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Abstract—This paper reports on the feasibility of using
a quasi-Newton optimization algorithm, limited-memory
Broyden-Fletcher-Goldfarb-Shanno with boundary con-
straints (L-BFGS-B), for penalized image reconstruction
problems in emission tomography (ET). For further accel-
eration, an additional preconditioning technique based on
a diagonal approximation of the Hessian was introduced.
The convergence rate of L-BFGS-B and the proposed pre-
conditioned algorithm (L-BFGS-B-PC) was evaluated with
simulated data with various factors, such as the noise
level, penalty taype, penalty strength and background level.
Data of three 18F-FDG patient acquisitions were also recon-
structed. Results showed that the proposed L-BFGS-B-PC
outperforms L-BFGS-B in convergence rate for all simulated
conditions and the patient data. Based on these results,
L-BFGS-B-PC shows promise for clinical application.

Index Terms— Emission tomography, penalized recon-
struction, L-BFGS-B, preconditioning.

|. INTRODUCTION

MISSION tomography (ET) allows non-invasive obser-
vation of metabolic processes in vivo. With adequate
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image processing and analysis methods, it is valuable for
the diagnosis of many diseases. In current clinical practice,
most applications of ET are based on visual interpretation.
With the expansion of its potential clinical application, such
as disease follow-up and therapy monitoring [1]-[3], there
is increased interest in precise quantification of the images.
The reconstructed images are therefore expected to accurately
represent the tracer concentration.

Due to their ability to include modeling of the imaging
physics and statistics, iterative reconstruction algorithms have
become the method of choice for pursuing both good visual
quality and high quantitative accuracy, most often based on
maximum-likelihood (ML) estimation. However, image recon-
struction using ML estimation is an ill-conditioned problem,
resulting in noise amplification as iterations increase [4].
In practice, the noise can be controlled by early termination
of the iterative process, at the expense of quantitative accu-
racy [5], or by incorporation of a penalty term [6], [7]. One of
the most widely used methods for incorporating a penalty term
is the one-step-late (OSL) approach [8]. Although it can be
applied with any differentiable penalty function, the algorithm
can be unstable and divergent for large penalty strength [9].
Modified ML-EM algorithms [10] or separable paraboloidal
surrogates (SPS) [11] can directly incorporate the penalty term
into a closed-form update of the image without suffering from
convergence issues. However, the application of both strategies
is limited by the need to find a convex surrogate function.

Another alternative is to employ the generic steepest-descent
optimization algorithm to find the local solution along the
gradient of the penalized likelihood function by using a line
search. With a good line search algorithm, steepest descent
can show fast initial convergence rate but often slows down
while approaching the final solution as the direction defined
by the gradient can lead to a zigzag path to the solution for
ill-conditioned problems. Instead of using merely the gradient,
Newton’s method [12] defines a better search direction with
the help of the Hessian matrix. However, the Hessian in large
scale problems is usually too large to calculate or store in
memory and may be non-invertible. To overcome this, quasi-
Newton algorithms that use approximations for the Hessian
were therefore developed.
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A popular example is the limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [13], [14],
which approximates the inverse of the Hessian based on
the gradient information in the last few iterations. L-BFGS
has been extended to allow box constraints on the variables
that are to be estimated (L-BFGS-B) [15], [16]. Since the
amount of memory the algorithm requires can be controlled
by the user and scales linearly with the dimension of the
problem, the algorithm has become the most popular quasi-
Newton method for optimizing nonlinear problems [17]. It is
widely used in machine learning but not yet in penalized-
ML (PML) image reconstruction. As L-BFGS-B constructs
approximates of the inverse Hessian by using only the gra-
dient information, the algorithm should be able to handle
any differentiable penalty term. This enables the incorpo-
ration of many non-convex penalty functions, such as the
recently developed parallel level sets (PLS) [18] and the
joint entropy priors [19]. Its wide applicability together with
fast convergence rate make L-BFGS-B a promising candidate
for a general-purpose optimization algorithm for PML image
reconstruction.

In an initial study [20], we observed that L-BFGS-B can
converge several times faster than OSL-EM [8] and relaxed
SPS [21]. However, some issues were found that made the
use of L-BFGS-B difficult for image reconstruction in ET as
the observed convergence rate was dependent on image and
data scale. This paper concentrates on improving the perfor-
mance of L-BFGS-B by introducing better initialization and
additional diagonal preconditioning. Previously, Kaplan et al.
used L-BFGS-B with a preconditioner for accelerating simul-
taneous estimation of activity and attenuation distributions in
single-photon emission computed tomography (SPECT) [22].
A constant value was chosen as the preconditioner to rescale
the activity estimate. The algorithm was able to show a faster
convergence rate in most cases when both the transformed
activity and attenuation were in a similar scale. However, since
the scale of the activity varies with application and individual
dataset, the preconditioner had to be tuned accordingly by trial
and error. Here, we use a more general diagonal precondi-
tioner based on the second partial derivative of the objective
function. With the help of the extra information, the penalized
reconstruction problem is transformed to a better-conditioned
form which is then incorporated into the L-BFGS-B opti-
mization process. We denote the resulting algorithm as
L-BFGS-B-PC.

A brief description of the PML optimization prob-
lem and the penalty terms used is given in section II.
Section III provides an insight on the L-BFGS-B approach
as well as the derivation of L-BFGS-B-PC. The evaluation
methods used in this study are described in section IV.
In section V, evaluations of L-BFGS-B and L-BFGS-B-
PC are performed using digital simulations. The feasibility
of applying both algorithms in a clinical context is then
assessed on three patient data sets. Discussion and conclu-
sions are presented in sections VI and VII, respectively. This
paper expands on initial results previously presented by our
group [23].

[I. PENALIZED MAXIMUM-LIKELIHOOD IMAGE
RECONSTRUCTION

A. Objective Function

In ET, the measured data g € R! given a tracer distribution
f € R’ can be described using a Poisson model:

g ~ Poisson(g(f)), g=Af+n (1

where A is the I x J system matrix and n € R! is
the expected background events vector, such as scatter and
random coincidences. Each element of A, A;;, denotes the
probability that an emission from voxel j is detected by bin i.
Taking the logarithm and omitting terms independent of f, the
log-likelihood function of g is:

L(glf) =D giloggi(f) — &(f). )

Maximizing L is equivalent to minimizing — L. The optimiza-
tion therefore becomes a minimization problem. In the rest
of the paper, we refer to the optimization as a minimization
problem. Instead of optimizing (2), PML image reconstruction
minimizes the objective function ®, which consists of the
negative likelihood —L and the penalty function R with a
parameter S controlling its strength:

O(f) = —L(&gLf) + FR(S). 3
The optimization of the problem can then be addressed as:
} = argmin O (f). 4)
f=0

Note that a positivity constraint is enforced on f, as it
represents radioactivity concentration.

B. Penalty Functions

Several penalty functions can be used to control noise
propagation [24]-[26]. In this study, for simplicity, we use
Gibbs-type penalties, which penalize the difference between
voxels in a given neighborhood N:

1
RN =520 2 owplfi = fi) )
k jeN;
where wj indicates the weight between voxel j and its
neighboring voxel k. We used two potential functions ¢: the
quadratic penalty (QP) and the rescaled log-cosh penalty (LP):

1
pQp(x) = x?%, ¢LP(X)=/710g(cosh(pX)) (©6)

where p is a scalar controlling the edge-preservation property
of grp. The factor 1/p? is derived from the second derivative
of ¢ p for normalization such that both priors behave similarly
for small |x|. Note that for penalties as defined in (5) and (6),
@ is strictly convex [21].

I1l. ALGORITHMS
A. L-BFGS-B

In this section, we describe the main ideas behind
L-BFGS-B. More detail can be found in [15] and [27].
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1) Unconstrained Optimization: Given the objective function
® and current estimate f, at iteration ¢, a polynomial approx-
imation of @ in the neighborhood of f, is

1
a(f) = O(f,) + v/ VO(f,)+ Ev,TB:lvt. )

where v, = f — f, and B; is an approximation of the inverse
of the Hessian matrix H at f,. The latter can be computed
using L-BFGS using limited memory. The algorithm does
not store B; directly, but represents it by a pair of lower-
dimensional correction matrices, which record the change of
the update and the gradient of the objective function in the last
few iterations, in order to compute the matrix/vector products
with B, efficiently [28]. A description of the construction of
B; is given in Appendix.

When B, is positive definite, and ignoring the positivity
constraint, ¢; has a unique minimizer f*:

I =fi=BNO(f). ®)

Since the polynomial approximation (7) is local, f* cannot be
used as an update for the minimization of ®. Instead, we seek
an update f,, | along the line segment { f, +av}, a € [0, 11}

with v; = f* — f, = —B,;VO(f,) which sufficiently
decreases the objective function:
fror=Ffi+a"v). )

To ensure convergence and sufficient progress, the step length
o* is generally obtained using a “backtracking” algorithm,
which consists in gradually decreasing a from an initial value

aMt < 1 until the Wolfe conditions (WCs) are met [29]:

O(f, +av}) < D(f,) + L1aVO(f,) v}
IVO(f, +av]) T vil2 < 2a|VO(Sf,) vl

(10)
(1)

where 0 < A1 < 4> < 1 and ||-|2 is the £2-norm. In this study,
41 and Ay were set to 10™* and 0.9, respectively. Since both
the objective function and its gradient have to be computed
for each new a (as shown in (10)—(11)), extra forward and
backward projection operations are required when applying
a line search. Note that when o* satisfies the WCs and the
current estimated B; is positive-definite, the new estimated
L-BFGS matrix B, is necessarily positive-definite [12].

2) Boundary Constraints: L-BFGS was extended to
L-BFGS-B [15], [16] to be able to handle minimization with
box constraints. The search direction is computed by solving
the constrained problem corresponding to (7):

= argming;(f) subjecttol < f <u (12)

where I and u denote the lower and upper bounds of the
problem, respectively. In this work, solving (12) was achieved
following the method proposed in [15], which utilizes the
active constraints defined by the generalized Cauchy point.

We only used a lower boundary constraint / = 0 to impose
the non-negativity constraint of the image reconstruction prob-
lem in this study. The line-search is performed in the direction
v: =fi—f ;- Similarly to the unbounded case, a backtracking
algorithm is used to find a solution a that satisfies the WCs.
By convexity, the update is guaranteed to satisfy the boundary
constraints.

For  well-conditioned and  small-scale  problems,
L-BFGS-B is expected to produce a minimizer with
fast convergence rate as the approximate H~! is a non-
diagonal matrix that takes into account the inter-variable
correlation. However, the limited memory approximations that
are introduced can lead to low accuracy of the approximate
H~! and slow convergence for ill-conditioned or large-scale
problems [28].

B. Preconditioned L-BFGS-B (L-BFGS-B-PC)

We propose to circumvent the potential deficiencies of
L-BFGS-B via preconditioning. Preconditioning is a general
strategy that transforms the problem into a new coordinate
system where it is easier to solve (12) [30]. Given f the
original estimate, the transformation is described as:

f=Df (13)
with the preconditioner D, ~the transformation matrix.
To deal with the new estimate f, the objective function and
its derivatives should be transformed accordingly:

o(f) = o(f)=>(D7'f)
Vo(f) = D7'VODT'f)

H(f)=D'HD ' fiD™! (14)
where H(D™! f) and H (f) respectively denote the Hessians
of ® and @ evaluated at D_lf and f To be able to keep
using box-constraints, we propose to use a diagonal precondi-
tioner. Since L-BFGS-B will have to restart the approximation
process for constructing B; every time the preconditioner has
been updated, it is essential to use a precomputed (and fixed)
preconditioner to prevent constructing B, with insufficient
history iterations. Otherwise, the lack of history informa-
tion will lead to an unreliable B; and slow convergence
rate.

In our previous study [20], we incorporated the precon-
ditioner introduced in the “precomputed denominator” of
relaxed ordered-subsets SPS (OS-SPS) [21] into L-BFGS-B.
However, as the preconditioner was calculated with the inverse
of the measured data, its performance was sensitive to low
counts [23]. The following preconditioner is therefore pro-
posed in this study:

]Al + BVZR(fNity1 ’
(15)

8

D = diag] ATdiag] —— 2
g[ g[(Af‘““+n)2

where f" is the initial guess and 1 is a vector of ones.

As the preconditioner D is not updated, the overall com-
putational demand of L-BFGS-B-PC is similar to that of
L-BFGS-B. Note that the performance of L-BFGS-B-PC will
be affected by the initial guess f it Choosing a better
initial guess can therefore improve the convergence rate by
starting closer to the solution and also by improving the
preconditioner D.
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Algorithm 1 Pseudo-Code for L-BFGS-B

Algorithm 2 Pseudo-Code for L-BFGS-B-PC

Input: Data g, @, V@, initial £, aionit, B, A1, A2, m
Output: Estimated tracer distribution f

f() - finit .

do <~ VO(fp):

B <~ 1d;

for t =0, ..., Maxlter — 1 do

Define

x> (x—f)Td+3x—f)TB N x—f);
f* < argming>9 g (x) ;

v fF— S5

if 1 = 0 then

| ainﬁ <« agﬂt.

else

|
end N
a* < WC((D7 V(D, ff7 v*a alnlta j'la j'2) ;

[ < fi+a*vr;

diy < V(D(fr—H) 5

m' < min(t + 1, m) ;

B <«

ApproxInvHess (f,,dy,s € {t+1—m',..., 1 +1}) ;
end

S < FMaxiter 3

nit <~ 1 ;

C. Implementation

The implementation of L-BFGS-B employed in this
study was originally proposed in [15]. A pseudo-code that
summarizes the implementation can be found in Algo-
rithm 1.WC refers to the backtracking algorithm to find
a step length o* which satisfies the WCs (10) and (11),
whereas ApproxInvHess refers to the Hessian inverse compact
approximation method described in the Appendix. Since it has
been observed that a satisfactory approximation of H~! can
be obtained based on a few previous iterations [28], a history
length m = 5 was maintained for constructing B,. To take
into account the scale of the variables, at the first iteration,
the line search step is initialized by

a(i)nit = min (71 —, 1).
IVO(f™)]2

Although this initialization is fine for certain scales of f, for
some problems it can lead to suboptimal step length at the first
iteration if a(i)nit is too small. We implemented the algorithm in
MATLAB using vendor-provided C functions to calculate the
forward and backward projections. In our case, the projector
models acquisition on a GE Discovery STE [31].

For the proposed L-BFGS-B-PC, the same L-BFGS-B
implementation was used, but with the transformed objective
and gradient functions programmed in MATLAB. Since the
lack of the scale information of the variables is supplemented
by the preconditioner D, it is unnecessary for L-BFGS-B-
PC to use the suboptimal first step length (16) as L-BFGS-B
does. By modifying the initial step length to 1 to match
other line searches in the algorithm, L-BFGS-B-PC is able
to update the current estimate with a reasonably optimal

(16)

Input: Data g, ®, VO, initial finit, B, A1, Ao, m
Output: Estimated tracer distribution f

f - finit .
D « diag[ATdiag[
f<Df;

alnit <13

Define ®: x > ®(D " 'x) ;

Define V®: x — D~'VO(D 'x) ;

f < L-BFGS-B(g, @, VO, f,alM', 8,11, 22, m) ;

f<D'f,

1

2
g 2 .
(AfH)Z}Al—i-/fV R(OHLY

Fig. 1. A slice of the phantom (left) and the corresponding attenuation
map (right).

step length at every iteration. We have verified in initial
experiments (not shown) that this modification speeds up the
initial line search. Algorithm 2 shows a pseudo-code of the
implementation.

IV. EVALUATION
A. Data

The performance of L-BFGS-B and L-BFGS-B-PC was
initially evaluated with a digital phantom. To demonstrate the
feasibility of practical application, sample reconstructions with
three sets of real patient data are also presented.

1) Digital Phantom Simulation: A 3D volume from the XCAT
torso phantom [32] was cropped to a 192 x 192 x 47 matrix
with voxel size of 3.125 mm. A slice of the phantom and the
corresponding attenuation map are shown in Fig 1. This image
was forward projected, taking attenuation into account, into 3D
sinograms corresponding to data from the GE Discovery STE
in 3D acquisition mode. For assessing the noise effects, three
data sets with total counts Si¢ of 52 M, 261 M and 1305 M
were generated. Each of them had the same true to background
event ratio (TBR) = 0.74. We investigated the possible effects
from the background by introducing 4 more data sets, which
can be divided into two groups. The first group (G1) had the
same total counts as the data with Sio¢ = 261 M counts, but
had 5 times lower or higher TBR, achieved by adjusting both
background Spg and true events Siue. As Stor Was unchanged,
there were less Syyue in the data with higher Spe. For the
other group (G2), we kept Siye the same as that in the data
with Sir = 261 M counts, but changed Spg by 5 times
lower or higher. The total count of the data in G2 after adding
the background were Sy = 141.2 M and St = 860.4 M,
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TABLE |
A SUMMARY OF THE SIMULATED DATA FOR EVALUATING
THE INFLUENCE OF THE BACKGROUND

Strue Sbg Stot
Gl TBR=0.15 337M 2273 M 261 M
TBR =371 2056 M 554 M 261 M
@ TBR=0.15 111.2M 7492M 8604 M
TBR =371 1112M 30 M 1412 M

respectively. Note that these two groups had identical TBR
for the same background level: TBR = 0.15 for the high
background data and TBR = 3.71 for the low background data.
Table I shows a summary of the simulated data for evaluating
the influence of the background.

2) Patient Data: Data used for this retrospective study
included three patient datasets of the thorax acquired on the
GE Discovery STE PET/CT scanner. For each study, a cine-
CT scan (140 kVp, 60 mA, 4 s duration, 0.5 s rotation period,
0.45 s time between reconstructed images, 9 bed positions, 8
axial slices per bed position) was performed, followed by a
PET scan in fully 3D mode. The CT scan was used for the
attenuation correction. The acquisition was started 1 hour after
the injection of 315 MBq of '8F-FDG and patient consent
was collected beforehand. The total counts of the PET data
were St = 181 M, 255 M and 355 M, respectively. We then
used the vendor-provided software to bin the PET data into
sinograms and to model the corresponding detection efficiency,
attenuation, scatter and randoms.

B. PML Reconstruction

Reconstructed images had 192 x 192 x 47 voxels with
voxel size of 3.646 mm. The performance of L-BFGS-B and
L-BFGS-B-PC was evaluated using both the quadratic (QP)
and log-cosh (LP) penalties. The penalty neighborhood struc-
ture was defined as the closest 6 voxels. The scalar p in
the LP was fixed at 1.8, based on a visual comparison with
images from QP, so as to have an apparent edge preserving
effect.

C. Initial Image

Initializing reconstruction algorithms with an image closer
to the final solution could speed them up, especially for
the proposed L-BFGS-B-PC with the preconditioner in (15).
To avoid increasing the overall computational cost signifi-
cantly, we propose to use an initial image reconstructed by
ordered-subsets (OS)-type algorithms. In this study, we inves-
tigate the use of OS-EM [33] as the algorithm is widely used
in practice.

To simplify the problem of finding the best initial image,
a two-part study was conducted. In the first part of the study,
8 different numbers of subsets (1, 2, 5, 7, 10, 14, 35 and 70)
were employed to speed up the convergence rate. We then fixed
the subsets to the limit found in the first part and increased
the number of full iterations from one to two to assess if the
performance can be improved even further. The reconstruction
was then performed by L-BFGS-B-PC initialized with those
images described above. The applied penalty function was QP

with f = 4. Note that the initial images were reconstructed
without using a penalty function. All initial conditions were
evaluated using the digital phantom dataset with Sior = 261 M
total counts and TBR = 0.74 and the patient data with
Stot = 355 M.

D. Analysis

For simulated data, the performance evaluation of
L-BFGS-B and L-BFGS-B-PC was conducted in terms of
visual comparison, objective function value and a convergence
estimate M that measures the distance from the current esti-
mate to the converged image f°. The metric was defined

as:
1 ;= c2
M - /gnf(]c)’; 13

where N is the number of voxels in the volume and J_‘C is the
mean value of all voxels in f°. Fast decrease of M indicates
fast convergence rate to the solution. For the converged image
f€ in (17), we have used the output of SPS [11] at high
iteration number, since the convergence of this algorithm has
been well-established. To reduce the total computational cost,
we used the output of L-BFGS-B-PC with 40 iterations as the
initial image for SPS. We then ran SPS for 15000 iterations
and investigated the change of visual appearance and objective
function values. Since no significant change was observed after
14000 iterations, we chose the image obtained with (L-BFGS-
B-PC initialized) SPS at the 15000 iteration as the converged
image f°.

An initial evaluation with a visual comparison of a slice of
the reconstructed images from both L-BFGS-B and L-BFGS-
B-PC at different iterations was used to see if the changes in
the convergence rate are relevant. We then performed assess-
ments with respect to penalty type, penalty strength, noise
level and TBR to investigate the performance consistency
of the algorithms. Quantitative evaluation used plots of both
objective function and M values against the total number of
projection operations, i.e., the number of projection operations
in both the initial OS-EM and L-BFGS-B or L-BFGS-B-PC.
Each forward and backward projection of the full set of data
was counted separately. We used the number of projection
operations instead of the iteration numbers as it represents the
computational demand, especially for algorithms involving a
line search. Additional computational cost induced by the line
search was ignored.

To be able to compare the convergence rate among different
datasets, we computed the required number of projection
operations and the corresponding iterations for achieving
“practical” convergence. The corresponding iteration number
was determined by:

A7)

ty =min{z : M(r) < 0.01}. (18)

We also demonstrated the performance of the algorithms
with patient data.
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Fig. 2. Aslice of the data with 261 M counts (TBR = 0.74) reconstructed
by L-BFGS-B (left column) and L-BFGS-B-PC (right column) at the
5t (first row), 101 (second row) and 15t (third row) iteration.

V. RESULTS

A. Initial Investigation

Fig. 2 shows reconstructed images of the XCAT data with
St = 261 M counts and TBR = 0.74 at the 5%, 10
and 15" iteration for L-BFGS-B and L-BFGS-B-PC. Both
algorithms are initialized by the best initial image found in
section V-B. The reconstructions were performed with QP and
£ = 20. Comparing images at the same iteration, we found
those from L-BFGS-B-PC represent better contrast and object
delineation than images reconstructed by the other algorithm.

Images for L-BFGS-B and L-BFGS-B-PC at iterations
that achieve convergence of M values (18) are shown in
Fig. 3, with the converged image from SPS for compar-
ison. Profiles along the central row of each image are
also provided. As shown in the figure, both algorithms are
able to converge visually to the same image and profile as
SPS does.

An example comparison of the convergence rate of M
values for L-BFGS-B and L-BFGS-B-PC with the modified
line search is given in Fig. 4. Results for SPS are also provided.
As shown in the plot, both L-BFGS-B and L-BFGS-B-PC
achieved several times faster convergence rate than SPS. Also,
the proposed L-BFGS-B-PC shows the ability to converge
rapidly compared to L-BFGS-B. Although only images from
one simulation condition are provided, similar behavior was
observed for all studied data and reconstruction configurations.
More comparison results for these algorithms can be found in
our previous study [23].

! [ [-BFGSB
= L-BFGS-B-PC
—SPS

Fig. 3.
L-BFGS-B (at the 44! iteration) (top-left) and L-BFGS-B-PC (at the
24! jteration) (top-right). The converged image from SPS is also shown
for comparison (bottom-left). Profiles along the central row of all images
are also provided (bottom-right).

A slice of images that achieves convergence of M values for

1.2 ‘ ‘
i\ ——L-BFGS-B

—=—L-BFGS-B-PC
1 SPS -
0.8 ,
=0.6 ,
0.4 ,
0.2 ,

0 I ) T SHE - o

20 40 60 80 100 120 140

Projection Operations

Fig. 4. A comparison of the convergence rate of M values for
SPS, L-BFGS-B and L-BFGS-B-PC with respect to the total projection
operations.

B. Initial Image

The convergence rate was evaluated by plotting the objec-
tive function value against the total number of projection
operations. As shown in Fig. 5 top, the convergence rate
was improved as the number of subsets was increased. The
convergence trend for 70 subsets (there were only 4 projections
in one subset) was quite different from the others. Therefore,
we chose 35 as the highest number of subsets and increased
the full iteration number. Based on the results in Fig. 5 bottom,
the performance was not improved any further after one
full iteration. Although not shown here, similar results were
observed with the patient data. All reconstructions were there-
fore initialized by 1 iteration of OS-EM with 35 subsets. Note
that we did not plot results from the initial point to improve
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Fig. 5. The objective function values plotted against projection oper-  against the total projection operations.

ations for LBFGS-B-PC initialized by one full iteration of OS-EM with
various subsets (top) and 2 different full iterations of OS-EM with
35 subsets (bottom).

clarity. The first point of each line represents the objective
function value after the first iteration and the corresponding
total projection operation is the required projection operations
for constructing the initial image plus that for completing the
first iteration of L-BFGS-B-PC.

C. Convergence Rate

The objective function values plotted against the total pro-
jection operations are shown in Fig. 6 top. We used results
from the same dataset and reconstruction configuration as in
the visual comparison section as an example. Both algorithms
tend to converge to the same value but with different speeds.
By introducing a preconditioner, L-BFGS-B-PC converged
rapidly in terms of the objective function value. Fig. 6 bottom
is the corresponding M values plotted against projection
operations. Similar to the plot of the objective function values,
L-BFGS-B-PC achieves superior convergence rate of M value
to L-BFGS-B. Moreover, the difference in performance for

the two penalty types is extremely small for the proposed
algorithm. Consistent results are obtained for other simulated
conditions.

D. Convergence Dependence on Different Factors

Simulated data with Sior = 52 M, 261 M and 1305 M, repre-
senting high, medium and low noise level, were reconstructed
by L-BFGS-B and L-BFGS-B-PC with both f = 4 and f = 20
to investigate the effect of noise level and penalty strength. The
smoothing QP or edge preserving LP penalty functions were
used for evaluating the performance dependence on the penalty
type. For each condition, Table II lists the required number
of projection operations for achieving convergence according
to (18). Values for simulation conditions with noise level from
high to low are shown from left to right and separated by a
slash. We also listed in parentheses the corresponding number
of iterations. Except for the low noise data reconstructed
using L-BFGS-B-PC with LP and f = 20, both algorithms
generally required more operations (or iterations) to satisfy the
convergence criterion as the noise level was increased or the
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TABLE Il
THE REQUIRED NUMBER OF PROJECTION OPERATIONS AND
ITERATIONS FOR ACHIEVING CONVERGENCE OF M VALUES
FOR DIFFERENT PENALTY TYPES, PENALTY
STRENGTHS AND NOISE LEVELS

L-BFGS-B L-BFGS-B-PC
5—14 162/ 132/ 82" 94 /64 /44

QP B (79 1 64 / 40> (45 /29 / 20)
5—g0 122702772 647541 44
(59744 /35 (30 /24/20)

g—aq 0271827132 O047BATGA

Lp - (274189 /65) (45740 / 30)
5—o0 1827112702 74754784

(89 /54 / 44) (35/25/39)

! Values listed from left to right and separated by a slash
are the required numbers of projection operations for
problems with noise level from high to low.

2 Values listed in parentheses are the corresponding
number of iterations.

penalty strength was decreased. Note that reconstructing with
LP led to a slower convergence rate than when using QP (with
the same f). The possible cause of the exception is discussed
in section VI.

The data simulating different background levels in both
groups of fixed Sy, and fixed number of Sy were used to
study the influence of the background on the convergence rate.
The results were compared with those from the data with
Stot = 261 M counts and TBR = 0.74 (Sgrue = 111.2 M
and Spg = 149.8 M). Since the dependence on penalty type
and strength were included above, the data were reconstructed
with only QP and S = 4 for both algorithms. We evaluated
the convergence rate by plotting M values against the total
projection operations (Fig. 7) and by listing the required
number of projection operations to reach the convergence of M
values (Table III). The former shows the convergence rate in
early iterations while the latter quantifies this at late iterations.
For data with the same Sy, the higher the TBR value (i.e.,
the more true events) the faster the convergence rate in early
iterations is observed (Fig. 7 top). However, an opposite trend
is obtained when Sy is increased with the background level.
The presence of the background helps the convergence rate in
early iterations when the same number of Sy are collected
(Fig. 7 bottom).

Considering the convergence rate at later iterations,
we found that data with the same Sio¢ can reach the criterion
(18) at almost the same iteration, regardless of the change in
the background level. For data with a fixed number of Siye
but increasing TBR, more iterations are needed to achieve the
convergence of M values (Table IIT). Despite the observed
dependence on various factors, the proposed L-BFGS-B-PC
shows a relatively consistent performance and outperforms
L-BFGS-B in all cases.

E. Demonstration With Patient Data

The patient data were reconstructed by both algorithms with
QP and a fixed f = 20. A coronal view of one patient dataset
from each algorithm at the iteration that achieves criterion (18)
are shown in Fig. 8 as an example. Profiles along the central
slice of both images are also provided. As in the simulation
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Fig. 7. Mvalues plotted against the total projection operations for data
with a fixed number of Siot (top) and data with a fixed number of Siye
(bottom) but different background levels.

study, the algorithms are able to converge to visually identical
images. This was also the case for the other two patient
data sets (not shown). Fig. 9 shows the M values plotted
against the total projection operations for each algorithm.
Faster initial convergence is achieved for data with higher
Stot, Which is similar to what was observed in Table II. The
required projection operations for achieving the convergence
of M values are listed in Table IV. Based on the results in
Fig. 9 and Table IV, L-BFGS-B-PC shows faster convergence
rate than L-BFGS-B in all cases and its performance is much
less sensitive to noise level.

VI. DISCUSSION

We have demonstrated the feasibility of using L-BFGS-B
and L-BFGS-B-PC in PML reconstruction problems in ET.
Both L-BFGS-B and L-BFGS-B-PC are able to converge to
virtually identical solutions as SPS (Fig. 3) but with differ-
ent speed. For the evaluation of the computational demand,
we used the total projection operations instead of the compu-
tation time because the algorithms were not implemented using
the same programming language. For example, L-BFGS-B was
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TABLE IlI
THE REQUIRED NUMBERS OF PROJECTION OPERATIONS AND
ITERATIONS FOR ACHIEVING CONVERGENCE OF M VALUES
FOR DATA WITH DIFFERENT Stot, StRUE
AND BACKGROUND LEVELS

L-BFGS-B L-BFGS-B-PC
Stor = 261 M, TBR = 0.74 132 (64)' 64 (29)
Stot = 261 M, TBR = 3.71 132 (65) 64 (31)
Stot =261 M, TBR = 0.15 142 (70) 64 (31)
Stor = 1412 M, TBR = 3.71 272 (135) 84 (39)
Sior = 860.4 M, TBR = 0.15 92 (46) 44 (21)

I The required numbers of projection operations and the corre-
sponding number of iterations for each reconstruction are listed
together with the latter in parentheses.

0.5
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:p\ f
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Fig. 8. A coronal view of images for L-BFGS-B at the 260! iteration
(top) and L-BFGS-B-PC at the 35t" iteration (median) from one patient
data. Profiles along the central slice of both images are also provided
(bottom).
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Fig. 9. The M values plotted against the total projection operations for
all patient data.

implemented in a combination of C, Fortran and MATLAB
while SPS was implemented in MATLAB but using the vendor
provided projectors programmed in C. Therefore, except for

TABLE IV
THE REQUIRED PROJECTION AND ITERATION NUMBERS FOR
ACHIEVING CONVERGENCE OF M VALUES FOR
3 PATIENT DATA SETS

L-BFGS-B  L-BFGS-B-PC
Stot = 181 M 662 (330) 74 (36)
Stot =257M 752 (375) 94 (45)
Stot =355 M 522 (260) 74 (35)

the visual comparison that requires results at certain iterations
(Fig. 2, 3 and 8), we used plots and tables based on projection
operations to compare the computational demand between
different algorithms. In terms of memory demand, however,
both L-BFGS-B and L-BFGS-B-PC require more memory for
storing the correction matrices used to represent B, comparing
to SPS. The required extra memory is approximately twice of
the product of the total number of voxels J and the maintained
history length m (see Appendix for more information). As a
precomputed preconditioner has to be stored as well for the
proposed L-BFGS-B-PC, it uses slightly more memory than
L-BFGS-B.

To quantify the convergence rate, we introduced an image-
based metric M measuring the distance from the current
estimate to the expected solution. Comparing the top plot
of Fig. 6 to the bottom one, we found that both L-BFGS-B
and L-BFGS-B-PC required a higher number of projection
operations to reach a stable M value than to reach a stable
objective function value. We have therefore concentrated on
the convergence of M values in this discussion. Moreover,
since we observed that the convergence rate of M values
for SPS is much slower than that for both L-BFGS-B and
L-BFGS-B-PC (Fig. 4 and our previous work [20]), we have
excluded SPS in further comparison or discussion.

In our previous work [20], we also compared the conver-
gence rate of L-BFGS-B and the proposed L-BFGS-B-PC
with OSL-EM [8] and relaxed SPS [21]. We found that both
L-BFGS based algorithms were able to converge over 10 times
faster than the others in terms of objective function value and
regional recovery ratio in early iterations. The convergence
rate of OSL-EM and relaxed SPS can be further improved
by using ordered subsets. However, the former algorithm will
then suffer from the limit cycle problem while the performance
of the latter will depend on the relaxation parameter. Both
issues make the comparison of the convergence rate difficult,
especially at late iterations. Therefore, we did not include
OSL-EM and relaxed SPS for comparison in this study.

In studying the dependence of the convergence rate of
L-BFGS-B and L-BFGS-B-PC on various factors, we observed
that faster convergence rate was achieved generally with a
smoothing prior, strong penalty strength and low noise level
data for both algorithms (Table II). In terms of convergence
rate of both M values and the objective function values,
the proposed L-BFGS-B-PC outperformed L-BFGS-B for all
datasets that have been evaluated. In particular, L-BFGS-B-
PC achieved convergence within 100 projection operations for
all simulations, even for the noisy data set (i.e., the simulated
data with Sior = 52 M). The results suggest that the proposed
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algorithm can even be used in cases where the noise level is
high, such as in gated or dynamic studies.

Based on Fig. 7 top, we found that the change in background
level for data with the same Sy can affect the convergence
rate in early iterations. From the plot, this can be at least
partially explained by the fact that the initial OS-EM image
was further away from the final solution for a higher back-
ground. Other algorithms, less sensitive to true to background
ratio for initialization, might decrease this effect. Despite the
performance dependence on those factors, at later iterations,
the proposed L-BFGS-B-PC is more consistent compared to
L-BFGS-B (Table II and Table III).

For the patient data study, the data set with the highest
Siot achieved the fastest convergence rate for both L-BFGS-B
and L-BFGS-B-PC at late iterations, which is consistent with
what has been observed from the simulation study. However,
the slowest convergence rate of M values was observed for
the data with medium Si. Since the performance could be
affected by many factors, such as patient size and scatter
fraction, a more comprehensive evaluation with more patients
would be necessary.

Recall that the number of projection operations includes
both the forward and backward projections in the combined
OS-EM and L-BFGS, and the line search. As shown in the
tables, we found that for both algorithms the number of
projection operations for achieving the convergence criterion
is only slightly larger than twice the number of iterations.
This means that the line search subroutine did not involve
many projections and so required minimum computational
burden. In other words, the initial step length satisfied the
WCs (10) and (11) for almost every iteration. As mentioned
in section III-C, both algorithms initialize the line search
with a step length of 1 after the first iteration. With this
step length, the algorithms make a direct approach from the
current estimate to the local solution of (12) as described in
section III-A.2 with vj = f7 — f,. The backtracking of the
embedded line search takes place only when the algorithm
is about to converge. To find a smaller step length, a certain
decreasing pattern predefined by the backtracking algorithm
is considered. However, depending on the adopted decrease
scheme, the backtracking might not be able to find the step
length that minimizes the objective function for the reconstruc-
tion algorithm at the current estimate. We suspect that this is
the cause of the unexpected slow convergence rate observed
in Table III for the last entry (i.e., the required projection
operations for achieving the convergence of M values for the
low noise data reconstructed by L-BFGS-B-PC with LP and
S = 20). Further optimization of the line search is beyond the
scope of this study.

The primary motivation of incorporating a preconditioner
into L-BFGS-B is to have an initial estimate of the sec-
ond derivative associated with the problem. By utilizing the
extra information from the start, L-BFGS-B-PC is able to
solve the reconstruction problem rapidly and shows consistent
performance for different data conditions and reconstruction
configurations. Although the current paper concentrated on
L-BFGS-B, the proposed strategy could be applied to other
algorithms as well.

In this paper, we have used the preconditioner (15). Addi-
tional information will be provided by B; after a few iterations
and the influence of the preconditioner will become less
significant. This implies that the preconditioner does not need
to be a precise approximation of the square root of the
Hessian. Therefore, the algorithm should be able to benefit
from other fixed diagonal approximations of the square root
of the Hessian. For example, by expressing ML-EM in a
gradient descent form, a diagonal matrix with elements equal
to a normalized version of the current estimate was obtained
in [34]. This was used as motivation for using this diagonal
matrix as a preconditioner to improve the convergence rate
of a conjugate gradient algorithm [35]. In that paper, the pre-
conditioner was updated at each iteration. However, in order
for L-BFGS-B to benefit from the previous iterations when
constructing B;, we can replace the current estimate by the
initial image as for the proposed preconditioner so that the
preconditioner becomes pre-computable.

In this study, we used QP and LP as the penalty functions
since both are convex and twice differentiable. This supports
the use of L-BFGS-B which approximates the local estimate
of the second derivative of a function by differences of first
derivatives. In the case where the function being minimized is
differentiable but not twice differentiable at some point (e.g.
the Huber functional [36]), it is likely that the L-BFGS-B
algorithm will have difficulty. Investigating additional priors,
however, is beyond the scope of this paper.

VIl. CONCLUSION

We have investigated the performance of L-BFGS-B for
penalized reconstruction problems in ET with simulated and
real patient data. Its convergence rate can be considerably
improved by introducing a diagonally-scaled preconditioner
(L-BFGS-B-PC) combined with good initialization. Since the
proposed preconditioner can be precomputed, the overall com-
putational demand of L-BFGS-B-PC is similar to that of
L-BFGS-B. In addition to showing faster convergence rate
than L-BFGS-B, the performance of L-BFGS-B-PC, in terms
of the objective function value and the image-based metric M,
is less sensitive to penalty type, penalty strength, data noise
level and background level. These encouraging results indicate
the potential usefulness of L-BFGS-B-PC for achieving high
quantitative accuracy with acceptable reconstruction time.

APPENDIX
CONSTRUCTION OF THE APPROXIMATION OF THE
INVERSE OF THE HESSIAN USING A PAIR OF
CORRECTION MATRICES

This section describes the ApproxInvHess step in
Algorithm 1. At every iteration ¢, the corresponding correction
matrices consisting of gradient information in the last m
iterations are expressed as follows:

Yt = [yt—m’“-»yt—l] (19)

where s; = f,,— f, and y, = VO(f,, 1) — VO(f,). These
matrices can be used to find the 2" order behavior of the
objective function and therefore to calculate approximations of

S[ = [st—m» e 5s[—1]9
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the Hessian. Based on the compact representations described
in [28], the approximation of H~! at iteration 7 can be written
as follows:

1

B, = al + W;M,V_V,T (20)

where

= 1

Wt = EYZ S[ ’

_ 0 _Rz_l

M, = B - | . |

' —R,T R;T(Vt‘i‘aYtTYth 1)
[Rilu = stT—m—1+kyt7m71+1 if k<l

0 otherwise

with V, = diag {stT_my,_m, e, s;r_lyt_l}, k,l=1,...,m
and Q is a constant [15]. The representation of B; is efficient
in terms of memory and computation time as W, is a J x 2m
matrix and M, is 2m x 2m, where J is the number of
voxels and m = 5 in this study. In practice, the algorithm
does not compute and store B; directly. Instead, it uses
the correction matrices so that the product B,V®(f,) can
be calculated efficiently by applying the unrolling technique
described in [28].

To initialize the construction of B, the current implemen-
tation performs gradient descent at the first iteration to find
the first pair of correction vectors, S| = [so] and Y| = [ yo].
For iteration ¢ < m, the corresponding B; is calculated with
only ¢ pairs of gradient information.

REFERENCES

[1] D. L. Bailey and K. P. Willowson, “An evidence-based review of
quantitative SPECT imaging and potential clinical applications,” J. Nucl.
Med., vol. 54, no. 1, pp. 83-89, 2013.

[2] J. Y. Ngeow et al., “High SUV uptake on FDG-PET/CT predicts
for an aggressive B-cell lymphoma in a prospective study of primary
FDG-PET/CT staging in lymphoma,” Ann. Oncol., vol. 20, no. 9,
pp. 1543-1547, 2009.

[3] B. Bai, J. Bading, and P. S. Conti, “Tumor quantification in clin-
ical positron emission tomography,” Theranostics, vol. 3, no. 10,
pp. 787-801, 2013.

[4] V. P. Hart, II, “The application of tomographic reconstruction techniques
to ill-conditioned inverse problems in atmospheric science and biomed-
ical imaging,” Ph.D. dissertation, Dept. Phys., Utah State Univ., Logan,
UT, USA, 2012.

[5] J. Dutta, S. Ahn, and Q. Li, “Quantitative statistical methods for image
quality assessment,” Theranostics, vol. 3, no. 10, pp. 741-756, 2013.

[6] J. M. Ollinger and J. A. Fessler, “Positron-emission tomography,” IEEE
Signal Process. Mag., vol. 14, no. 1, pp. 43-55, Jan. 1997.

[71 A. Alessio and P. Kinahan, PET Image Reconstruction, 2nd ed.
Amsterdam, The Netherlands: Elsevier, 2006.

[8] P. J. Green, “On use of the EM for penalized likelihood estimation,”
J. Roy. Stat. Soc. B, (Methodol.), vol. 52, no. 3, pp. 443-452, 1990.

[9]1 A. R. De Pierro and M. E. B. Yamagishi, “Fast EM-like methods for
maximum ‘a posteriori’ estimates in emission tomography,” IEEE Trans.
Med. Imag., vol. 20, no. 4, pp. 280-288, Apr. 2001.

[10] A. R. De Pierro, “A modified expectation maximization algorithm for
penalized likelihood estimation in emission tomography,” IEEE Trans.
Med. Imag., vol. 14, no. 1, pp. 132-137, Mar. 1995.

[11] H. Erdogan and J. A. Fessler, “Ordered subsets algorithms for trans-
mission tomography,” Phys. Med. Biol., vol. 44, no. 1, pp. 2835-2851,
1999.

[12] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. Springer,
2006, pp. 134-141.

[13] H. Matthies and G. Strang, “The solution of nonlinear finite element
equations,” SIAM J. Sci. Comput., vol. 14, no. 11, pp. 1613-1626, 1979.

[14] J. Nocedal, “Updating quasi-Newton matrices with limited storage,”
Math. Comput., vol. 35, no. 151, pp. 773-782, 1980.

[15] R.H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm
for bound constrained optimization,” SIAM J. Sci. Comput., vol. 16,
no. 5, pp. 1190-1208, 1995.

[16] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-BFGS-B:
Fortran subroutines for large-scale bound-constrained optimization,”
ACM Trans. Math. Softw., vol. 23, no. 4, pp. 550-560, 1997.

[17] G. Andrew and J. Gao, “Scalable training of Ll—regularized log-linear
models,” in Proc. Int. Conf. Mach. Learn., 2007, pp. 33-40.

[18] M. J. Ehrhardt et al., “PET reconstruction with an anatomical MRI
prior using parallel level sets,” IEEE Trans. Med. Imag., vol. 35, no. 9,
pp- 2189-2199, Sep. 2016.

[19] S. Somayajula, C. Panagiotou, A. Rangarajan, Q. Li, S. R. Arridge, and
R. M. Leahy, “PET image reconstruction using information theoretic
anatomical priors,” IEEE Trans. Med. Imag., vol. 30, no. 3, pp. 49-537,
Mar. 2011.

[20] Y.-J. Tsai, A. Bousse, M. J. Ehrhardt, B. F. Hutton, S. Arridge,
and K. Thielemans, “Performance evaluation of MAP algorithms with
different penalties, object geometries and noise levels,” in Proc. IEEE
Nucl. Sci. Symp. Med. Imag. Conf. Rec., Oct. 2015, pp. 1-3.

[21] S. Ahn and J. A. Fessler, “Globally convergent image reconstruction for
emission tomography using relaxed ordered subsets algorithms,” IEEE
Trans. Med. Imag., vol. 22, no. 5, pp. 613-626, May 2003.

[22] M. S. Kaplan, D. R. Haynor, and H. Vija, “A differential attenuation
method for simultaneous estimation of SPECT activity and attenuation
distributions,” IEEE Trans. Nucl. Sci., vol. 46, no. 3, pp. 41-535,
Jun. 1999.

[23] Y.-J. Tsai et al., “Performance improvement and validation of a new
MAP reconstruction algorithm,” in Proc. IEEE Nucl. Sci. Symp. Med.
Imag. Conf. Rec., Oct. 2016, pp. 1-3.

[24] K. M. Hanson, “Introduction to Bayesian image analysis,” Proc. SPIE,
pp. 716-731, Sep. 1993.

[25] K. Vunckx et al., “Evaluation of three MRI-based anatomical priors for
quantitative PET brain imaging,” IEEE Trans. Med. Imag., vol. 31, no. 3,
pp. 599-612, Mar. 2012.

[26] B. Bai, Q. Li, and R. M. Leahy, “MR guided PET image reconstruction,”
Semin. Nucl. Med., vol. 43, no. 1, pp. 3044, 2013.

[27] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “L-BFGS-B: Fortran
subroutines for large-scale bound constrained optimization,” Dept.
EECS, Northwestern Univ., Evanston, IL, USA, Tech. Rep. NAM12,
1995.

[28] R. H. Byrd, J. Nocedal, and R. B. Schnabel, “Representations of quasi-
Newton matrices and their use in limited memory methods,” Math.
Programm., vol. 63, no. 1, pp. 129-156, 1994.

[29] J. J. Moré and D. J. Thuente, “On line search algorithms with guar-
enteed sufficient decrease,” ACM Trans. Math. Softw., vol. 20, no. 3,
pp. 286-307, 1994.

[30] T. Allahviranloo, R. G. Moghaddam, and M. Afshar, “Comparison
theorem with modified Gauss-Seidel and modified Jacobi methods by
M-matrix,” J. Interpolation Approx. Sci. Comput., vol. 2012, Sep. 2012,
Art. no. jiasc-00017.

[31] M. Teris, T. Tolvanen, J. J. Johansson, J. J. Williams, and J. Knuuti,
“Performance of the new generation of whole-body PET/CT scanners:
Discovery STE and discovery VCT,” Eur. J. Nucl. Med. Mol. Imag.,
vol. 34, no. 10, pp. 92-1683, 2007.

[32] W. P. Segars, G. Sturgeon, S. Mendonca, J. Grimes, and B. M. W. Tsui,
“4D XCAT phantom for multimodality imaging research,” Med. Phys.,
vol. 37, no. 9, pp. 4902-4915, 2010.

[33] H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using
ordered subsets of projection data,” IEEE Trans. Med. Imag., vol. 13,
no. 4, pp. 601-609, Dec. 1994.

[34] K. Lange, M. Bahn, and R. Little, “A theoretical study of some maxi-
mum likelihood algorithms for emission and transmission tomography,”
IEEE Trans. Med. Imag., vol. MI-6, no. 2, pp. 106—114, Jun. 1987.

[35] E. U. Mumcuoglu, R. Leahy, S. R. Cherry, and Z. Zhou, “Fast gradient-
based methods for Bayesian reconstruction of transmission and emission
PET images,” IEEE Trans. Med. Imag., vol. 13, no. 4, pp. 687-701,
Dec. 1994.

[36] J. A. Fessler, E. P. Ficaro, N. H. Clinthorne, and K. Lange,
“Grouped-coordinate ascent algorithms for penalized-likelihood trans-
mission image reconstruction,” IEEE Trans. Med. Imag., vol. 16, no. 2,
pp. 166-175, Apr. 1997.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


