z, i.e.,

Fα,βmin = min
z∈[0,10]

Fα,β(z),(30)

as a function of parameters α, β. The flat region corresponds to the parameter con-
figuration that causes the minimum of Fα,β(z) to be attained at z = 0 and is equal
to 0.

Remark 5.2. Proposition 5.1 provides some qualitative insight into the behav-
ior of the physical or biological systems that could be modeled by such dynamical
networks. The connectivity of the network appears through the parameter νf/νd:
instability of homogeneous states is favored by a strongly connected network. The α
parameter measures the relative importance of the repulsive and attractive parts of
the interaction; a more attractive interaction favors instability.

Remark 5.3. Once f is known, (18b) allows us to make a connection with the
distribution of links of the underlying network. It follows, in particular, that in the
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1310 JULIEN BARRÉ, PIERRE DEGOND, AND EWELINA ZATORSKA

β

α
1

0.5-12

-8

40

-4

F
α

,β

m
in

0

30 20 10 00

Fig. 3. Graph of the minimum of Fα,β(z) defined in (30) for variable parameters α ∈ [0, 1]
and β ∈ [0, 40]. The flat region corresponds to the configuration of parameters for which the steady
state f? is stable.

case when distribution of the particles is homogeneous, so is the distribution of the
links. Moreover, when the density distribution develops spatial inhomogeneities, so
does the link distribution.

5.3. Linear analysis in the spatially periodic case. Let us now investigate
the same equation (22) but in the case of the space periodic domain. We will check
an influence of the size of the domain on the stability of stationary solutions. The
analysis of what happens with the solution in the unstable regime, but close to the
instability threshold, will be presented in the next section.

We start by expanding our solution f(x) for x = (x1, x2) ∈ [−L1, L1]× [−L2, L2]
into the Fourier series. Introducing the shorthand notation for the Fourier modes

ek1,k2 = exp
[
iπ

(
k1x1

L1
+
k2x2

L2

)]
,(31)

we may write

f(x1, x2) =
∑

k1,k2∈Z
f̂k1,k2ek1,k2 ,

where the Fourier coefficients f̂k1,k2 are given by

f̂k1,k2 =
1

4L1L2

∫ L2

−L2

∫ L1

−L1

f(x1, x2)e−k1,−k2 dx1 dx2.

Recall that we have the properties for the Fourier coefficients of the derivatives of
functions

∂̂nx1
f
k1,k2

=
(
−iπk1

L1

)n
f̂k1,k2 , ∂̂nx2

f
k1,k2

=
(
−iπk2

L2

)n
f̂k1,k2
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INTERACTIONS MEDIATED BY DYNAMICAL NETWORKS 1311

and of the convolution of functions

f̂ ∗ gk1,k2 =
̂[∫ L2

−L2

∫ L1

−L1

f(x− y)g(y) dy

]
k1,k2

= 4L1L2f̂k1,k2 ĝk1,k2 .

Therefore, multiplying both sides of linearized system (22) by 1
4L1L2

e−k1,−k2 and
integrating over [−L1, L1]× [−L2, L2], we obtain

∂tf̂k1,k2 = −π2
(
k2
1

L2
1

+
k2
2

L2
2

)
f̂k1,k2 − f?

νf
νd
π2
(
k2
1

L2
1

+
k2
2

L2
2

)
4L1L2

ˆ̃Vk1,k2 f̂k1,k2 .(32)

This time f? can be interpreted as a probability measure; thus from now on, we will
take f? = 1

4L1L2
, which on the rectangle [−L1, L1]× [−L2, L2] integrates to one, and

so, for any k1, k2 ∈ Z, we obtain

f̂k1,k2(t) = f̂0(k1, k2)e−Gk1,k2 t,

where

Gk1,k2 = π2
(
k2
1

L2
1

+
k2
2

L2
2

)
+
νf
νd
π2
(
k2
1

L2
1

+
k2
2

L2
2

)
ˆ̃Vk1,k2 .

To compute ˆ̃Vk1,k2 in the case when R < min{L1, L2} we write

ˆ̃Vk1,k2 =
1

4L1L2

∫ 2π

0

∫ R

0
e
−iπ

√
k21
L2

1
+
k22
L2

2
r cos θ

Ṽ (r)r dr dθ

=
π

2L1L2

∫ R

0
Ṽ (r)J0

(
π

√
k2
1

L2
1

+
k2
2

L2
2
r

)
r dr

and the last integral can be computed exactly as in the previous section so that we get

ˆ̃Vk1,k2 =
κπ

2L1L2

(
πR3l0
2z2
k1,k2

[J1(zk1,k2)H0(zk1,k2)− J0(zk1,k2)H1(zk1,k2)](33)

− J2(zk1,k2)
R4

z2
k1,k2

)
,

where we denoted

zk1,k2 = πR

√
k2
1

L2
1

+
k2
2

L2
2
,(34)

and so

Fα,β(zk1,k2) = Gk1,k2R
2 = z2

k1,k2

+ β
(πα

2
[J1(zk1,k2)H0(zk1,k2)− J0(zk1,k2)H1(zk1,k2)]− J2(zk1,k2)

)
,

for parameters α and β such that

α =
l0
R
, β =

πκνfR
4

2νdL1L2
.
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1312 JULIEN BARRÉ, PIERRE DEGOND, AND EWELINA ZATORSKA

Note that these are the same parameters as in (29) with f? = 1
4L1L2

. Moreover, func-
tion Fα,β has the same form as in the whole space case (28) but is evaluated only
at the discrete set of points zk1,k2 k1, k2 ∈ Z. We know already that for continuous
arguments z ∈ [0,∞) there is a phase transition curve β(α) = 24

3−4α . The proof of
this fact was based on finding a negative value of Fα,β(z) sufficiently close to z = 0.
Here, however, the discrete variable zk1,k2 depends on the size of the domain and it
may happen that Fα,β(zk1,k2) for all k1, k2 ∈ Z is always positive even if Fα,β(z) does
attain negative value. Indeed, we have the following proposition.

Proposition 5.4. For a nonempty subset of parameters (α, β) ∈ UR2 , there exist
L1, L2 ∈ [R,∞) such that f? = 1

4L1L2
is a stable solution of (18a).

Proof. The proof of this fact is again numerical. Figure 4 illustrates the function
Fαβ(z) in the unstable range of α, β. Note that if z1,0, z0,1 are larger than z0 = 0, 63
the steady state f? will not be affected by the unsteady modes. In Figure 5 we present

2 4 6 8 z

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
z∈[0,10]

F
0.5,25

(z)

z
min

=0.45 z
0
=0.63 z

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
z∈[0,1]

F
0.5,25

(z)

Fig. 4. Left: the function Fαβ(z) for α = 0.5, β = 25; right: the zoom of the graph in the
neighborhood of z = 0; zmin denotes the point where the minimum of Fαβ(z) is attained, while z0
denotes the first zero of the function Fαβ(z) for z > 0.

Fig. 5. Left: the positions of minima of function Fα,β(z), zmin(α, β); right: the positions of
zero of Fα,β(z), z0(α, β) for variable parameters α ∈ [0, 1] and β ∈ [0, 40].
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INTERACTIONS MEDIATED BY DYNAMICAL NETWORKS 1313

the positions of minima of function Fα,β(z), zmin(α, β) and the positions of zero of
Fα,β(z), z0(α, β). We see in particular that z0(α, ·) is a monotonically increasing
function, while z0(·, β) is monotonically decreasing. However, from (34) we get

z1,0 =
πR

L1
≤ π and z0,1 =

πR

L2
≤ π;

therefore, the statement can be fulfilled, for example, for L1 = L2 = R and α∗, β∗

such that

z0(α∗, β∗) < π;(35)

since |z0(α, β)| ≥ |zmin(α, β)|, the pair of parameters (α∗, β∗) ∈ UR2 .

The condition (35) can be rephrased as

Fα,β(α∗, β∗)(π) > 0,

which gives β∗(0.7332α∗ − 0.4854) > −9.8696. This means in particular that α∗ ∈
(0.5499, 0.75) and any β∗ ∈ [0,∞) the stationary solution f? = 1

4R2 is a stable solution
to (18a) on a periodic box [−R,R]2.

Using the same argument, we can also show the reverse statement to
Proposition 5.4.

Proposition 5.5. For every L1, L2 ∈ [R,∞), there exists a nonempty subset of
parameters (α, β) ∈ UR2 such that f? = 1

4L1L2
is a stable solution of (18a).

6. Nonlinear stability analysis of the steady state.

6.1. Preliminaries. The purpose of this section is to investigate the qualitative
behavior of the model beyond the linear level. We will choose the parameters α, β in
the unstable regime, but close to the stability/instability threshold. In particular, the
instability will be associated only with the first nontrivial modes, and the instability
rate will be assumed small. As we saw in the previous section this can be guaranteed
by the appropriate choice of the size of periodic domain.

The analysis will be made for periodic domains of two types: the rectangular
periodic domain and the square periodic domain. As we will see below, in the case
when one side of the periodic domain is larger than the other, we may select only one
unstable mode and reduce the analysis to a one-dimensional problem. For the case of
a square box, the extra symmetry induces a degeneracy of the unstable mode. In both
cases we give precise conditions for continuous and discontinuous phase transitions.
In the end of this section we also provide numerical verification of these conditions
for the Hooke potential. Computations with other domains are in principle possible
but would be more complicated and/or less explicit. Nevertheless, we expect that in
absence of special symmetries, the picture for a generic domain would look like the
one for a periodic rectangle.

Our analysis allows us to identify two types of steady states for the density dis-
tribution in the macroscopic model: the homogeneous steady state f? and the inho-
mogeneous steady states in the unstable regime. Concerning the network, it is never
constant since links are created and destroyed continuously, but the regions of high
particle density are regions of high connectivity. It follows from (18b) that if f settles
into a stationary state, the network becomes stationary in a probabilistic sense. If a
homogeneous f? is unstable, then the network also develops spatial inhomogeneities;
see Remark 5.3.
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1314 JULIEN BARRÉ, PIERRE DEGOND, AND EWELINA ZATORSKA

We would like to emphasize that the theoretical results presented in this section
are applicable to a much wider class of potentials under mild assumptions on the
Fourier coefficients as stated in Theorems 6.1 and 6.3 for the rectangular and the
square case, respectively. The Hookean potential should be treated only as an example
for which the more explicit computations and numerical verification are possible. Our
starting point is (18a), which we recall here for convenience:

∂tf = ∆f + γ∇ · (f∇(Ṽ ∗ f))(36)

with γ = νf
νd

.

6.2. The rectangular case for general potential—nondegenerate. We
start our analysis from the simpler case when the periodic domain is rectangular,

(x1, x2) ∈ [−L1, L1]× [−L2, L2] such that L1 > L2

and that only the modes (±1, 0) are unstable; all the others are stable. Having in
mind the argument from the previous section, this is possible for some (α∗, β∗) ∈ UR2

provided

z1,0 < z0(α∗, β∗) < z2,0 and z0,1 > z0(α∗, β∗).

Looking at the problem from the perspective of stable and unstable modes, we see that
an analogous condition can be deduced directly from (32). Namely, the eigenvalue
associated with the first mode in the direction x1 should be the only positive one.
This results in the conditions

λ = λ±1,0 = −π
2

L2
1

(
1 + γ ˆ̃V1,0

)
> 0,(37a)

λk1,k2 = −π2
(
k2
1

L2
1

+
k2
2

L2
2

)(
1 + γ ˆ̃Vk1,k2

)
< 0 for (k1, k2) 6= (±1, 0).(37b)

Recalling notation (31), the unstable modes are then

e1,0 = e
iπx1
L1 and e−1,0 = e

−iπx1
L1 .

We now want to check what happens with the constant steady state after passing
the instability threshold. We could, for example, think of fixing the parameter α
according to Proposition 5.5 and slowly increase parameter β by changing the value
of R. Alternatively, one can identify the instability threshold with changing the sign
of λ—this is the standard strategy in bifurcation theory and the one we follow here.

After crossing the instability threshold, one expects that the solution to the non-
linear problem behaves for a short time like the linearized solution, that is, an expo-
nential in time times the unstable mode:

f = f? +A(t)e1,0 +A∗(t)e1,0 with A(t) ∝ eλt.

Then, if A(t) remains small, one can hope to expand the solution into power series
of A(t),

f = f? +A(t)e1,0 +A∗(t)e1,0 +O(A(t)2).

The goal is then to find a reduced equation for A(t) that would allow us to understand
the dynamics of the solution just by analyzing an ODE for A(t) (central manifold
reduction). The unstable eigenvalue is real, and the system is translation-symmetric.
Hence we expect a pitchfork bifurcation when λ changes sign from “−” to “+,” with
two possible scenarios:
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INTERACTIONS MEDIATED BY DYNAMICAL NETWORKS 1315

• a supercritical bifurcation: A(t) first grows exponentially, but then f tends to
an almost homogeneous stationary state;

• a subcritical bifurcation: A(t) grows exponentially until it leaves the pertur-
bative regime, then the final state may be very far from the original homoge-
neous state.

Instead of adopting a dynamical approach as done here, bifurcations for systems
such as (36) can be studied from a “thermodynamical” point of view, i.e., by looking
at the minimizers of (20). This has been done in particular in [14]. The second order
phase transition in [14] corresponds to the supercritical scenario described above, while
the first order phase transition corresponds to the subcritical scenario. However, one
should note that the dynamical bifurcation point (where λ changes sign) does not
coincide with the first order phase transition parameters; the dynamical bifurcation
would rather be called a spinodal point in thermodynamics, the language of [14].

The main result of this section provides a criterion allowing us to distinguish these
two cases.

Theorem 6.1. Assume that λ > 0 and that λk1,k2 < 0 for any (k1, k2) 6= (±1, 0).
Then, there are two possibilities:

• for 2 ˆ̃V2,0 − ˆ̃V−1,0 > 0 the steady state exhibits a supercritical bifurcation,

• for 2 ˆ̃V2,0 − ˆ̃V−1,0 < 0 the steady state exhibits a subcritical bifurcation.

Proof. We now want to investigate the evolution of the perturbation g of the
constant steady state f?. Hence, the solution to (18a) has the form f = f? + η.
We denote the operator associated with the linearized equation (22) by L(f); more
precisely,

∂tη(t, x) = ∆xη(t, x) + γf?∆x((Ṽ ∗ η)(t, x)) := L(η).

Note that L(η) with periodic boundary conditions is a self-adjoint operator. Next, we
also distinguish the nonlinear part of (18a) and we denote it by N (η); this gives

∂tη = L(η) +N (η),(38)

where

N (η) = Q(η, η), Q(η1, η2) = γ∇ ·
(
η1∇(Ṽ ∗ η2)

)
with γ = νf

νd
. In what follows we will need to compute the action of L and Q on the

Fourier basis. We have

L(ek1,k2) =
[
−π2

(
k2
1

L2
1

+
k2
2

L2
2

)
(1 + γ ˆ̃Vk1,k2)

]
ek1,k2 = λk1,k2ek1,k2 ,(39)

Q(ek1,k2 , el1,l2) = −4L1L2γπ
2 ˆ̃Vl1,l2

(
l1(k1 + l1)

L2
1

+
l2(k2 + l2)

L2
2

)
ek1+l1,k2+l2(40)

As mentioned above, at a linear order, η moves on a vector space spanned by e1,0, e−1,0,

η(t, x) = A(t)e1,0 +A∗(t)e−1,0.

Furthermore, if the equation were linear, the solution emanating from any initial
condition would be quickly attracted toward this vector space. This follows from the
fact that all the other modes of motion are stable. For the nonlinear system, we
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1316 JULIEN BARRÉ, PIERRE DEGOND, AND EWELINA ZATORSKA

expect that span(e1,0, e−1,0) will be deformed into some manifold. This manifold is
tangent to span(e1,0, e−1,0) close to η = 0 and can be parametrized by the projection
of η on this space,

η(t, x) = A(t)e1,0 +A∗(t)e−1,0 +H[A,A∗](x),(41)

with H such that

H[A,A∗] = O(A2, AA∗, (A∗)2) and 〈e1,0, H〉 = 〈e−1,0, H〉 = 0.(42)

Furthermore, from translation invariance we can write, using Lemma 6.2 (see below),

H[A,A∗] =
∑
k1≥0

Ak1hk1,0(σ)ek1,0 +
∑
k1<0

(A∗)−k1hk1,0(σ)ek1,0,

where

σ = |A|2 and hk,0 = h0
k,0 + σh1

k,0 + · · · .

The conditions (42) imply that h1,0 = h−1,0 = 0. Moreover, h0
k1,0 = 0 for k1 = 0,±1;

otherwise H[A,A∗] would contain zero and first order terms in A,A∗. Hence, at the
leading order, only the modes (±2, 0) remain; more precisely

H[A,A∗] = A2h0
2,0e2,0 + (A∗)2h0

−2,0e−2,0 +O((A,A∗)3).(43)

Then, plugging (41) and (43) into the definitions of L(η) and N (η) we obtain

L(η) = AL(e1,0) +A∗L(e−1,0)(44)

+A2h0
2,0L(e2,0) + (A∗)2h0

−2,0L(e−2,0) +O((A,A∗)3)

and

N (η) = A2Q(e1,0, e1,0) + (A∗)2Q(e−1,0, e−1,0)(45)

+A3h0
2,0 [Q(e1,0, e2,0) +Q(e2,0, e1,0)]

+ |A|2Ah0
2,0 [Q(e−1,0, e2,0) +Q(e2,0, e−1,0)]

+ (A∗)3h0
−2,0 [Q(e−1,0, e−2,0) +Q(e−2,0, e−1,0)]

+ |A|2A∗h0
−2,k [Q(e1,0, e−2,0) +Q(e−2,0, e1,0)]

+O((A,A∗)4).

Therefore, the full dynamics of η can be obtained by substituting the above formulas
for L(η) and N (η) into (38). On the other hand, differentiating (41) with respect to
time, and using (43), we have

∂tη = Ȧe1,0 + Ȧ∗e−1,0 + 2AȦh0
2,0e2,0 + 2A∗Ȧ∗h0

−2,0e−2,0 + ∂tO((A,A∗)3).(46)

We now equate expressions ∂tη = (44) + (45) and (46) and compare Fourier mode by
Fourier mode, and order in A by order in A. We start with the mode e1,0. Taking
the scalar product of the r.h.s. of (44) and (45) with e1,0, we get

〈e1,0,L(η)〉 = A〈e1,0,L(e1,0)〉
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INTERACTIONS MEDIATED BY DYNAMICAL NETWORKS 1317

and

〈e1,0,N (η)〉 = |A|2Ah0
2,0〈e1,0,Q(e−1,0, e2,0) +Q(e2,0, e−1,0)〉+O((A,A∗)4),

where 〈u, v〉 = 1/(4L1L2)
∫ L2

−L2

∫ L1

−L1
u∗v dx1 dx2. Comparing these expressions with

the projection of (46) on e1,0 we obtain

Ȧ〈e1,0, e1,0〉 = A〈e1,0,L(e1,0)〉(47)

+ |A|2Ah0
2,0〈e1,0,Q(e−1,0, e2,0) +Q(e2,0, e−1,0)〉+O((A,A∗)4).

So, using (39) and (40) we obtain

Ȧ = Aλ+ |A|2Ah0
2,0γπ

2 4L2

L1

(
ˆ̃V−1,0 − 2 ˆ̃V2,0

)
+O((A,A∗)4).

The terms of the leading order in A yield the linearized dynamics. To investigate
the behavior of A at the nonlinear level we need first to compute h0

2,0: we do this by
equating the Fourier coefficient (2, 0) in ∂tη = (44) + (45) and (46); we obtain

2AȦh0
2,0e2,0 = A2λ2,0h

0
2,0e2,0 +A2Q(e1,0, e1,0) +O((A,A∗)4),

so, using (39) and (40) together with the linear equation for A, i.e., Ȧ = λA, we
obtain

2λh0
2,0 = −4π2

L2
1

(
1 + γ ˆ̃V2,0

)
h0

2,0 −
8π2L2

L1
γ ˆ̃V1,0,

and finally, since λ2,0 < 0, for λ→ 0+ we formally get

h0
2,0 = −−2L1L2γ

ˆ̃V1,0

1 + γ ˆ̃V2,0

.

The reduced equation for A (47) then reads

Ȧ = λA+ 8γ2π2L2
2

ˆ̃V1,0

1 + γ ˆ̃V2,0

(
2 ˆ̃V2,0 − ˆ̃V−1,0

)
|A|2A.(48)

From the assumptions of Theorem 6.1 and (37a) it follows that ˆ̃V1,0 is negative,

so if 2 ˆ̃V2,0− ˆ̃V−1,0 > 0 the coefficient in front of the third order term is negative. This
means that A(t) first grows exponentially, but then it saturates when the r.h.s. of
(48) is equal to zero. This happens for

|A| =
√
λ

2
√

2γπL2

√√√√√ 1 + γ ˆ̃V2,0

| ˆ̃V1,0|
(

2 ˆ̃V2,0 − ˆ̃V−1,0

) .
Therefore, if the last factor is bounded, |A| is of order

√
λ, so taking λ sufficiently

small we ensure that A(t) remains small at the level of saturation, which justifies the
validity of expansion (41).

When 2 ˆ̃V2,0− ˆ̃V−1,0 < 0 the term of order A3 does not bring any saturation. The
growth thus goes on until A(t) leaves the perturbative regime, and at this point the
approach breaks down.

This yields the hypothesis of Theorem 6.1. In order to conclude, we still need to
justify that the manifold H can be represented by (43); we will prove the following
lemma.
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1318 JULIEN BARRÉ, PIERRE DEGOND, AND EWELINA ZATORSKA

Lemma 6.2. Let H = H[A,A∗](x) be as specified above in (41); then Ĥ0,0[A,A∗] =
0, Ĥ±1,0[A,A∗] = 0 and the other Fourier coefficients of H are of the form

Ĥk1,k2 [A,A∗] =


Ak1hk1,0(σ) for k1 ≥ 0, k2 = 0,

(A∗)−k1hk1,0(σ) for k1 < 0, k2 = 0,

0 for k2 6= 0,

for some unknown functions hk1,0 = hk1,0(σ), with σ = AA∗.

Proof. From the definition Ĥ0,0 = 0, and Ĥ±1,0 = 0 since 〈e1,0, H〉 = 〈e−1,0, H〉 =
0. Next, (38) as well as the unstable manifold are invariant under translation τx0 :
x→ x+ x0 that act on functions as

(τx0 · f)(x) = f
(
x− x0) ,

where x = (x1, x2), x0 = (x0
1, x

0
2). Therefore, for any A, there exists Ã such that

τx0 · (Ae1,0 +A∗e−1,0 +H[A,A∗]) = Ãe1,0 + Ã∗e−1,0 +H[Ã, Ã∗],

meaning that

Ae−iπ
x01
L1 e1,0 +A∗eiπ

x01
L1 e−1,0 +H[A,A∗](x− x0)

= Ãe1,0 + Ã∗e−1,0 +H[Ã, Ã∗](x).

Comparing the terms with e1,0 we conclude that Ã = Ae−iπ
x01
L1 and subsequently

H

[
Ae−iπ

x01
L1 , A∗eiπ

x01
L1

]
(x) = H[A,A∗](x− x0).

In terms of Fourier coefficients, the last equality reads

Ĥk1,k2

[
Ae−iπ

x01
L1 , A∗eiπ

x01
L1

]
= e
−iπ

(
k1x

0
1

L1
+
k2x

0
2

L2

)
Ĥk1,k2 [A,A∗].(49)

Let us now expand Ĥk1,k2 in a Taylor series: Ĥk1,k2 [z, z∗] =
∑
l1,l2≥0 cl1,l2z

l1(z∗)l2 ;
then (49) reads

∑
l1,l2≥0

cl1,l2A
l1(A∗)l2e−iπ

x01
L1

(l1−l2) = e
−iπ

(
k1x

0
1

L1
+
k2x

0
2

L2

) ∑
l1,l2≥0

cl1,l2A
l1(A∗)l2 .

The uniqueness of the expansion implies that cl1,l2 = 0 unless l1 − l2 = k1, k2 = 0.
Thus

Ĥk1,0[A,A∗] = Ak1
∑
l2≥0

ck1+l2,l2 |A|2l2 .

This finishes the proof of Theorem 6.1.
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6.3. The square case for general potential—degenerate eigenvalues. In
this section we study a particular case of domain—a periodic box; thus L1 = L2 =
L. For simplicity, we take L = 1

2 . Again, the result is much more general and
might be applied to a much wider class of functionals than the Hooke potential from
section 5.3, provided one can select finitely many unstable modes. Here, due to the
square symmetry, and assuming that the potential is isotropic, there will generically
be one unstable mode in each direction denoted by

e1,0 = e2iπx1 and e0,1 = e2iπx2 ,

together with their conjugates, associated with the same eigenvalue,

λ = −4π2
(

1 + γ ˆ̃V1,0

)
.

Our results in this case can be summarized as follows.

Theorem 6.3. Assume that λ > 0 and that 1 + γ ˆ̃Vk1,k2 > 0 for any k1, k2 such
that |k1|+ |k2| > 1. Then, for

ˆ̃V1,0(2 ˆ̃V2,0 − ˆ̃V−1,0)

1 + γ ˆ̃V2,0

< −

∣∣∣∣∣4 ˆ̃V1,0
ˆ̃V1,1

1 + γ ˆ̃V1,1

∣∣∣∣∣(50)

the steady state exhibits a supercritical bifurcation. If the inequality is opposite, the
steady state exhibits a subcritical bifurcation.

Proof. Following the same strategy as for the one-dimensional case we expand
the perturbation η on the unstable manifold:

η(t, x, y) = A(t)e1,0 +A∗(t)e−1,0 +B(t)e0,1 +B∗(t)e0,−1 +H[A,A∗, B,B∗](x, y);

therefore

∂tη(t, x, y) = Ȧe1,0 + Ȧ∗e−1,0 + Ḃe0,1 + Ḃ∗e0,−1 + ∂tH[A,A∗, B,B∗](x, y).

Like in Lemma 6.2, we can deduce that H has the following structure:

H = A2h2,0e2,0 + (A∗)2h−2,0e−2,0 +B2h0,2e0,2 + (B∗)2h0,−2e0,−2(51)
+ABh1,1e1,1 +A∗Bh−1,1e−1,1 +AB∗h1,−1e1,−1 +A∗B∗h−1,−1e−1,−1

+O((A,A∗, B,B∗)3).

We compute now the nonlinear term N (η) at order A2, B2 (we use here the properties

of Ṽ : ˆ̃Vk1,k2 = ˆ̃Vk1,−k2 = ˆ̃V−k1,k2 = ˆ̃Vk2,k1):

N (η) =− 8γπ2 ˆ̃V1,0
[
A2e2,0 +B2e0,2 +ABe1,1 +A∗Be1,−1 + c.c.

]
+O

(
(A,A∗, B,B∗)3

)
.

The procedure is the same as before. The leading order for the dynamics of A,B is
the linear evolution:

Ȧ = λA+O((A,B)3), Ḃ = λB +O((A,B)3).

We expand in powers of σA = |A|2, σB = |B|2 the hkl coefficients that appear in (51)
and keep only the leading order h0

k,l, which are some constants to be computed. From
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1320 JULIEN BARRÉ, PIERRE DEGOND, AND EWELINA ZATORSKA

comparison of (2, 0), (1, 1), and (1,−1) modes, respectively, order (A,B)2 yields the
equations for h0

±2,0, h
0
0,±2, h

0
±1,±1:

(2λ− λ2,0)h0
2,0 = −8γπ2 ˆ̃V1,0,

(2λ− λ1,1)h0
1,1 = −8γπ2 ˆ̃V1,0,

(2λ− λ1,−1)h0
1,−1 = −8γπ2 ˆ̃V1,0.

Solving the above equations, and letting λ→ 0, we obtain

h0
2,0 = − γ ˆ̃V1,0

2(1 + γ ˆ̃V2,0)
, h0

1,1 = − γ ˆ̃V1,0

1 + γ ˆ̃V1,1

, h0
1,−1 = − γ ˆ̃V1,0

1 + γ ˆ̃V1,1

.

The other relevant h0
i,j coefficients in (51) are obtained by complex conjugation. Fi-

nally, including the terms of order (A,B)3 for the Fourier modes (1, 0) and (0, 1) we
obtain the sought reduced equations for evolution of A and B, namely,

Ȧ = λA+ |A|2Ah0
2,0〈e1,0,Q(e−1,0, e2,0) +Q(e2,0, e−1,0)〉

+|B|2Ah0
1,−1〈e1,0,Q(e0,1, e1,−1) +Q(e1,−1, e0,1)〉

+|B|2Ah0
1,1〈e1,0,Q(e1,1, e0,−1) +Q(e0,−1, e1,1)〉+O((A,A∗, B,B∗)4),

Ḃ = λB + |B|2Bh0
0,2〈e0,1,Q(e0,−1, e0,2) +Q(e0,2, e0,−1)〉

+|A|2Bh0
−1,1〈e0,1,Q(e1,0, e−1,1) +Q(e−1,1, e1,0)〉

+|A|2Bh0
1,1〈e0,1,Q(e−1,0, e1,1) +Q(e1,1, e−1,0)〉+O((A,A∗, B,B∗)4),

or equivalently {
Ȧ = λA+ c|A|2A+ d|B|2A,

Ḃ = λB + c|B|2B + d|A|2B,
(52)

where we denoted

c = 2γ2π2

ˆ̃V1,0

(
2 ˆ̃V2,0 − ˆ̃V1,0

)
1 + γ ˆ̃V2,0

, d = 8γ2π2
ˆ̃V1,0

ˆ̃V1,1

1 + γ ˆ̃V1,1

.(53)

The analysis of the two-dimensional system requires slightly more effort than the
analysis of the one-dimensional case from the previous section. The steady states of
the system (52) are determined by

(λ+ c|A|2 + d|B|2)A = 0 and (λ+ c|B|2 + d|A|2)B = 0.

If c < 0, there are steady states with A = 0 or B = 0; it is easy to see that they
are unstable. If c + d < 0, there are other steady states, with A = Ast 6= 0 and
B = Bst 6= 0. The modulus of Ast and Bst is fixed, but their phase is undetermined:

|Ast| = |Bst| =

√
λ

−(c+ d)
.

In order to check stability of the above steady states, we investigate the linearization
of system (52), around (Ast, Bst). We take for simplicity Ast and Bst real in the
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INTERACTIONS MEDIATED BY DYNAMICAL NETWORKS 1321

following; by translation symmetry the result does not depend on the phases we
choose. Furthermore, one checks easily that the linearized equations for the imaginary
parts of A and B decouple from the real parts and are neutrally stable. We are left
with the following linear equation for the real parts:

[
Ȧ

Ḃ

]
= M(Ast, Bst)

[
A
B

]
, M(Ast, Bst) = λ

 1− 3c+ d

c+ d

2d
c+ d

2d
c+ d

1− 3c+ d

c+ d

 .

The eigenvalues of M(Ast, Bst) are equal to ξ1 = −2, ξ2 = 2d−cc+d , and so the steady
state is stable if c < d. This, together with the condition c + d < 0, implies that
the system (52) possesses a stable steady state provided c < −|d| as assumed in (50).
Otherwise, the steady state is unstable.

6.4. Numerical tests for the Hookean potential. We now compute the val-
ues of parameters c and d (53) for various values of parameters α and β corresponding
to the slightly unstable case (close to the instability threshold). For simplicity we con-
sider the case of unit periodic box, i.e., L1 = L2 = L = 1

2 , so that (33) gives

ˆ̃Vk1,k2 =
2πR4

z2
k1,k2

(πα
2

[J1(zk1,k2)H0(zk1,k2)− J0(zk1,k2)H1(zk1,k2)]− J2(zk1,k2)
)
,

where zk1,k2 = 2πR
√
j2 + k2, α = l0

R . Since we are in the periodic box, we know from
Proposition 5.5 that the instability appears for larger values of parameter β than in
the whole space case, i.e., for β > βc = 24

3−4α .
The assumptions of Theorem 6.3 are met if

1 + γ ˆ̃V1,0 = 1 +
β

(2πR)2
(πα

2
[J1(2πR)H0(2πR)− J0(2πR)H1(2πR)]

− J2(2πR)
)
< 0

and

1 + γ ˆ̃V1,1 = 1 +
β

2(2πR)2
(πα

2

[
J1(2
√

2πR)H0(2
√

2πR)− J0(2
√

2πR)H1(2
√

2πR)
]

− J2(2
√

2πR)
)
> 0.

Note that according to the definition of function Fα,β (28) the above conditions are
equivalent to

Fα,β(2πR) < 0, Fα,β(2
√

2πR) > 0,

and from the proof of Proposition 5.4 we know that the rest of the eigenvalues in the
assumption of Theorem 6.3 will have a good sign as well.

We will now present computations of coefficients c and d defined in (53) that
are used in Theorem 6.3 to determine the condition for the type of bifurcation (50).
To this purpose we choose parameter α in the unstable regime, where α = 1

2 , and
for several values of R ≤ L = 1

2 we first find the critical value of parameter β, for
which the bifurcation occurs. Having this parameter we compute c and d using the
expressions (53) in which we take γ = βc

2πR4 , then criterion (50) to identify the type
of bifurcation. Our results are summarized in Table 1.
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1322 JULIEN BARRÉ, PIERRE DEGOND, AND EWELINA ZATORSKA

Table 1
The numerical results for the rectangular domain [−1/2, 1/2] × [−1/2, 1/2] for three different

values of interaction radius R. The corresponding critical values of the parameter β from the second
column are computed using the condition λ = 0. The character of the bifurcation in the third column
is identified using criterion (50).

R βc Type of transition
1
2

83.0 continuous

1
4

31.1 discontinuous

1
8

25.5 discontinuous

These computations are in line with the analysis in [14], according to which for
short-range potentials (when R/L is small), the transition tends to become discontin-
uous (first order), which corresponds to the subcritical dynamical scenario. Note that
the present bifurcation analysis provides a precise criterion for the boundary between
the first order/subcritical and second order/supercritical cases.

Numerical results addressing the comparison between the microscopic and macro-
scopic approach can be found in recent work [2].

Data statement. No new data was collected in the course of this research.
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