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ABSTRACT Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterised by increased
scarring of lung tissue. Despite the recent introduction of novel drugs that slow disease progression, IPF
remains a deadly disease, and the benefits of these new drugs differ markedly between patients.

Human diseases arise due to alterations in an almost limitless network of interconnected genes,
proteins, metabolites, cells and tissues, in direct relationship with a continuously changing macro- or
microenvironment. Systems biology is a novel research strategy that seeks to understand the structure and
behaviour of the so-called “emergent properties” of complex systems, such as those involved in disease
pathogenesis, which are most often overlooked when just one element of disease pathogenesis is observed
in isolation.

This article summarises the debate that took place during a European Respiratory Society research
seminar in Barcelona, Spain on December 15–16, 2016, which focused on how systems biology could
generate new data by integrating the different IPF pathogenic levels of complexity. The main conclusion of
the seminar was to create a global initiative to improve IPF outcomes by integrating cutting-edge
international research that leverages systems biology to develop a precision medicine approach to tackle
this devastating disease.
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Introduction
Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterised by increased scarring of lung
tissue [1]. Despite the recent introduction of novel drugs that slow disease progression (namely pirfenidone
and nintedanib), IPF remains a deadly disease, and the benefits of these new drugs differ markedly between
patients [2]. Furthermore, additional anti-fibrotic compounds have failed to demonstrate efficacy in IPF,
probably because of limitations in the translation of pre-clinical studies into humans (figure 1) [3]. To
improve the prognosis of individual IPF patients it is essential to move the field toward a personalised
medicine approach [4]. In this context, we need to better understand the multilevel, network-based biological
complexity of IPF (figure 2). Systems biology is a novel research strategy that seeks, precisely, to understand
the so-called “emergent properties” of complex biological systems (such as clinical presentation or treatment
response) and to understand disease heterogeneity by identifying links and assessing individual risk of
developing a disease at different network levels (molecular, cellular, clinical and environmental) [5]. Thus,
systems biology is ideally suited to move the field of IPF towards a most needed precision medicine scenario.

To address these issues, the Scientific Committee of the European Respiratory Society (ERS), in
collaboration with the ERS group on diffuse parenchymal lung disease, organised a Research Seminar in
Barcelona, Spain on December 15–16, 2016 (http://www.ers-education.org/events/research-seminars/
integrating-systems-biology-approach-in-idiopathic-pulmonary-fibrosis-research,-barcelona-2016.aspx).
The major conclusion of this seminar was the need to design, organise, launch and support a global
initiative for fibrosis treatment (GIFT), based on international translational research collaboration and a
comprehensive, systems-biology based approach to the disease. An organisation like GIFT would have the
potential to move the field of IPF forward quickly and effectively to improve understanding and to identify
an effective treatment. This report summarises the topics discussed durign this research seminar that lead
to the proposal for GIFT.

Current research in IPF: the need to integrate multi-level network complexity
Figure 2 presents a graphical representation of four networks (genetic, cellular, metabolic and
environmental) with potential impacts not only on disease development, progression and response to
therapy, but also to the different variants or phenotypes of the disease. Dissecting and integrating them is
essential to establish a better understanding of the disease and for development of novel therapies.
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FIGURE 1 Systems biology as a tool to improve idiopathic pulmonary fibrosis (IPF) treatment effectiveness.
Harnessing the power of systems biology may provide explanations for discrepancies between in vitro/in vivo
experiments and clinical trial results. These indicators can then be incorporated into more finely tuned
experiments, which should result in more effective treatments.
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Genetic network
IPF is a complex genetic disorder [6–8]. At least eight different genes (MUC5B, TERT, TERC, RTEL1,
PARN, SFTPC, SFTPA1 and SFTPA2) and 11 gene variants in novel loci have been associated with the
disease [9]. A common gain-of-function promoter variant in the MUC5B gene (rs35705950) accounts for
30–35% of the risk for developing IPF and can potentially help identify subjects with a higher risk or
patients with preclinical pulmonary fibrosis [9]. Mechanistically, this MUC5B variant appears to decrease
mucociliary clearance, which can then enhance cell injury and alter wound repair [9].

Another important hub in the genetic IPF network relates to mechanisms of cell ageing. The discovery of
telomerase and telomere functions received the Nobel Prize in Medicine in 2009 [10], and the role of
telomerase and telomere attrition in ageing and other diseases has been well established [11, 12]. Telomere
length decreases with cell division (i.e. with physiological ageing). If telomeres are shortened, cells age.
Conversely, if telomerase activity is high, telomere length is better maintained and cellular senescence is
delayed. For instance, this is the case for cancer cells, which can be considered immortal. In IPF,
telomerase gene mutations and reduced telomere length are highly prevalent [13, 14]. Telomerase
dysfunction and telomere shortening are associated with increased cell senescence and cell damage [15].
Interestingly, telomerase gene mutations have been associated with poor prognosis in IPF [13, 14], and the
severity of telomere attrition correlates with disease progression and outcome [16]. Further, age-related cell
perturbations found in epithelial cells and fibroblasts of patients with IPF are not present in normal lungs
of similar age individuals [17]. However, while it is well established that familial forms of IPF are linked to
dysfunctional telomerase activity and mutations in surfactant proteins, the relationship of ageing to the
majority of sporadic IPF cases is currently under study. Finally, in addition to telomere attrition, there are
other genetic footprints associated with accelerated ageing, including genomic instability and epigenetic
changes [18], which can also be relevant to the pathobiology of IPF. Interventions to modify these
age-related characteristics are currently being investigated in IPF [19], since the lung-ageing process
appears to be associated with the generation of a vulnerable alveolar epithelium, as well as a reduction of
enzymes involved in telomere maintenance [20].
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FIGURE 2 Translation from endotype to phenotype, variants and comorbidities. Four main biological networks
are involved in idiopathic pulmonary fibrosis (IPF) that include several key elements of the accelerated ageing
and lead to the consequent altered wound healing. 1) Cellular network: mesenchymal stem cells (MSCs),
alveolar epithelial cells (AECs), extracellular matrix (ECM), fibroblasts, myofibroblasts, macrophages,
senescence, mitochondrial dysfunction, apoptosis, autophagy. 2) Metabolic regulation network: hormones,
soluble mediators, cell metabolism. 3) Genetic network: MUC5B, SFTPC/SFTPA, telomerase complex,
epigenetics. 4) Environmental network: smoking, pollution, gastro-oesophageal reflux (GOR), dust,
microbiome. The interconnection among the different players and the clinical repercussions of this complex
integrative model is not completely understood. Systems biology is probably the perfect tool to finally shed
light on these elusive questions. PAH: pulmonary arterial hypertension.

https://doi.org/10.1183/23120541.00106-2017 3

INTERSTITIAL LUNG DISEASE | M. MOLINA-MOLINA ET AL.



Cellular network
Traditionally, the two cellular actors considered most relevant in IPF were alveolar epithelial cells (AECs)
and myofibroblasts, respectively. Recent research applying single cell sequencing approaches provides
evidence for the existence of several subpopulations of AECs and a variety of interstitial fibroblasts and
other mesenchymal cells. Furthermore, mesenchymal stem cells (MSCs) have also been shown to be
important cellular actors involved in the pathogenesis of lung fibrosis.

AECs are essential for normal lung function, forming the tight functional barrier required for gas
exchange [21]. Under normal conditions, alveolar type II (ATII) cells act as progenitor cells that initiate
alveolar epithelial repair and restoration, giving rise to either new ATII cells or differentiation into alveolar
type I cells [22]. However, activated AEC’s can participate in the fibrogenic response by secreting
mesenchymal proteins [23]. In IPF, reprogramming of these cells results in a number of different
phenotypes and functions, which include proliferation and bronchiolisation, apoptosis, and acquisition of
mesenchymal features [24, 25].

Fibroblasts and myofibroblasts are considered the key effector cells in the fibrogenic response in IPF and a
hub within the cellular network because they are responsible for the large amount of ECM production in
the fibrotic tissue [26]. Yet, there are still many unanswered questions in relation to fibroblasts. For
instance, we do not know if there is only one specific phenotype of fibrotic fibroblast or a variety [27],
what the origin may be of the accumulating myofibroblasts in the IPF lung, and the identity of the main
pathways driving proliferation and differentiation of these heterogeneous cells [28]. From a network
perspective, given that fibroblasts in the alveolus live in close contact with AECs, it is crucial to
understand what mechanisms link epithelial injury and fibroproliferation.

With particular importance for the systems biology and cross-network perspective, alveolar macrophages
seem to be particularly affected by the pro-fibrotic environment of IPF lungs, which deregulates
functionality in wound-healing and repair [29], leading to studies on the downstream implications of high
levels of oxidised mitochondria.

Finally, another key consideration relates to the role of MSCs in IPF [30]. As discussed earlier,
mechanisms associated with ageing participate in the pathobiology of IPF. Part of this ageing process
includes the exhaustion of MSCs and the changes in the function of bone marrow (BM)-MSCs that
depend on age [17, 31]. Interestingly, harvested aged MSCs are less effective in preventing fibrotic changes
than MSCs from young animals [32]. In addition, MSCs from IPF patients have smaller mitochondria and
undergo accelerated senescence [18, 31]. The functional and clinical implications of these observations
merit further investigation [18].

Metabolic regulation network
Metabolism is a key player in biological complexity [33]. For example, in cancer it is well established that
rapid cell proliferation is associated with increased glucose uptake (which can be detected by increased
uptake of 18F-FDG (2-fluoro-2deoxy-D-glucose) on positron emission tomography (PET)) [34]. IPF lungs
also present increased uptake of 18F-FDG [35, 36], and recent studies have shown that metabolic
reprogramming plays a key role in fibroproliferation and myofibroblast differentiation [37, 38]. Classically,
several growth factors, cytokines and hormones have been reported to act in cell-to-cell and
cell-to-extracellular matrix (ECM) cross-interactions, inducing different cell metabolic and fibrotic
changes. Furthermore, mechanical ECM properties, such as increased stiffness, also contribute to
influencing cell phenotype. More recently, a number of hallmarks of ageing such as accumulation of
misfolded proteins and dysfunctional mitochondria, dysregulation of miRNA expression, and deficient
autophagy have been described to contribute to increasing the pro-fibrotic response and modifying cell
behaviour and metabolism [12, 18].

Environmental network
Cells and tissues (hence gene, proteins and metabolites) are constantly exposed to dynamic micro- and
macro-environmental changes (e.g. smoking, the microbiome, pollution and/or gastro-oesophageal reflux
(GOR)) that can modulate their interaction, changing the endotype and, consequently, the phenotype
[39–41]. Smoking exposure increases the probability of the associated emphysema. The treatment of GOR
is recommended in the updated IPF guidelines since, when present, it may increase AEC cell injury [2, 39].
The most recent advances in the knowledge of microbiome postulate that the bacterial signature induces a
host response, which may play a role in disease behaviour and therefore represent another target to
prevent or treat [41].
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Systems biology: well suited for the complexity of IPF research
Systems biology is an iterative research strategy (figure 2). The process generally starts with collection of
multi-dimensional data (genomics, transcriptomics, metabolomics, microbiomics, etc.). The input variables
are rather infinite, but using computational biology, models that aggregate emergent properties can be
created and then challenged by experimental intervention. In this context, network analysis is a powerful
technique to better visualise complex biological systems using graphs. This process is iterated until the
resulting model reflects with sufficient accuracy the experimental findings [42]. SELMAN and PARDO [43]
have already used this approach to propose an integral model of IPF in which a combination of gene
variants results in a loss of epithelial integrity that, in turn, limits the capacity of alveoli to respond to
injury. Thereafter, epigenetic reprogramming takes place and affects epithelial cells and fibroblasts,
resulting in destruction of the lung tissue [43].

Following discussions on current research in IPF, participants in the ERS seminar agreed that a systems
biology approach has great potential to understand better IPF pathobiology, differences in clinical
phenotypes and response to therapy as well as correlations with the clinical expression of IPF variants
(figure 3). Yet, in order to achieve these goals the following critical requirements should be considered and
implemented.

Standard operating procedures
Interoperability of diverse data is critical. Current ongoing studies, such as PROFILE [45] and the
European IPF network registry [46] collect different biological samples to work collaboratively on IPF
diagnosis and monitoring, and are already using a shared set of predefined rigorous standard operating
procedures (SOPs).

Cooperative biobank
Accessing a large number of biological samples sampled and stored according to SOPs, particularly those
obtained in the early phases of the disease, has the potential to identify novel key pathobiological
mechanisms and biomarkers that facilitate the discovery of new treatments to prevent disease progression.
By combining efforts in sample collection at different academic centres, a larger and more comprehensive
biobank could be made available to all IPF researchers, after appropriate assessment of the scientific value
and priority of the project proposed [47]. The Global IPF Collaborative Network (www.ucdenver.edu/
academics/colleges/medicalschool/departments/medicine/globalipf/Pages/GlobalIPF.aspx) with a DNA
consortium is a successful example of this type of initiative [48], with various types of IPF samples (e.g.
surgical lung biopsies, cryobiopsies and cryopreserved cells).

Education and support on novel bioinformatics techniques
Systems biology approaches rely heavily on novel bioinformatics analyses. Most basic and clinical research
centres do not yet have the necessary educational framework and bioinformatics expertise in place to take
advantage of rapidly evolving bioinformatics approaches, which is also crucial for interpretation of results.

The global initiative for fibrosis treatment (GIFT)
Participants in the seminar unanimously agreed that an organisation specifically tailored to foster
top-notch, cooperative, international IPF research was needed to promote the discovery, development and
implementation of more effective and precise (i.e. personalised) treatment options for IPF. To achieve this,
it was proposed to connect existing IPF networks across the globe and build upon databases from previous

FIGURE 3 Iterative working phases
of systems biomedicine. Systems
biology is a process that becomes
highly honed as new information is
aggregated, filtered, tested, and
allocated as essential data for
further cycling through the four
steps. Several lines of investigation
may result. Reproduced from [44]
with permission. ©Permanyer 2017.
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initiatives such as the ERS pan-European IPF registry and biobank (ARIANE-IPF) and the eurIPFreg and
eurIPFbank (www.pulmonary-fibrosis.net) [46]. In addition, national patient groups could be aligned to
move patient treatment forward with equal access and standards as proposed in the European IPF Patient
Charter (www.ipfcharter.org). Pharmaceutical and biotechnology partners could also be welcomed. The
participants suggested this new body could undertake the directive of setting the standards and regulation
needed for an integrated research network across the IPF community that leverages the potential of
systems biology [49]. This body could potentially be named the “Global initiative for fibrosis treatment”
(GIFT), which could also apply for and allocate specific research funds, establish connections between
biobanks to support cutting-edge research, and develop global strategies for IPF challenges.

Participants in the seminar concluded that the next ERS International Congress in Milan (Italy) in
September 2017 would be an ideal forum to develop these ideas further, establish specific goals, and
determine task allocation (organisation, chairmanship, frequency of meetings) and short-term milestones.
The first priority for the proposed body is an inclusive invitation to contribute to this worldwide initiative
and to design a governance document, to establish directives, functions, and responsibilities, which was
presented at the ERS International Congress in Milan. Secondly, it must be determined by quorum,
including all the relevant international experts, how these goals will be achieved. Due to the costly nature
of biomedical research, finding funds for the logistic implementation of GIFT is also required. The GIFT
initiative was approved by the ILD assembly of the ERS during the ERS International Congress in Milan.

All in all, GIFT would then have the potential to direct and facilitate the highest-quality integrative research
with the final goal of finding novel, effective, and safe therapies for this complex and lethal disease.
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