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Abstract  

Purpose 

PET using radiolabelled amino acids has become a promising tool in the diagnostics of gliomas and 

brain metastasis. Currently, amide proton transfer (APT) chemical exchange saturation transfer (CEST) 

MR imaging is evaluated for brain tumour imaging. In this hybrid MR-PET study, we compared in 

brain tumours with 3D data derived from APT-CEST MRI and amino acid PET using O-(2-18F-

fluoroethyl)-L-tyrosine (18F-FET).  

Methods 

Eight patients with gliomas were investigated simultaneously with 18F-FET PET and APT-CEST MRI 

using a 3T MR-BrainPET scanner. CEST imaging was based on a steady-state approach using a B1 

average power of 1μT. B0 field inhomogeneities were corrected and parametric images of 

magnetisation transfer ratio asymmetry (MTRasym) and differences to the extrapolated semi-solid 

magnetisation transfer reference method, APT# and nuclear Overhauser effect (NOE#), were 

calculated. Statistical analysis of the tumour-to-brain ratio of the CEST data was performed against 

PET data using the non-parametric Wilcoxon test. 

Results 

 

A tumour-to-brain ratio derived from APT# and 18F-FET presented no significant differences and no 

correlation was found between APT# and 18F-FET PET data. Distance between local hot spots APT# 

and 18F-FET were different (average 20 ± 13 mm, range 4 - 45 mm).   

Conclusion 

 

For the first time CEST images were compared with 18F-FET in a simultaneous MR-PET 

measurement. Imaging findings derived from18F-FET PET and APT CEST MRI seems to provide 

different biological information. The validation of imaging findings by histological confirmation is 

necessary, ideally using stereotactic biopsy. 
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Introduction 

 Diagnostics of brain tumours remains unsatisfactory despite high-resolution morphological 

imaging with conventional magnetic resonance imaging (MRI), in particular in pre-treated patients [1]. 

Multiple imaging modalities may be combined in order to improve diagnostic accuracy, such as 

advanced MRI and positron emission tomography (PET). In brain tumours, information about amino 

acid transport has become an important additional tool to standard MRI and has shown potential to 

define biological tumour volume for treatment planning, treatment monitoring and recurrence 

evaluation [2]–[8]. Several amino acid tracers are available, such as L-[methyl-11C]-methionine (11C-

MET), O-(2-18F- fluoroethyl)-L-tyrosine (18F-FET) or 3,4-dihydroxy- 6-[18F]fluoro-L-phenylalanine 

(18F-FDOPA). Fluorine-18 labelled radiotracers are preferred due to the logistical advantages of the 

longer half-life. Furthermore, 18F-FET exhibits different tracer kinetics depending on the tumour grade 

when compared to 18F-FDOPA or 11C-MET [4].  

Chemical exchange saturation transfer (CEST) is an MRI technique that enables the indirect 

detection of metabolites using the MR free water signal [10]. CEST is based on the phenomenon of 

transferring saturation from a solute pool (metabolites) to the water pool resulting in contrast that is 

dependent on metabolite concentration and its proton exchange rate [11], [12]. Repeating the 

measurements at different saturation frequencies allows the acquisition of the Z-spectrum, where the 

contrast of multiple metabolites is encoded. This technique has many applications such as 

measurements of glycogen (GlycoCEST) [13], glutamate (GluCEST) [14], glucose (GlucoCEST) [15] 

and amide proton transfer (APT) [16]. Moreover, CEST contrast is also pH dependent [16]–[19]. APT-

CEST, which provides information at 3.5 ppm downfield from water, has been shown to allow 

differentiation between low- and high-grade gliomas [20], [21]. In addition, APT-CEST has also shown 

its potential to distinguish between recurrent tumour and radiation necrosis [22], [23]. Furthermore, the 

signals from the upfield nuclear Overhauser effect (NOE) at -3.5 ppm were also presented as a unique 

contrast in gliomas at 7 T [24]–[26]. 

The introduction of hybrid MR-PET scanners promotes the synergy between both modalities 

by allowing the simultaneous acquisition of human MRI and PET data [27]. However, to the best of 

our knowledge, no study in the literature has compared amino acid PET of brain tumours with APT-

CEST using simultaneous MR-PET. Initial attempts to compare CEST signals from amine and 18F-

FDOPA using non-simultaneous measurements have recently been reported [28], [29]. This is the first 



study to investigate simultaneous MR-PET brain tumour imaging using APT-CEST and 18F-FET PET. 

Here, we present a methodology to obtain volumetric APT-CEST and 18F-FET PET to study 

brain tumours using simultaneous MR-PET. We compare CEST imaging with the more clinically 

established 18F-FET PET to explore similarities between both imaging modalities. 



Materials and Methods 

Measurement details 

Subjects 

Eight patients with suspected cerebral glioma were included in this feasibility study (four 

females, four males; median age: 56 years; age range: 20 - 69 years). All subjects presented increased 

18F-FET uptake in the tumour, defined as 18F-FET uptake of at least 1.6 times the uptake of healthy 

brain tissue of the same subject [30]. Seven subjects presented a single 18F-FET positive region and one 

subject presented two 18F-FET positive regions. Detailed information on the patient group is given in 

Table 1. The university ethics committee and the relevant federal authorities approved the study. All 

subjects provided prior written, informed consent for their participation in the study. 

 

Instrumentation  

Measurements were performed in a hybrid 3 T MR-BrainPET scanner (MAGNETOM Trio, 

Siemens Healthineers, Erlangen, Germany) equipped with a dedicated BrainPET with a spatial 

resolution of approximately 3 mm full-width at half maximum (FWHM) in the centre [31]. The 

BrainPET is inserted in a MAGNETOM Trio 3 T MR machine. A dedicated MR head coil was used, 

which is composed of an outer birdcage coil for transmission and an inner eight-channel receive array 

coil for signal reception. 

 

MR Acquisitions 

CEST measurements were performed before MR contrast agent injection in the clinical 

protocol. The clinical protocol includes a T1-weighted magnetization-prepared rapid gradient echo 

(MPRAGE) sequence and a T2-weighted fluid-attenuated inversion recovery sequence (FLAIR). A 

contrast-enhanced MPRAGE sequence (CE-MPRAGE) was conducted after intravenous injection of 

the contrast agent gadoteric acid (Dotarem, Guerbet, France). 

CEST acquisition was based on the steady-state approach proposed by Ref. [32]. In our 

implementation, a segmented 3D EPI readout with three shots per partition was used [33]. In order to 

suppress the fat signal, a rectangular excitation pulse with a duration of 2.4 ms was used as proposed 

by Ref. [34]. The TR interval, consisting of a100 ms Gaussian RF pulse, crusher gradients and a partial 

EPI readout (echo train length = 26ms), amounted to TR = 136ms and an  average B1 power of 1 μT 



[35]. Further sequence parameters were: flip angle = 11 degrees; TE/readout duration = 12.5/26 ms; 

matrix size = 80 × 80 × 48; voxel size = 3.0 × 3.0 × 3.0 mm3; sagittal slice orientation (readout 

superior-inferior); slice partial Fourier = 6/8; phase partial Fourier = 7/8 and slice oversampling of 

25%. The Z-spectrum was unevenly sampled at 69 different frequencies ranging from 14 to -14 ppm 

(±14.0, ±13.5, ±13.0, ±12.5, ±12.0, ±11.5, ±11.0, ±10.5, ±10.0, ±9.5, ±9.0, ±8.5, ±8.0, ±7.5, ±7.0, ±5.0, 

±4.0, ±3.8, ±3.7, ±3.6, ±3.5, ±3.4, ±3.3, ±3.2, ±3.1, ±3.0, ±2.9, ±2.8, ±2.7, ±2.0, ±1.0, ±0.5, ±0.2, ±0.1, 

0.0) and additionally at 300 ppm for data normalisation. Each image was acquired in 18 seconds (135 

TRs; k-space centre acquired with the 45th TR). Seamless acquisition of all images amounted to total 

measurement time of 21 minutes.  

In addition, a 3D multi-echo gradient echo (GRE) sequence was also acquired in order to 

compute B0 maps. Measurement details were as follows: FA = 7°; TR/TE1 = 50/2.32 ms; ΔTE = 2.85 

ms; 12 echoes; monopolar readout; matrix size = 128 × 104 × 72; voxel size = 1.7 × 1.7 × 2.0 mm3.  

 

PET Acquisition 

18F-FET was produced via nucleophilic 18F-fluorination with a radiochemical purity of greater 

than 98 %, a specific radioactivity greater than 200 GBq/μmol and a radiochemical yield of about 60 

%, as described previously [36]. According to the German guidelines for brain tumour imaging using 

labelled amino acid analogue, all patients fasted for at least 4 h before the PET acquisition [37]. 

Dynamic PET scans from 0 to 50 min post-injection were performed after intravenous injection of 

approximately 250 MBq of 18F-FET. Attenuation correction was performed by a template-based 

approach using MRI [38]. PET data were reconstructed using an OP-OSEM3D algorithm with 4 

subsets and 32 iterations where normalization and attenuation, scatter, dead time and random 

corrections were included [39]. The reconstructed dynamic data set consisted of 16 time frames (5 × 1 

min; 5 × 3 min; 6 × 5 min), image matrix of 256 × 256 × 153 and voxels of 1.25 × 1.25 × 1.25 mm3. 

 

Data Processing  

All data processing and analyses were performed using in-house developed MATLAB code 

(The MathWorks, Inc., Natick, Massachusetts, United States), Python code (Python Software 

Foundation, version 2.7, available at http://www.python.org) and the software PMOD (Version 3.7, 

PMOD Technologies Ltd., Switzerland). Data co-registration was performed using the FLIRT tool 

http://www.python.org/


from FSL [40], [41] using as reference the APT-CEST image at 3.5 ppm [42]. 

 

Field maps 

Field maps for B0 correction of the CEST data were calculated from the multi-echo GRE data. 

Images were masked based on the magnitude data and field maps were unwrapped using the algorithm 

from Ref. [43]. 

 

CEST Data Processing 

B0 field maps were used to correct the Z-spectrum for field shifts using a smoothing spline 

interpolation on a voxel-by-voxel basis. After correction, the data from the offsets between 14 and 7 

ppm were fitted to the Henkelman’s two-pool magnetisation transfer (MT) model as suggested for the 

extrapolated semi-solid magnetisation transfer reference (EMR) method [43]–[46]. 

In order to calculate the CEST-weighted images two approaches were considered: 

magnetisation transfer ratio asymmetry (MTRasym) and differences to the EMR (named using #). The 

MTRasym at 3.3 to 3.7 ppm was used, while EMR for the APT# and NOE# were calculated at 3.3 to 

3.7 ppm and at -3.7 to -3.3 ppm, respectively.  

 

Data Analysis 

A volume-of-interest (VOI) analysis was performed to compare the different CEST metrics with 18F-

FET PET data. Three VOIs were considered to evaluate the tumour region. One PET-based tumour 

VOI (FET-VOI) was defined as follows: a spherical background VOI was positioned in the hemisphere 

contralateral to the lesion in healthy brain tissue (volume of background VOI, 14.1 ml; 7220 voxels, 30 

mm diameter). The tumour VOI was defined in the summed 18F-FET PET image from 20 to 40 min 

post-injection by a 3D auto-contouring process using a tumour-to-brain ratio (TBR) of 1.6 or more. 

This metric is widely used in 18F-FET PET and the cut-off value is based on a biopsy controlled study 

of cerebral gliomas [7]-[9], [30], [47]. Two MR-based VOIs were manually defined: FLAIR-VOI, 

based on the image hyperintensities; CE-MPRAGE-VOI, based on contrast-enhanced regions (Fig. 1). 

Statistical analysis of the TBR of the CEST metrics was performed against 18F-FET data using 

a non-parametric Wilcoxon test using SPSS (IBM Corp. Released 2013. IBM SPSS Statistics, Version 

22.0. Armonk, NY: IBM Corp). P-values of 0.05 or less were considered statistically significant. In 



addition, the hot spots in the tumour area were localized in 18F-FET PET and APT# and their distance 

calculated. 

 



Results 

 Figure 2 presents Z-spectra for a pixel in the tumour and for a pixel in normal appearing white 

matter. The signal at 3.5 ppm is increased in the tumour voxel compared to the healthy tissue pixel. 

This is also visible in the difference to its corresponding EMR curve. In contrast, no peak was found in 

the downfield area of the Z-spectrum in healthy appearing brain tissue. In this figure it can also be seen 

that the EMR follows the conventional macromolecular pool for wide frequencies offsets in the range 

of 14 to 7 ppm. 

 Figures 1, 3 and 4 show the clinical and parametric images obtained for two subjects. Figure 1 

shows a case with a tumour where the contrast-enhanced region did not correspond with the 

metabolically active area in PET. The contrast-enhanced regions in the T1-weighted MRI also did not 

correspond with the FLAIR hyperintensities. In the MTRasym (Fig. 1g), the tumour showed an increased 

value compared to healthy appearing brain parenchyma. In the downfield APT# images, an increased 

intensity was observed in the metabolically active tumour area as defined by 18F-FET PET while the 

NOE# showed no differences between the tumour area and healthy appearing brain tissue. In Fig. 3, a 

case of a tumour with a necrotic area is presented. Here, the clinical data showed a contrast 

enhancement around the necrotic area, and a hyperintense signal in the FLAIR image. In the PET data 

the metabolically active area surrounds the necrotic region. For the CEST data, increased MTRasym 

values were observed in the necrotic region, while in the EMR parametric images (NOE# and APT#) 

the necrotic region presented values near zero, suggesting a reduced effect of direct water and MT 

contributions. In Fig. 4, a case of a tumour in the frontal lobe is presented. Here, the clinical data 

showed a contrast enhancement in the tumour region, and a hyperintense signal in the FLAIR image. In 

the PET data the metabolically active area has a larger extension when compared to the standard 

clinical data. For the CEST data, increased MTRasym values were observed in the tumour region. In the 

EMR parametric images, NOE# presented no signal changes while APT# presented an increased signal 

in the tumour region with a different pattern than 18F-FET. This example also illustrates the advantage 

of using 3D CEST where the full tumour extent could be evaluated. 

  Table 2 presents the VOI analysis for the various metrics. The different CEST contrasts 

provided different information when compared with 18F-FET PET (p<0.05, Wilcoxon test). TBR varied 

across the different VOI definitions. Additionally, the location of the maxima of APT# and 18F-FET 

PET differ (Tab. 3).  



Discussion 

 The aim of this study was to compare different CEST metrics with amino acid PET in cerebral 

gliomas using the clinically established PET tracer, 18F-FET, to examine the similarities / differences 

between the two methods. Each modality has already shown its diagnostic potential, for example, for 

tumour grading or discrimination of radiation necrosis against tumour recurrence [9], [47], [48]. While 

18F-FET PET achieves a moderate accuracy of 77 % for tumour grading [49], APT has shown more 

promising data with an area under curve in ROC analysis of 81 – 88 % [22]. To the best of our 

knowledge, no study in the literature has ever compared 18F-FET PET and APT. Thus, for the first time 

this study investigates the relation between 18F-FET PET and CEST related metrics in brain tumours 

using simultaneous MR-PET at 3T and three-dimensional imaging.  

In principle, 18F-FET PET and APT are based on different biochemical and physiological 

mechanisms. 18F-FET PET provides information about the expression of large amino acid transporter 

systems (L-type amino acid transporters 1 and 2 (LAT-1 and LAT-2)) that are more strongly expressed 

in brain tumours than in healthy tissue [50]. Consequently, an increased 18F-FET signal is not 

necessarily related to increased protein synthesis or increased protein content but to an increased 

expression of LAT transporters. In contrast, the APT signal is related to the peptides and mobile 

proteins and not to the total protein content [51], as well as local modification of pH [52]. Our results 

present no relation between APT-CEST and 18F-FET PET in the tumour region (Tab. 2), suggesting 

that the expression of LAT transporters and transfer of peptides and mobile proteins/change of pH is 

not strictly coupled. In addition, hot-spot locations in 18F-FET and APT differ (Tab. 3), which suggests 

that both modalities could be used to further understand the increasingly important issue of tumour 

heterogeneity.  

Several CEST metrics (MTRasym, NOE# and APT#) were calculated in this work using an 

irradiation power of 1 T and compared with 18F-FET PET. In the literature, most studies performed at 

3 T use an effective power of 2 T or higher [16]-[18], [22], [23], [48], [53]. The value of 2 T is 

chosen in order to obtain a null contrast in the normal appearing matter using MTRasym [53], once the 

contribution of NOE and APT signals cancel out in healthy tissue. However, at higher powers the 

influence of the macromolecular pool also increases [54], resulting in APT-weighted images (MTRasym) 

including MT contributions. Thus, in this work an irradiation power of 1 T was used in order to 

obtain nearly the maximum APT contrast and reduce the influence of the macromolecular pool that 



was further corrected using the EMR model. Moreover, this methodology proved to be stable regarding 

the applied power and allowed NOE# contrast to be additionally obtained [46]. The origin of this signal 

is still under discussion [24]–[26] and it has also been suggested that it could be linked to protein 

folding and structure [56]. Moreover, studies investigating NOE effects are often performed at higher 

field strengths (>3 T) [24]-[26], which also influences the contrast.  

In addition to various CEST metrics, different radiotracers are also available to measure 

amino-acid transport such as 18F-FDOPA. This radiotracer was used non-simultaneously with two-

dimensional CEST in Refs [28], [29]. In these studies, the authors explored the CEST signal from 

amines at 3 ppm as a measure of pH using a saturation power of 6 T. They found elevated MTRasym 

signal in regions with elevated uptake of 18F-FDOPA but it was not quantified.  

Tissue pH and T1 are a potential confounding factors in the present work, as it influences the 

CEST contrast [16], [24], [52], [57], [58]. Regarding pH, an increased CEST signal can be associated to 

an alkalinisation of the tissue or an increase protein concentration that could not be disentangled in this 

work. However, imaging pH exclusively is beyond the scope of the presented work that focused on 

evaluating different CEST metrics in the metabolically active tumour area defined by 18F-FET PET. 

Regarding T1, this is also a factor that can also influence CEST contrast [16], [24]. In the tumour 

region, the increasing of T1 occurs usually in simultaneous with an increase of water content that may 

reduce the influence of this factor in CEST signal [16]. Further studies are required to understand the 

relationship between CEST, 18F-FET, pH, tumour extent, and hot-spot locations.  

Defining tumour extent is an important issue for patient assessment and treatment planning. 

With conventional MRI, this is usually based on the contrast-enhanced regions of T1 weighted images 

[59]–[61]. Contrast-enhancement in MRI, however, indicates areas with a disrupted blood-brain barrier 

(BBB) that are, on the one hand, not specific for tumour tissue and, on the other hand, may not detect 

the full extent of the tumour. In contrast, 18F-FET uptake is independent of the BBB integrity [62] and 

allows a more specific delineation of tumour extent than contrast-enhanced MRI [30]. Thus, the results 

cannot be compared directly and often show discrepancies. For example, in the case of low-grade 

gliomas where the BBB is mostly intact, often no contrast enhancement is observed, while there is still 

an increased uptake of 18F-FET [30]. Thus, the present study also considers the 18F-FET positive 

regions to define the metabolically tumours region. This approach is supported by the biopsy-

controlled study of Ref. [30]. In the CEST literature, PET data is usually unavailable for comparison 



and consequently different studies present different strategies to delineate the tumour region that may 

or may not be accurate. In Ref. [18] ROIs were placed over the CE-MPRAGE or in FLAIR data when 

no contrast enhancement was found. In Ref. [21], [23] circular ROIs were only placed in the MTRasym 

with higher intensities in order to avoid the effect of averaging over larger ROIs. However, those 

tumour delineations do not necessarily reflect the solid and metabolic active area of the tumours and 

VOI values can change across different VOIs (Tab. 2). By using 18F-FET PET, the solid and 

metabolically active tumour tissue can be defined with high reliability; this presents an enormous 

advantage of the present study compared to previous studies. 

Three-dimensional acquisition is required in clinical applications in order to obtain whole 

tumour imaging. In CEST studies, two-dimensional imaging is often used to avoid long acquisition 

times [24], [26], [63]. In this study a steady-state approach based on segmented 3D EPI was used [32] 

to obtain fast full brain coverage. It was possible to acquire a single image in 18 seconds, without the 

use of parallel imaging, due to hardware limitation (reduced number of receive channels). In our 

approach, we sampled the Z-spectrum with 70 points in 21 min, which is still rather long but this could 

easily be reduced to about 10 mins by employing parallel imaging. Nevertheless, if a simplified 

sampling scheme with less sampling offsets is considered, as suggested in [21], the measurement time 

could be reduced to 6 min. 

The CEST imaging technique benefits from higher static magnetic fields (> 3 T) due to the 

increased spectral dispersion and increased signal-to-noise ratio. For that reason, the majority of the 

studies are performed at 7 T [20], [24], [32], [64]. However, no human MR-PET machine is currently 

available at 7T.  

The obtained results need to be confirmed in a larger and diversified population of patients. 

Nevertheless, the presented methodology can be combined with high field methods [65], pointing 

towards human MR-PET experiments up to 9.4 T to allow further insights into tumour metabolism 

[66]. 

 

Conclusions 

For the first time CEST imaging was compared with amino acid PET using 18F-FET in a 

simultaneous MR-PET measurement. Based on the well-founded assumption that high 18F-FET uptake 

reflects metabolically active tumour our data suggests that APT CEST provides substantially different 



information.  
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Legends 

Figure 1. A representative patient case (glioblastoma) with FLAIR (a), CE-MPRAGE (b), 18F-FET 

PET (c), MTRasym (g), NOE# (h) and APT# (j) images. The respective VOI definitions are shown in 

subfigures (d-f). PET shows prominent 18F-FET uptake in the tumour area in the frontal lobe (c) while 

APT# (j) exhibits minor differences compared with the normal brain. When compared with the normal 

brain tissue, NOE# (i) presented reduced contrast and MTRasym (g) presented high contrast.  

 

Figure 2.  Z-Spectrum and respective EMR fitting for a tumour pixel (a) and healthy tissue pixel (b). 

The difference between both curves are presented in the bottom plots from where the NOE# and APT# 

can be calculated (c-d). 

 

Figure 3. A patient case with a tumour (glioblastoma) with a necrotic region. Clinical FLAIR (a), CE-

MPRAGE (b), 18F-FET PET (c) and CEST metrics (MTRasym (d), NOE# (e), APT# (f)) are also 

presented. The tumour shows a cystic lesion in MRI (a,b) and corresponding strong signal in MTRasym 

(d), which do not correspond to the active tumour depicted in 18F-FET PET. NOE# (e) and APT# (f)) 

also presented different pattern when compared with 18F-FET which could not depict the rim of the 

lesion.  

 

Figure 4. A patient case with a tumour (oligoastrocytoma) in the frontal lobe. Clinical FLAIR (a), CE-

MPRAGE (b), 18F-FET PET (c) and CEST metrics (MTRasym (d), NOE# (e), APT# (f)) are also 

presented. 18F-FET PET (c) detects clearly the metabolically active tumour tissue in suspicious areas in 

CE-MPRAGE (b) and FLAIR (a). CEST metrics (d-f) present different information when compared 

with 18F-FET.  
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