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Abstract— Recent advances in hyperspectral imaging
have made it a promising solution for intra-operative tissue
characterization, with the advantages of being non-contact,
non-ionizing, and non-invasive. Working with hyperspec-
tral images in vivo, however, is not straightforward as the
high dimensionality of the data makes real-time processing
challenging. In this paper, a novel dimensionality reduc-
tion scheme and a new processing pipeline are introduced
to obtain a detailed tumor classification map for intra-
operative margin definition during brain surgery. However,
existing approaches to dimensionality reduction based on
manifold embedding can be time consuming and may not
guarantee a consistent result, thus hindering final tissue
classification. The proposed framework aims to overcome
these problems through a process divided into two steps:
dimensionality reduction based on an extension of the
T-distributed stochastic neighbor approach is first per-
formed and then a semantic segmentation technique is
applied to the embedded results by using a Semantic Texton
Forest for tissue classification. Detailed in vivo validation of
the proposed method has been performed to demonstrate
the potential clinical value of the system.

Index Terms— Manifold embedding, hyperspectral imag-
ing, semantic segmentation, brain cancer detection.

I. INTRODUCTION
HILE malignant primary brain tumours rank only
13th in the list of cancer incidence rates, their par-
ticularly poor prognosis elevates it as the fifth most common
cause of cancer deaths in those under the age of 65. Among
children, they are the second most common form of cancer
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and the most common cause of cancer death. Gliomas are the
most frequent primary brain tumours and they are currently
incurable. Research has shown that life expectancy increases
with an extensive resection of these tumours. Gross total
resection is a challenging task since gliomas infiltrate the
surrounding tissue and their borders are indistinctive and
difficult to identify. Currently, different techniques have been
developed to help achieve this goal, but none have succeeded
in reliable real-time and non-invasive tissue differentiation.
For example, neuro-navigation is plagued with brain shift,
while ultrasound is highly operator dependant and Magnetic
Resonance Imaging (MRI) is still not accessible for real-time
intra-operative use. Consequently, clinical routines are still
based on subjective visual assessment by the surgeon, who
decides which areas should be removed during the operation.
Without accurate guidance, margin definition is poor even for
experts. This is mainly due to significant visual variations
between adjacent structures of the brain when they are partially
obscured, and because tumour structures vary considerably
across patients in terms of location, size, and extension, pro-
hibiting the use of priors on shape and location [1]. Hyperspec-
tral imaging, also called imaging spectroscopy, is an emerging
technology that can assist surgeons to classify tumour from
healthy tissue in real-time. In this paper, we propose a novel
manifold embedding framework where the output generated
from a hyperspectral image is semantically segmented into
a tumour map. The proposed method has the main goal
of delineating the exact boundaries of the brain tumours,
allowing a complete resection of the malignant cells while
saving as much healthy brain tissue as possible. The proposed
system can also be used to improve diagnosis and treatment
planning, as well as follow-up of individual patients. Hyper-
spectral imaging is a non-contact, non-ionizing and minimally-
invasive sensing technique. Whereas a conventional camera
captures images in three color channels (red, blue and green),
a hyperspectral camera captures data over a large number of
contiguous and narrow spectral bands [2]. Classification of
the tissue under evaluation can be achieved by analysing the
reflectance or fluorescence of every pixel in the hyperspectral
image and the spatial structures that these pixels form. For
example, it has been demonstrated that biological tissues
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exhibit fluorescent properties when excited with ultra-violet
light, and significant differences in these fluorescent properties
occur between malignant and healthy tissues [3]. Previous
works demonstrate that hyperspectral imaging can be used for
certain cancer detection in animals [4], [5]. Thus far, limited
work has been performed by using the technique for detecting
cancer in vivo [6]—[8] and none has been used for brain tissue.
The work described in this paper presents results obtained
from our collaborative EU project HELICoiD [9]-[11] where
four universities, three industrial partners and two hospitals
were involved. To the best of our knowledge, we are the first
to explore hyperspectal imaging for the identification of cancer
tissue during in-vivo brain surgery. The rest of the paper is
organised as follows. We first briefly review, in Section II,
the current state-of-the-art of brain tumour segmentation tech-
niques developed in other domains. We then describe the
mechanism behind the optical processes involved in the acqui-
sition of a hyperspectral image and how tissue characteri-
sation can be achieved in Section II-A. Theory behind the
dimensionality reduction is provided in Section II-B. The pre-
processing pipeline, the proposed method used to evaluate the
quality of a dimensionality reduction output, and the developed
manifold embedding framework are presented in Section III.
The protocol used for acquiring the hyperspectral images in
the operating theatre and the obtained database are described
in Section IV. Finally, we report and discuss the results
in Sections V, and Section VI concludes the paper.

Il. RELATED WORK

Existing approaches to brain tumour visualisation are com-
monly based on the use of Computed Tomography (CT)
or MRI. Current methods try to automatically discover glial
tumour [12], [13], meningioma [14]-[18] or glioma sub-
types [19] that can occur in the brain tissues. In general,
medical imaging approaches for brain tissue characterization
can be categorized into two types: i) the generative proba-
bilistic methods that segment the brain by exploiting detailed
prior information about the appearance and spatial distribution
of the different tissue types [20]-[26] and ii) discriminative
approaches that learn from labelled images about different
appearance of tissues, analysing local features that are relevant
to tumour segmentation task [27]-[33]. These features usually
represent local intensity differences, intensity distributions,
texture and spatial regularity of tissue labels. Once these
features are extracted, they are fed into a classifier to obtain
a semantic segmentation of the image. The semantic segmen-
tation can be thought of as an extension of the popular scene
classification problem where the entity to classify is no longer
the whole image, but a single group of pixels. The output of
the semantic segmentation classifier, therefore, highlights the
tumour classification map. Generative models represent the
state-of-the-art for brain tissue segmentation. However,
the main problem is that they require a significant effort for
transforming an arbitrary semantic interpretation of the image
into appropriate probabilistic models [1]. Hyperspectral imag-
ing is a relatively new area of research that can be also used
in this context. In the literature, few techniques based on this
technology have been proposed for tissue characterization and

tumour analysis [4]—[8]. Due to the high-dimensionality of the
hyperspectral images, most of the existing approaches classify
the tissues by exploiting just spectral information without tak-
ing into account the spatial correlations, essential for describ-
ing the underlying brain structures. Therefore, they classify the
spectral signature of each sample independently using standard
classifiers such as the Support Vector Machine (SVM) [8].
We propose to extend this idea and reduce the problem of
segmenting a hyperspectral image by analysing an embedded
version of it so that the spatial information can be considered
in the low-dimensional space. This makes our method capable
of processing a hyperspectral image in real-time.

A. Tissue Characterization Through
Hyperspectral Image

Due to significant improvements and miniaturization of
hyperspectral cameras in recent years, hyperspectral imaging is
becoming a well-established technique for disease diagnosis in
a wide range of medical applications. In this section, we briefly
describe the mechanisms behind the optical processes steps
involved during a hyperspectral image acquisition. Specifi-
cally, when the light hits a biological tissue, it can deflect in
three main components called absorbed, reflected and scattered
light [34]. While reflection appears on surfaces built from
a non-absorbing powder, or from fibers and polycrystalline
material, scattering occurs where there is a spatial variation
in the refractive index of the substances, generally caused by
inhomogeneous structures; finally, absorption happens when
the photons’ energy matches the energy gap of the molecules
of the tissues and is usually significantly high in haemoglobin,
melanin, and water [35]. The penetration depth of the light
depends on the molecular composition of the tissue. Conse-
quently, the absorption, reflection and the scattering character-
istics change across tissues, showing differences also during
the progression of a disease [36]. Measurement of these tissue
characteristics can provide quantitative diagnostic information
about pathology. For example, absorption spectra character-
ize the concentration and oxygen saturation of haemoglobin,
which can reveal if an angiogenesis or hypermetabolism is
present [37]. In other words, when the light is absorbed by the
tissue, it is either converted to heat or radiated in the form of
luminescence (fluorescence and phosphorescence). Therefore,
cells in different disease states may have different intrinsic
characteristics, resulting in different fluorescence emission
spectra. Hyperspectral images have the capability of measuring
this fluorescence, making a possible real-time investigation
of the tissues for diagnosis purposes. These changes of the
optical properties make this technology an ideal non-invasive
probe for tissue analysis [38]. The output of a hyperspectral
camera is a three dimensional matrix that contains samples
arranged in columns (x dimension), lines (y dimension) and
bands (wavelength dimension). The third dimension represents
the spectral information and it usually consists of several
hundreds of spectral bands that cover a contiguous portion
of the light spectrum, such as the visible and near-infrared
range (VNIR), and the shortwave infrared range (SWIR).
This matrix is known as a hyperspectral cube. To classify
samples in the hyperspectral cube and identify the various
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pathological conditions, our method tries to exploit both the
spatial information and spectral signatures at the same time.

B. Dimensionality Reduction

Hyperspectral images tend to have a high dimensionality,
making real-time processing difficult. In the context of this
paper, the high dimensionality is due to the large number
of wavelength bands that create the hyperspectral cube (for
example, an image that has 400 x 400 pixels captured at
200 wavelengths will be represented by 160000 vectors lying
in the space R?%°). In order to handle a hyperspectral image
adequately for real-time applications, its dimensionality needs
to be reduced through the projection of the hyperspectral cube
to a space with only a few dimensions.

Dimensionality reduction transforms high-dimensional data
into a reduced dimensional representation that is still capable
of describing the initial data. The intrinsic dimensionality
is, therefore, the minimum number of parameters required
to accurately describe all the observed properties of the
data. Since in our application we want to use dimensionality
reduction just to project the data into a lower dimensional
space and make the subsequent tissue categorization as pre-
cise as possible, the constraint of preserving all these initial
properties is not strictly necessary. Consequently, in this case,
the intrinsic dimension can be made small, as long as the new
representation allows the correct classification of all the tissue
types.

The problem of dimensionality reduction can be mathe-
matically defined as follows. Assume that we have a dataset
represented by an n x D matrix X consisting of n data
vectors x; (i € 1,2,...,n) with dimensionality D and
intrinsic dimensionality of d (where d < D). In mathematical
terms, the points in dataset X are lying on a manifold with
dimensionality d that is embedded in the D-dimensional space.
Dimensionality reduction is the process that transforms the
dataset X into a new dataset ¥ with dimensionality d, while
the observed properties of the data are retained as much as
possible:

XeRP 5y eRr? (D)

Since the geometry of the data and the intrinsic dimen-
sionality d are in general unknown a priori, dimensionality
reduction is, therefore, an ill-posed problem that can only be
solved by making some assumptions. Many algorithms for
dimensionality reduction have been developed in the past.
Principal Components Analysis (PCA) [39] is one of the
most popular linear techniques for dimensionality reduction.
However, its effectiveness is limited by its global linearity: its
purpose is to capture the new dimension so that the original
variance in the data is preserved. Preserving local features such
as continuity, conformity or manifold structure sometimes can
be more important than preserving global properties like PCA
does. Moreover, previous studies have shown that nonlinear
techniques outperform linear techniques on complex artificial
tasks [40].

The idea behind most of the nonlinear methods is to
decompose the nonlinear structures into linear subspaces in

the same way that some curves can be approximated by
locally linear functions, and use solutions similar to PCA on
each of these subspaces. For example, Isomap [41], Locally
Linear Embedding (LLE) [42] and Hessian Locally Linear
Embedding (HLLE) [43] are convex techniques that attempt
to find the global minimum of some objective function. These
approaches are based on k-NN graphs and the main algorithms
share a similar flow chart. First, K nearest neighbours for
each point are generated, then some properties of the manifold
are computed by looking at neighbourhoods previously found.
Finally, an embedding that preserves these local properties is
proposed. In contrast to Isomap, which preserves geodesic
distances by computing the shortest path between pairs of
points on the high-dimensional space, LLE tries to analyze
local properties of these points and describes them as a linear
combination of their k-nearest neighbours. The advantage of
LLE is that it does not suffer from common issues that
occur when, for example, the geodesic distances are com-
puted on graph with short-circuits. For this reason, LLE is
in general more robust. HLLE is instead a variant of LLE
that assumes a local isometric representation of the data
and tries to minimize the curviness of the high-dimensional
manifold. This minimization is obtained by an eigen-analysis
of the local Hessian matrix. The advantage of using the
local Hessian matrix is that it is invariant to differences in
the positions of the manifold datapoints. Another well-known
approach is the Kernel PCA (KPCA) [44] that can be seen as
the nonlinear counterpart of the traditional PCA. The main
difference is that KPCA does not apply the PCA directly
to the high-dimensional points, but instead these points are
first projected into a nonlinear feature space by exploiting a
kernel function. Unfortunately, it is not always clear how to
select this kernel function and to this end, approaches such
as the Maximum Variance Unfolding (MVU) [45], are pro-
posed to learn a proper kernel matrix automatically. Laplacian
Eigenmaps (LE) [46] is another dimensionality reduction
approach based on the Laplace-Beltrami operator. Here, a heat
kernel is used to weight a Laplacian of adjacency graph
extracted from the manifold. Ziemann and Messinger [47]
have recently proposed an adaptive variant of the LE approach
that is based on an Adaptive Nearest Neighbours (ANN) graph
to separate target data from the background data.

All the approaches described so far attempt to obtain
the optimal solution with respect to the objective function
considered. This is usually satisfied thanks to the convex-
ity of the eigen-decomposition analysis used to find the
solution. However, there are alternative techniques, although
not optimal, which are worth considering. For example,
the Sammon mapping [48] that, rather to explicitly represent
the transformation function, simply provides a measure of
how well the results of the transformation reflect the struc-
tures present in the original dataset. Autoencoder and Stuck
Autoencoder [49] are techniques based on training a deep
neural network (DNN). These deep learning based meth-
ods [50] use unsupervised training to recreate the input vector
samples and project them into a lower dimensional space.
Their network configurations are relatively straightforward.
The number of nodes in each hidden layer is first gradually



1848

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 36, NO. 9, SEPTEMBER 2017

Image Calibration

| Data Normalization

Manifold \§
Embedding " @
Tumour
\ 4 @ P Map
d n =
Segmentation

Fig. 1. Processing pipeline of the proposed approach for the semantic
segmentation of hyperspectral images.
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reduced to encode the data into a lower dimensional space
and then gradually increased to decode back to the original
high-dimensional space. Many variations of the Autoencoder
have been proposed to increase the stability against small
variations of the input pattern. These methods include the
Sparse Autoencoder [51], the Denoising Autoencoder [52]
and the Contractive Autoencoder [53]. Although deep learning
approaches can obtain good results since they are data driven,
the main disadvantage is that they usually require big datasets
to avoid overfitting.

In recent years, there are extensive interests in developing
manifold embedding techniques explicitly for hyperspectral
imaging. For example, in [54] a manifold learning approach
is proposed for hyperspectral ocean water data analysis and
in [55] a manifold coordinate representation is used to rep-
resent hyperspectral images for bathymetry retrieval. Olson
and Doster [56] proposed an unsupervised anomaly detection
framework that uses nonlinear techniques to learn a model for
the non-anomalous data collected from an 8-band multispec-
tral sensor as well as panchromatic infrared images. Cheng
et al. [57] proposed a Biologically Inspired Feature (BIF)
embedded in a high-dimensional space for identifying Peri-
papillary Atrophy (PPA). Finally, in [58] a Sparse Transfer
Manifold Embedding (STME) approach is presented for the
training of hyperspectral remote sensing dataset that has
unbalanced or small-size classes.

[1l. METHODS
The pipeline of the proposed approach is summarised in
Fig. 1. It consists of a hyperspectral image acquisition block
followed by a pre-processing step, then the proposed manifold
embedding framework and finally a semantic segmentation
classifier that generates the tumour map. Each of these blocks
is described in more detail as follows.

A. Image Acquisition

To capture the hyperspectral images, Headwall’s Hyperspec
VNIR A-Series and Headwall’s Hyperspec NIR X-Series
cameras have been used. The VNIR camera captures 826 spec-
tral bands, covering the spectral range of 400-1000 nm
with a spectral resolution of 2-3 nm, and each pixel has
a dimension of 128.7 um x 128.7 um, while the NIR
camera captures 172 spectral bands, covering the spec-
tral range of 900-1700 nm and each pixel has a dimension
of 0.48 um x 0.48 um. The light source used in our system
is a wide spectrum light that provides a uniform illumination
on the subject. The distance between the lens and the subject

Fig. 2. Setup of our system during the in vivo tumour brain resection.
Two cameras (VNIR and NIR) are used for the image acquisition while
two sterilised fiducial markers are placed on the brain surface for labelling
purposes.

is kept constant at 40 ¢m and manual image focus is used.
The setup of our system during the in vivo tumour brain
resection is depicted in Fig. 2.

B. Pre-Processing

Although during the acquisition of a hyperspectral image
we have used a wide spectrum light that provides a uniform
illumination, the light uniformity along all areas of the brain
cannot always be guaranteed due to the 3D cortical folding of
the brain that can introduce occlusions and shadows. More-
over, other external factors such as inconsistent environment
light can lead to variation in the spectral domain. These
effects can be reduced by using a pre-processing pipeline that
normalizes the reflectance of the hyperspectral image. Our pre-
processing pipeline is divided into three main steps: i) image
calibration, ii) noise reduction, and iii) data normalization.
For image calibration, the variations caused by the non-
uniform illumination over the surface of the captured scene
are adjusted. The hyperspectral image is calibrated using
white and dark reference images. These reference images
are acquired separately inside the operating theatre before
the procedure. The white reference image is obtained from
a standard white tile; the dark reference image is obtained
instead, by keeping the camera shutter closed. The calibration
is performed pixel-wise, and for each vector r; on the i’ cell
of an uncalibrated hyperspectral cube R, the corresponding
calibrated vector y; is obtained using the following equation:

ri—d,-

w; —d;

vi = 100 @)

where w; and d; are respectively the i’ vector in the white
reference hyperspectral cube W and the i’ vector in the dark
reference hyperspectral cube D. The second step of the pre-
processing pipeline aims to remove the noise generated by
common imperfections of the CCD (Charge Coupled Device)
cells of the hyperspectral camera sensor. Fig. 3(a) shows the
signature of a tissue sample captured by the VNIR camera.
In the figure, we can see that there is a high fluctuation in the
extreme bands. This fluctuation is due to the low ratio between
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Fig. 3. Spectral signatures in a tissue sample captured by the VNIR
camera. 3(a) and 3(b) contain respectively the signature before and after
applying our pre-processing pipeline.

the noise and the real signal in those bands. Due to the limited
performance of the CCD sensor in these ranges, we decide to
discard all the distorted bands in the extreme sides (before
the 450 nm and after 950 nm for the VNIR camera and
before the 950 nm and after 1650 nm for the NIR camera). For
the remaining bands, the noise removal is obtained by using
the HySIME algorithm by assuming that the reflectance at a
given band is well modelled by linear regression [59]. The
last consideration taken into account in this section is that,
due to the scanning procedure of the hyperspectral camera
and the non-uniformity of the brain surface, some areas of the
image can be captured with a different illumination biasing
the successive classification. In order to avoid this issue,
a unit magnitude normalization of the brightness is performed
for each pixel by using Eq. 3. The bright normalized value
Yib_norm Of the i cell in band b is obtained through the
division of initial value y;;, by the norm of the vector y;.
Fig. 3(b) illustrates the final spectral signature after applying
the proposed pre-processing pipeline.

Yib
[yill

3)

Yib_norm =

C. Manifold Embedding

1) Evaluation of a Dimensionality Reduction: Except for very
simple cases, it is practically difficult to decide a priori
which dimensionality reduction approach performs better for
a specific problem, and different techniques can lead to con-
trastingly different results. On the other hand, it is also hard
for human eyes to judge the quality of a given mapping and
the suitability of a specific technique if the dimensionality of
the original data is very high. Therefore, it is necessary to
develop formal measures that can judge the quality of a given
mapping [60]. Quality measures can be formulated by ranking
all the differences between the distances from each point to
all others and comparing the low-dimensional representation
to the original data [61]. A criterion Qy for the assessment of
dimensionality reduction methods was proposed in [62], where
a global-structure-holding performance is defined. The method
takes into consideration both local and global properties,
with the aim to faithfully reflect the intrinsic capability of
dimensionality reduction. Specifically, a shortest path tree
is first generated from the k-neighborhood graph and then,

the Spearman’s rank order correlation is used to compute a
global-structure assessment Qgp. The overall result Qy is
defined as a linear combination of this global assessment Qg p,
and other local assessments such as Qy proposed in [63] and
Q; proposed in [64].

However, these criteria do not take into account the visual
quality of the embedded image that is an important feature for
the visualization of the output or for the automatic segmenta-
tion of the tissues. For this reason, we propose a new quality
score, described in Eq. 4, that considers also some visual
characteristics such as the Global Contrast Factor (GCF) [65]
and a measure that depends on the shape of the histogram of
the embedded image. Contrast in image processing is usually
defined as a ratio between the darkest and the brightest spots of
an image. The GCF uses contrast values at various resolution
levels in order to compute the overall contrast value. Moreover,
the GCF measures the richness of detail as perceived by a
viewer. Histograms instead plot the number of samples for
each tonal value. By looking at the histogram for a specific
image, a human observer will be able to judge the entire tonal
distribution at a glance. Specifically, with the last term of Eq. 4
we try to capture if the dimensionality reduction approach
is capable to use all the possible values of the histogram to
represent the embedded image and to do so, we count how
many histogram bins in each channel overcome a threshold z
(with z fixed to 10 in our experiments).

M(Y) — & Z?:l GCF(Yi) + z?;l hisl‘i > 7
ki ko k3

where Qy is the global measure proposed in [62], whereas
k1, k2, k3 are the terms used to normalize each component of
the formula in the range [0, 1]. Therefore, the range of the
final score will be [0, 3].

By looking at the overall contrast and histogram in the
embedded image, we aim to select the approach that can
best separate different tissue classes. Visual characteristics
are usually not considered by existing metrics designed to
evaluate dimensionality reduction techniques. For this reason,
we believe that Eq. 4 provides a better indication of which
approach is more suitable for dimensionality embedding in
this application.

2) t-SNE: The main contribution of this paper is the imple-
mentation of a new method of manifold embedding based
on T-distributed Stochastic Neighbours (t-SNE) [66]. In this
section, we highlight the key details involved, while our
proposed method is explained later in section III-C.3. t-SNE
is a machine-learning algorithm for dimensionality reduction.
It is a nonlinear technique that is particularly well suited
to embedding high-dimensional data into a space with few
dimensions (i.e. two or three). Specifically, it models each
high-dimensional object by a low-dimensional point such that
similar objects are modelled by nearby points and dissimilar
objects are modelled by distant points. The main advantage
of t-SNE is that it captures the local structure of the high-
dimensional data and at the same time reveals global structures
such as clusters. For these reasons, t-SNE has been used
in a wide range of applications, including cancer research,
and bioinformatics [67]. The t-SNE algorithm consists of

+
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Fig. 4. Two examples generated by the t-SNE on two different hyper-
spectral images captured from the same subject. Here similar tissues
are represented with inconsistent colors making the successive tissue
characterization difficult to achieve.

two main stages. Given a set of N high-dimensional objects
X1, ..., Xy, t-SNE first constructs a probability distribution p;;
over pairs x; and x; in such a way that similar objects have a
high probability of being picked, whilst dissimilar points have
an infinitesimal probability of being picked.

Pjli + Pilj
Pij == (5)
where pj|; is defined as follows:
exp(=llxi —x;%/207)
pjli = L : (6)

ki exp(—lxi — xkl2/203)

and «; is the variance of the Gaussian that is centred on data
point x; and its value depends on the density of the data.
Specifically, smaller values of a; are used in denser parts of the
space and large values otherwise. Second, t-SNE aims to learn
a d-dimensional map of yi, ..., yn that reflects the similarities
pij as well as possible. To this end, it defines a similarity
measure g;; computed over the points y; and y; that represent
the low-dimensional counterparts of the high-dimensional data
points x; and x;.

g = (4 llyi — ;137"
T s U e =yl
Finally, the locations of points y; in the map are determined

by minimizing Eq. 8, which represents the Kullback-Leibler
divergence of the distribution Q from the distribution P.

)

Dii
KL(PIIQ) =D pijlog=~
i i

This minimization is obtained through the gradient descent
function initialized by extracting each y; from a random
sampling of an isotropic Gaussian with small variance that is

centered around the origin. Embedding a hyperspectral image

®)

Fig. 5.
different hyperspectral images captured from the same subject. In this
case, similar tissues are represented with similar colors.

Two examples generated by the proposed approach on two

using t-SNE may not guarantee a consistent embedding due
to i) the random nature of the approach and ii) the lack of a
fixed coordinate system, which prohibits the comparison of the
embedded results across different tissue samples [68]. Fig. 4
shows two examples of outputs generated by the t-SNE on two
different images captured on the same subject. As we can see,
in the embedded images similar tissues are represented with
different colors making the successive tissue characterization
difficult to achieve.

3) Proposed Embedding Method: To address the problem
mentioned above, we have proposed a new manifold embed-
ding approach called Fixed Reference T-distributed Stochastic
Neighbours (FR-t-SNE) that includes the following four steps.
The first three steps are used to train the manifold offline and
the last to embed a new image. The details of the proposed
approach are described in Algorithm 1. Specifically, in Step 1,
an optimal reference system is fixed to maintain a consistent
manifold embedding along with all the images and circumvent
the lack of a fixed coordinate system. In Step 2, the manifold
is gradually discovered on the training set using the predefined
fixed reference. In Step 3, a DNN is trained to learn how to
map the samples from the high dimensional space into the
low dimensional space. Finally, a hyperspectral image H is
embedded in real-time using the trained DNN. In order to
obtain the optimal reference coordinate system in Step 1,
the spectral samples collected from all the training images
are clustered and K centroids Cx = (Cxj, Cx;,...Cxg) are
computed. Considering these centroids as a synthetic hyper-
spectral cube, the standard t-SNE routine is performed on it,
producing the embedded output Cy = (Cyy, Cys,...Cyk).
Cx and Cy are vectors that represent respectively the fixed
coordinate system in the original space and in the embedded
space. These will be used in Step 2 to predict the embedded
value of each spectral sample of the training hyperspectral
images. This prediction is obtained by initializing point y;
in Eq. 7 using a lookup table that contains the vectors Cx
as indexes and the vector Cy as values. More specifically,
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Algorithm 1 Proposed Manifold Embedding

Input:
TrainSet > Hyperspectral images used for training
H > Hyperspectral image to embed
Variables:
Si > Set of high dimensional samples obtained on
hyperspectral image |
T; > Set of embedded training samples obtained on

hyperspectral image I

Cy > Centroids obtained in the high dimensional space

Cy > Counterpart for centroids C, living in the low

dimensional space

K; > Closest centroids for each sample in S; obtained by

the 1-NN classifier

D, © Set of high dimensional samples obtained on the

entire TrainSet

D, > Set of embedded training samples obtained on the

entire TrainSet

DNN_Emb > Deep neural network used for embedding
QOutput:

E > Embedded image

1: procedure D., D, <— TRAINING(TrainSet)

2 D, <0

3 ForEach [ in TrainSet > Step 1: Find Fixed Reference System
4: S; < Extract_Samples(I);
5: Dy < Do US;;

6: End

7 Cy <k-means(D,);

8 Cy < tSNE(Cy);

9: Dy < @, Dy < 0

10: ForEach I in TrainSet

> End Step 1

> Step 2: Discover Manifold

11: S; < Extract_Samples(I);

12: K; <1-NN(S;, Cx, Cy);

13: Initialize_tSNE(K;);

14: T; < tSNE(1);

15: D, < D, UT;;

16: D, < D, U S;;

17:  End > End Step 2

18: DNN_Emb <« Train_DNN(D,,D,)
19: end procedure

20: procedure £ < EMBEDDING(H ,DNN_Emb)
21: Sy < Extract_Samples(H);

22: E < DNN_Emb(Sy);

23: end procedure

> Step 3: Training the model

> Step 4: Embedding

for each sample within a hyperspectral image, the closest
centroid Cx; (according the Euclidean distance) is selected
and the corresponding counterpart Cy; is used to initialize y;.
In this way, the gradient descent routing, required to minimize
Eq. 8, will start from the fixed reference value of that point
and just few rounds of update will be performed to find the
embedded result.

In Step 2, for each training image, the input samples S;
and the corresponding counterpart 7; are collected in a final
selection D, and D, of original and embedded samples.
Once all the training images are processed and the entire
manifold is discovered, the collected vectors D,, and the target
values D, are used to train a DNN to predict the embedded
values of each sample of a new hyperspectral image H.
During the training of our system, the number of vectors
collected in D, and D, reaches approximately 1 million,

which is a relatively high number to avoid overfitting issues.
Although training the FR-t-SNE may take days when the
number of hyperspectral images becomes large, we believe
that this is not a real limitation since this procedure only
needs to be performed once offline. There are also exten-
sive means of hardware acceleration, e.g., with the use of
GPU architecture.

From a mathematical point of view, the objective function
of our dimensionality reduction approach is an approximation
of the t-SNE Kullback-Leibler divergence of Eq. 8, obtained
by using a DNN so that the embedded images are always
consistent. Evidence for this consistence property obtained by
our approach is shown in Fig. 5, where two example results
obtained from two different hyperspectral images of the same
subject are displayed. This is in contrast to Fig. 4, where
similar tissues are represented using different colors. As will
be shown later in the experimental section of this paper,
the different tissues are better recognized with the proposed
method and there is a significant classification improvement
over the standard t-SNE approach.

A further improvement of t-SNE is the resources efficiency
for real-time processing. Due to the extremely high spectral
resolution of a hyperspectral image, it has been observed that
consecutive bands are correlated and for this reason some of
them can be removed before applying manifold embedding.
Specifically, each set of adjacent bands [(z — 1)t + 1, z¢] is
replaced by their averaged band Y. The equation used for this
process is described as follows:

i=zt
Y, = Zi:(zfl)t+l Y;

. B
with z € |:1,2,...,7:| )]

where ¢ is the number of averaged bands and B is the total
number of hyperspectral bands. Although the final number of
bands considered by the dimensional reduction approach is
inversely proportional to this parameter 7, a large value of
it can discard discriminative information from the spectral
signature. The optimal value is selected empirically in this
study as r = 6 for the VNIR camera and + = 1 for the NIR
camera. Eq. 9 is a filter that allows not only to speed-up the
embedding process, but also to reduce noise effectively.

D. Semantic Segmentation

To obtain the tumour classification map, a semantic seg-
mentation approach is performed on the obtained embedded
images. One of the most popular approaches designed for
this task is based on random forests and is called Semantic
Texton Forest (STF) [69]. Random forests approaches have
been used already for many medical applications such as
for the detection of Alzheimer’s disease [70], delineation of
myocardium in real-time [71], and lesion segmentation from
multimodal MRI [72]. These approaches are effective as they
also consider the fact that within an image, similar low-level
feature responses can represent different objects and each
single feature is not sufficient for characterizing the object
to which it belongs. Therefore, approaches like STF tries to
exploit the spatial arrangement of these low-level features to
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(b)

Fig. 6. Examples of histological images obtained from normal brain
tissue in 6(a) and glioblastoma tumour brain tissue in 6(b).

increase the object discrimination. In our case, the spatial
information is useful to distinguish, for example, blood vessels
in healthy tissues with respect to those surrounding the tumour
as they have similar spectral responses, but the former have
elongated shapes and the latter agglomerated shapes. These
differences in the appearance can help to discriminate different
tissue classes. For these reasons, for the semantic segmentation
task, we decided to exploit the STF approach and also a
more recent method called DCT-STF [73] that has shown
more accurate results when the classes of the database are
un-balanced.

IV. VALIDATION DATA

A total of 33 hyperspectral brain images have been cap-
tured from 18 different patients during neurosurgical opera-
tions. Local Ethics Committee approvals were obtained from
the National Health Service (REC reference 14/SC/0108)
and from the Servicio Canario de la Salud (REC reference
130069). During each surgical procedure, two sterilised fidu-
cial markers are placed in the brain as shown in Fig. 2: one
in the area that belongs to a tumour and the other in the
healthy brain tissue. The evaluation of the brain tissue is per-
formed by the surgeon based on visual appearance, anatomical
relationship of the sulci and gyri, and on the MRI or CT
performed on the patient before the surgical procedure. The
precise location of the markers is also noted using the Image-
Guided Surgery (IGS) system to identify the location of the
markers on the brain. This pointer defines the position of the
fiducial markers with respect to the pre-operative MRI or CT
data. Afterwards, the hyperspectral image is captured with our
proposed system and the tissue samples contained inside the
markers are resected from the patient and sent to the pathol-
ogist. Pathologic diagnosis is carried out by a professional
pathologist that undergoes standard hematoxylin and eosin
staining to establish a definitive histopathological diagnosis.
Fig. 6 shows two examples of the histological images obtained
from normal brain tissue and tumour, respectively. The results
of these diagnoses are used as the ground truth reference
for the training process. After the hyperspectral images have
been captured, the system is moved out of the surgical zone
and the neurosurgeon continues with tumour resection until a
new image can be captured depending on the nature of the
surgical procedure. Table I summarizes the obtained database
describing in detail the type of tumours diagnosed in different
neurosurgical operations.

TABLE |
SUMMARY OF THE TYPE OF TUMOURS DIAGNOSED IN
DIFFERENT NEUROSURGICAL OPERATIONS

Tissue Description Nm'nber of | Number

Patients of Images
Healthy Normal 11 17
Glioblastoma (Grade IV) 8 12
Primary Anaplastic Oligodend. (Grade III) 1 4
Tumour Ganglioglioma (Grade I) 1 2
Meningioma (Grade I) 1 1
Lung Carcinoma 2 2
Secondary Lung Adenocarcinoma 1 1
Tumour Renal Carcinoma 1 1
Breast Carcinoma 1 3

A. Segmented Reference Maps Generation

In order to be robust against imaging artifacts, intensity
changes and shape variations, supervised machine learning
methods typically require a substantial amount of training data.
Building the training database for our proposed platform is
an important step. Due to the nature of the clinical setting,
limited training images are available in our case. Another issue
of having a small database is that it can affect the results in
terms of overfitting. Overfitting occurs when a statistical model
describes random error or noise instead of the underlying
relationship. A model that has been overfitted will generally
have poor predictive performance, as it can exaggerate minor
fluctuations in the data. A second problem with the generation
of the current database is related to the label assigned to
each sample inside a hyperspectral image. These labels are
important for creating the segmented reference maps required
for supervised training of the semantic segmentation classifier.
Howeyver, the real labels for the entire brain are unknown and
only a small portion of tissue is extracted and analysed from
the pathologists. Moreover, these tissue samples are not always
100% homogeneous and may contain mixed tissues. Having
mixed tissue samples can compromise tissue characterization
due to inconsistent labelling. Also, some image artifacts, such
as specular highlights due to non-polarized light, can bias the
classification step and they need to be removed from the region
under consideration. To overcome these issues, we propose
a semi-automatic reference maps generation pipeline that
combines the results provided by the pathologists together
with two other segmented image outputs. The details of this
process are explained in Fig. 7. Specifically, the diagnosis
provided by the pathologist in step a) is used to create a
manually segmented image in step b). Here, a predefined
color table (red for healthy tissue, green for tumour tissue and
white for the background) is used to draw a 2D bitmap image
and paint regions around each of the available marker. The
remaining area of the brain is represented with an unlabelled
region marked as black. To eliminate subjective errors during
manual segmentation, an automatic segmentation is performed
in parallel on the embedded image, steps c¢) and d). This
automatic segmentation is computed using k-means (k=15 is
selected experimentally). Both the manually and automatically
segmented images are combined together in step e) to remove
all the possible outliers (image artifacts, mixed tissues, and
human error). Specifically, all the automatically generated
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TABLE Il
PIXELS DISTRIBUTION IN EACH CLASS TYPE

Class | Number of pixels | (%) of pixels |
Unlabelled Brain Tissue 3.619.611 52.39%
Tumour 65.580 0.95%
Healthy 57.453 0.83%
Others 3.166.818 45.83%
° Pathologist o Manual

by Expert

. -> Healthy
tissue |-
. ->Tumour

tissue

Jittering

Outliers
Removal

Hyperspectral
Image

Fig. 7. Proposed semi-automatic segmented reference maps generation
pipeline.

segments that belong to a specific marker are arranged in a
descending order according to their dimensionality and merged
together in a greedy strategy until 60% of the total area is
covered. All the remaining small segments are removed since
they can represent possible outliers. When all the regions
have been processed, the segmented reference map of the
current hyperspectral cube is completed. The last step f) of the
pipeline is then applied. This block generates synthetic images
through a procedure called jittering. It augments the training
database by exploiting a sequence of random transformations
applied to the initial images. These transformations include
rotations, crops, geometric distortions and scaling. For each
pair of embedded image and the corresponding segmented
reference map, we augment them up to six times. This allows
us to extend the database from 33 images to 231 images.
As described later in Section V, the synthetic images are just
used for training the semantic segmentation model, instead the
initial 33 images are used for testing. The distributions of the
pixels in the different classes, before the jittering, are provided
in Table II.

V. RESULTS

To evaluate the proposed manifold embedding approach,
we have compared our solution against 22 other different
state-of-the-art methods. The methods considered in these
experiments were implemented using the Matlab Toolbox for
Dimensionality Reduction [87]. Three hyperspectral images,
captured by our system, are used for validation. Table III
shows the outputs of these methods by projecting the hyper-
spectral images in a low dimension space consisting of three
channels. The results obtained by Eq. 4 on these three embed-
ded images are averaged and used for rank ordering the
different methods. As we can see from the results, the more
we go down in Table III, the more visual structures of the
brain are visible in the embedded images and this supports
the meaning of Eq. 4. This table gives us a first indication
of which dimensional reduction approaches are suitable for

TABLE IlI
QUTPUTS OF THE DIFFERENT EMBEDDED APPROACHES SORTED
ACCORDING THE PROPOSED QUALITY SCORE

Approach Image; Images Images Score
LLC [74] - 1.18
Diffusion
Landmark - =k
e | D - !
Hessian I
NPE [77] - n 1.57
PCA [39] - : " 1.63
Autoencoder Fite
iy 1.66
= N
Isomap [41] - - 1.71
LLTSA [79] - H 173
Landmark |
Isomap [80] ﬁ: - 176
CCA [81) - - 178
SPE [82] - - 1.85
Prob. PCA
o .
Sammon rag "
‘ 1.98
sl N -
Factor
Analysis - 2.06
[84]
LPP [85] % L - 2.08
=N :_;
MVU [45] ﬁ 2.25
Fast MVU
Lap[lia6(31an r 238
i :
FR--SNE = = 261
T
t-SNE [66] % @ \ 2.66
e B

this application. Since the final experiments related to tissue
classification are CPU intensive, exhaustive consideration of
all the 22 approaches is not practical. Therefore, from now,
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just the best two approaches — t-SNE and FR-t-SNE — are
taken into account.

In order to evaluate the next experiments, the following

metrics are analyzed:

1) Mean-Class Accuracy: Is obtained averaging the accura-
cies achieved in each of the classes. It is a more reliable
measure than the overall accuracy when, as in this case,
the sample distributions for the same classes are limited
in number, causing an unbalanced dataset.

2) Sensitivity: Is the proportion of actual positives which
are correctly identified as positives by the classifier.

3) Specificity: Is the proportion of the actual negatives
which the classifier successfully identifies as negative.

Mathematically, sensitivity and specificity are defined as
follows:

. TP
Sensitivity = ———— (10)
TP+ FN
Specificity = TN (11)
pecificity = TN+ FP

where T P is the number of true positives, F'N is the number
of false negatives, TN is the number of true negatives and
F P the number of false positives.

The validation of these experiments is instead based on two
case studies, CS; and CS>. These case studies differ in the
type of images used for training the classifiers and they allow
us to evaluate different properties of the system. Specifically,
in CS; all the synthetic images (6 x 33 images) are considered
in the training-set and the original 33 embedded images are
used in the test-set. This case study allows us to understand if
the classifier is capable of learning the inter-patient variability.
Instead, in CS, each surgical procedure is used separately
in the test-set and the classification model is trained using
the embedded images belonging to all the other patients. The
case study CS, describes the results in a real scenario and
it analyses the capability of the system to transfer the inter-
patient tumour classification to new patients that have never
been seen before. In our experiments, the results in CS, are
obtained by training six models for six different patients and
averaging all the results obtained. Of note is that the obtained
results are computed by taking into account just the labelled
pixels.

The first experiment is performed to define some basic
parameters such as the classifier and the intrinsic dimension d
to consider. Intrinsic dimension larger than three are not
considered due to memory limitation and real-time consid-
erations. The obtained results are plotted in Fig. 8 and they
show that, for case study CSj, the camera NIR with an
intrinsic dimension equal to three is the configuration that
provides the best performance. Instead, for case study CS,
the camera VNIR with intrinsic dimension equal to one, is the
one selected for the best performance. These configurations
are therefore fixed respectively for CS; and CS> in our final
algorithm. From this experiment, we can also see that classifier
DCT-STF always obtains better performance with respect to
STF. Therefore, DCT-STF is selected for final implementation.

The second experiment in this work is to compare our
method against t-SNE. The results are reported in Table IV
where mean-class accuracy, sensitivity, and specificity

Case Study Cs1
85% ®VNIR & STF
|
80% “
|

3 75% ®NIR & STF

3 |

S

< 70% -

14 |

3 ‘ VNIR & DCT-STF
s  65% -

3 \

s

60% 1‘
i ‘ ® NIR & DCT-STF
55% P
1 —
2
Intrinsic dimension
(@)
Case Study Cs2
= NIR & STF

g

8 ® VNIR & STF

=

3
<

2

1]
S

p = NIR & DCT-STF
3
=
VNIR & DCT-STF

Intrinsic dimension

(b)

Fig. 8. Mean-class accuracy obtained by the proposed approach on two
different case studies when the intrinsic dimension and the classifier are
systematically verified.

obtained by our proposed approach and t-SNE are listed
for each case study. For case study CSi, namely when the
classifier is trained with the synthetic images and tested on
the original embedded images, our approach obtains 2.03%
more than t-SNE on mean-class accuracy. Whereas in case
study CS>, when the classifier is trained by leave-one-out
test, the results on the mean-class accuracy are 19.94% better
than t-SNE. These results suggest that the the fixed reference
coordinate system proposed in our approach is an important
step to improve the classification results.

The final study of this paper is to show the feasibil-
ity of performing our proposed method in real-time. First,
we want to highlight that for a hyperspectral image with
N rows and M columns, the time complexity of the t-SNE
is O(N % M)?> [66]. This makes the t-SNE not suitable
for real time processing. Instead, the DNN proposed in our
FR-t-SNE approach that consists of a 4-multilayer perceptron
with around 80 nodes in each layer, has a computational time
of O(N * M) resulting in a faster solution. To further empha-
size this aspect, we have recorded the averaged computational
time required by each block of the proposed system. The CPU
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TABLE IV
RESULTS OBTAINED BY THE PROPOSED APPROACH AGAINST T-SNE ON THE TwO DIFFERENT CASE STUDIES
Specificity Sensitivity
Case Study | Camera Type | Approach | Intr. Dimen. | Mean-Class Acc. | Tumour | Healthy | Others | Tumour | Healthy | Others
cs NIR t-SNE 3 79.87% 86.56 % 83.97% 97.26% 86.88% 78.45% 74.29%
1 NIR FR-t-SNE 3 81.90% 86.08% 89.15% | 98.79% 80.91% 86.80% | 78.00%
cs VNIR t-SNE 1 51.56% 90.58% 94.05% 86.86% 39.47% 27.28% 87.94%
2 VNIR FR-t-SNE 1 71.50% 91.66 % 92.80% 86.84% 52.95% 74.80% 86.76%
1 ===
09r 2 7 i
0.8F , 7 . 4
07 e g
g 06F -
% 051 E
% 0.4F 4
['4
03 Mean Healthy
— — Max Var Healthy
0.2F 1y Min Var Healthy |
i Mean Tumour
Pl ,‘ — — Max Var Tumour
01r SN , Min Var Tumour | |
F N ‘ ‘

Fig. 9. Two example clinical cases by using the proposed hyper-spectral
system and analysis framework. The first row shows a NIR camera
image with intrinsic dimension equal to three whilst in the second row
a VNIR camera image with intrinsic dimension of one is considered.
In (a), the RGB image, (b) the obtained embedded output, (c) the
segmented reference maps and (d) the classification map obtained by
the DCT-STF classifier.

TABLE V
COMPUTATIONAL TIME OBTAINED BY EACH BLOCK OF THE
PROPOSED SYSTEM WHEN THE T-SNE AND THE
PROPOSED APPROACH ARE USED

Camera Pre-Proces. Embedding Classif. Total
Type t-SNE FR-t-SNE  DCT-STF t-SNE FR-t-SNE
VNIR 22(s) 14532(s) 2(s) 16(s) 14556(s) 40(s)
NIR 5(s) 14770(s) 2(s) 5(s) 14777(s) 12(s)

timing is recorded on an Intel Xeon E7-8890 v4 with 24 cores
running at 2.2Ghz and with 64 GB of DDR memory, and
the results are reported in Table V. Although these results
show online processing with a total computational time that
requires several seconds for each hyperspectral image, with
cluster computing and further software optimization, they
can be accelerated to provide real-time results. Compared to
t-SNE, our approach is ~7000 times faster, requiring just
2 seconds to process an image, against the 4 hours required
by t-SNE, which demonstrates again the relative merit of our
solution.

For completeness, in Fig. 9 we show two examples of
visual output generated by our system. This figure includes the
RGB image, the embedded output, the segmented reference
maps and the classification map obtained by the DCT-STF
classifier for the case studies. Fig. 10 shows an example of
the hyperspectral image samples where the healthy and tumour
tissues are compared in the high dimensional and embedded
space, respectively.

. .
0 20 40 60 80 100 120
Features

(a)

*  Tumour
+  Healthy

Fig. 10. Comparison of healthy tissue and tumour tissue represented
in: (a) the high dimensional space, and (b) the embedded 3D space.

VI. CONCLUSION

In this paper, we have proposed a novel manifold embedding
framework FR-t-SNE with which the output generated from
a hyperspectral image can be used as input for a seman-
tic segmentation classifier of brain tissues in vivo, in situ.
The proposed method aims to determine the boundaries of
tumours, saving healthy brain tissue and allowing a complete
resection of the malignant cells. Conventional diagnoses of
internal tumours are based on excisional biopsy followed by
histology or cytology. The main weaknesses of the traditional
approach are twofold. Firstly, it is invasive with many poten-
tial side effects and complications; and secondly, diagnostic
information is not available in real-time and requires off-line
histopathology sample preparation and analysis. The proposed
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system can overcome these problems and tumour resection can
be greatly improved during surgical procedures, thus reducing
the risk of disease recurrence. Moreover, the proposed system
can help in understanding the cancer progression. The real-
time nature of the techniques can improve surgical accuracy,
providing additional information that can also reduce the
probability of erroneous resectioning of healthy tissue. From
the results presented in this paper, it can be seen that the
high quality and accuracy of the obtained tumour maps can
be achieved by using a suitable embedding approach combined
with a classifier that takes into account not only the spectral
value of each sample, but also their spatial context. The relative
merits of our approach against other existing methods are
also demonstrated in this paper, highlighting the strengths of
our proposed framework in terms of processing speed and
accuracy.
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