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ABSTRACT 

  

A reduced von Willebrand factor (VWF) synthesis or survival, or its increased proteolysis, alone or 

in combination, contributes to the development of von Willebrand disease (VWD).  

We describe a new, simple mechanistic model for exploring how VWF behaves in well-defined 

forms of VWD after its DDAVP-induced release from endothelial cells. We aimed to ascertain 

whether the model can consistently predict VWF kinetic changes. The study involved 9 patients 

with VWD types Vicenza (a paradigmatic form with a reduced VWF survival), 8 type 2B, 2 type 

2A-I, 1 type 2A-II (associated with an increased VWF proteolysis), and 42 normal controls, whose 

VWF levels were measured after a 24h-long DDAVP test. The rate constants considered were: k0, 

associated with the VWF release phase; k1, illustrating the phase of conversion from high- to low-

molecular-weight VWF multimers; ke, associated with the VWF elimination phase. The amount of 

VWF released (D) was also measured.  

ke and D were significantly higher in O than in non-O blood group controls; k1 was also higher, but 

less markedly so. All the parameters were accelerated in type Vicenza, especially ke (p<0.0001), 

which explains the significant reduction in VWF half-life. In types 2B and 2A-II, k1 was one order 

of magnitude higher than in controls, which explains their loss of large VWF multimers. All 

parameters except ke were lower in type 2A-I. 

The proposed mechanistic model clearly describes the altered biochemical pathways in well-

characterised VWD, prompting us to suggest that it might help clarify elusive forms of VWD too. 

 

 

Key words: VWF, VWD, DDAVP, VWF survival, VWF clearance.   
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INTRODUCTION 

 

Von Willebrand factor (VWF) contributes to haemostasis by mediating platelet adhesion and 

platelet aggregation at the site of vascular injury (1,2). VWF is a polymeric glycoprotein 

synthesised and stored in the form of ultra-large (UL) multimers in megakaryocytes (alpha 

granules) and endothelial cells (Weibel-Palade bodies) (3). VWF may be released from alpha 

granules on platelet activation, and from Weibel Palade bodies on vascular injury, or under various 

physiological (4,5) and pharmacological stimuli (e.g. desmopressin) (6-8). Endothelial cells secrete 

VWF continuously to maintain basal plasma VWF levels (5). VWF function is modulated by its 

multimer organisation: large and ultra-large VWF multimers have the greatest haemostatic effect, 

mainly due to their capacity to bind to platelets and sub-endothelial collagen during platelet plug 

formation; their absence is associated with a severe bleeding tendency (9-12). Low-molecular-

weight (LMW) multimers have a weaker haemostatic capacity, their main function being to carry 

FVIII, which does not require a full multimer organisation (13). VWF released from endothelial 

cells undergoes extensive cleavage by circulating ADAMTS-13 protease, and this process gives rise 

to a heterogeneous VWF multimer pattern comprising high-molecular-weight (HMW) and LMW 

oligomers (14,15).  

Quantitative and qualitative VWF defects lead to von Willebrand disease (VWD) (16,17), the most 

common inherited bleeding disorder. Quantitative VWF defects are associated with VWD types 1 

and 3, and qualitative defects with types 2A, 2B, 2M and 2N. These various disease types are 

characterised by a different pathophysiology and bleeding risk (18,19). Several laboratory tests 

have been developed to identify and classify the different types of VWD (20). VWF levels are 

quantified by means of an antigen assay (VWF:Ag), which is unable to distinguish between HMW 

and LMW multimers. VWF collagen binding (VWF:CB) (21) and VWF ristocetin cofactor activity 

(VWF:RCo) (22) are measured mainly to explore the haemostatically more efficient large VWF 

multimers and VWF binding to collagen in the former case, and platelet GPIb in the latter. 
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Quantitative and functional tests can be used in combination to classify VWD patients by type (1, 2, 

3) and subtype (2A, 2B, 2M, 2N) (23, 24). 

From a kinetic standpoint, plasma VWF levels and patterns of HMW and LMW multimers depend 

on the balance between three determinants: 1) the amount and rate of VWF release; 2) ADAMTS-

13 proteolytic activity; and 3) VWF clearance from the plasma. These processes can be explored in 

detail by administering DDAVP, which induces an acute release of the VWF stored in the Weibel 

Palade bodies of endothelial cells, followed by proteolysis of the UL multimers and VWF 

clearance. This approach is currently used to explore VWF half-life (25), and the simplest model 

employed to date consists of a bi-exponential function describing the rise and fall of plasma 

VWF:Ag and VWF:CB levels following desmopressin stimulation with the aid of a physiology-

based mathematical model. This method can provide an estimate of the amount and rate of VWF 

release, in stimulated and basal conditions, and its clearance and half-life. It also enables us to 

characterise the VWF kinetics in normal individuals with the O and non-O blood groups (26), and 

in some types of VWD (type 1, type 2B, type 3) (27-30). On the other hand, this method cannot 

quantify the proteolytic activity of ADAMTS-13, which is known to be higher in type 2A and 2B 

VWD than in normal subjects, and also in individuals in the O vis-à-vis the non-O blood groups. 

Our team recently developed a more sophisticated pharmacokinetic (PK) model that can also 

account for proteolysis of the super ultra-large (SUL) VWF multimers adhering to the vessel wall, 

their conversion into smaller circulating molecules (SUL→HMW and SUL→LMW), and the 

biotransformation of HMW to LMW oligomers (31, 32). The structural complexity of this model 

made it necessary to analyse pooled data on a homogeneous VWD population, however, or to 

obtain a large set of experimental data for each patient, in order to obtain a statistically reliable 

estimate of the pharmacokinetic parameters. We consequently simplified the original model and 

used it to analyse the time courses of VWF:Ag and VWF:CB plasma concentrations after DDAVP 

challenge in normal subjects and VWD patients known to have a short VWF half-life (type 

Vicenza) or abnormal proteolysis (types 2A and 2B). The aim of the present study was to ascertain 
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whether our new model can consistently predict kinetic changes in paradigmatic VWD types, with a 

view to characterising the VWF kinetics of other VWD types with less clear kinetic features. 

 

MATERIALS AND METHODS 

 

Patients and normal subjects were studied in accordance with the Helsinki Declaration, after 

obtaining their written informed consent, and our ethical board’s approval of the study. 

Haemostatic analysis. The main haemostatic findings in the patients involved were as reported 

elsewhere (33). VWF antigen (VWF:Ag) was measured by enzyme-linked immunosorbent assay 

(ELISA) using horseradish peroxidase (HRP)-conjugated anti-VWF polyclonal antibody (Dako, 

Glostrup, Denmark). VWF collagen-binding (VWF:CB) activity was assessed with an ELISA test 

using type III collagen (Sigma, Milan, Italy). DDAVP (1-desamino-8-D-arginine vasopressin; 

Emosint, Sclavo, Italy) was administered subcutaneously at a dose of 0.3 µg/kg. Blood samples 

were collected before and 15, 30, 60, 120, 180, 240, 360 and 480 min, and 24 hours after 

administering DDAVP. The time courses of the VWF:Ag and VWF:CB plasma concentrations after 

the DDAVP challenge were analysed using our new mathematical model, which is described below 

and in the Results section. VWF multimers were analysed by electrophoresis on 1.8% high-gelling-

temperature agarose containing 0.1% sodium dodecyl sulphate (27). The multimers were detected 

by autoradiography after reaction with anti-VWF polyclonal antibody (DAKO) labelled with 
125

-I 

and viewed with the DS-50000 Epson densitometer scanner. 

Genetic analysis. Genomic DNA was extracted from peripheral blood leukocytes using the 

QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany). The VWF gene exons, including the 

intron-exon boundaries, were amplified and sequenced using primers chosen according to the VWF 

sequence established by Mancuso et al (34). The Big Dye Terminator Sequencing kit v.1.1 (Perkin 

Elmer, Wellesley, MA, USA) and an ABI 3130XL Genetic Analyzer (AB) were used for DNA 

sequencing. 
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Mathematical model. This is a simplified version of the model proposed by Galvanin et al. (31, 

32), a physiology-based compartmental model of VWD capable of characterising in detail the 

mechanisms of VWF release, proteolysis and clearance, and the multimer distribution of VWF in 

the plasma. The new model comprises two compartments, and was designed to investigate the time 

courses of plasma VWF:Ag and VWF:CB levels (Fig. 1a) after DDAVP challenge.  

The model is described by a system of differential and algebraic equations where each subject is 

characterised using three main PK constants, namely the VWF release rate k0 [h
-1

], the proteolysis 

rate k1 [h
-1

], and the elimination rate ke [h
-1

], which is assumed to be the same for both the 

UL+HMW multimers and the LMW multimers. The amount of VWF released is represented by a 

parameter D [U/dL]. Note that, for a given subject, the k0 parameter quantifies the rate of release, 

whilst D quantifies the amount of VWF released from the endothelial cells. The underlying 

physiological assumptions are that: (i) UL, HMW and LMW multimers are present in the basal state 

and/or after DDAVP; and that (ii) UL and HMW multimers can be cleaved to form LMW 

multimers. It is also assumed that the VWF:Ag measurements enable us to assess the quantities of 

UL+HMW+LMW multimers, whereas VWF:CB measures the UL+HMW multimers. The relative 

quantity of UL + HMW multimers and LMW multimers (derived from VWF:Ag and VWF:CB 

measurements) is computed in time and can be compared with the observed distribution obtained 

from gel electrophoresis images (see Results section). Details of the mathematical model and 

parameter estimation procedure are given in Appendix A.  

Details of the mathematical model and parameter estimation procedure are given in Appendix A.  

Statistical analyses. Data are presented as means ± SD. Normality of distribution was assessed 

with the D'Agostino & Pearson test. Unpaired statistical comparisons were applied: a) between O 

and non-O blood groups in normal subjects; b) between all normal subjects and each VWD type, 

except for 2A VWD (one patient). The non-parametric Mann-Whitney test was applied to all 

comparisons since most parameters did not pass the normality test. The significance level was set at 

p<0.05. 
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The procedures employed to determine the pharmacokinetic parameters in each subject are 

described in Appendix A. 

RESULTS 

 

Patients and healthy subjects. The study involved 9 patients with type Vicenza, 8 with type 2B, 2 

with type 2A-I, and 1 with type 2A-II VWD, all genetically characterised. Their pertinent 

haemostatic and genetic details are given in Table 1. Forty-two normal subjects (24 with blood 

group O and 18 with non-O blood groups) were enrolled as controls.  

Mathematical model parameters. A simplified version of the mathematical model proposed by 

Galvanin et al. (31,32) (see Materials and Method section) was used in this study to characterise 

DDAVP-induced VWF release, proteolysis and clearance mechanisms in detail for each subject. 

After DDAVP challenge, the model provides a mathematical description of: a) the quantity (D) of 

UL+HMW multimers released, the kinetics of which is explored by means of the PK parameter k0; 

b) the proteolysis of UL+HMW multimers by ADAMTS13 to form LMW multimers, investigated 

by means of the k1 parameter; and c) the clearance of VWF multimers from the plasma, assessed by 

means of the ke parameter. Representative results of the application of the model to average data 

from patients with VWD (2A, 2B and Vicenza) and normal subjects after a 24-h DDAVP challenge 

are shown in Figure 1b for VWF:Ag and in Figure 1c for VWF:CB. As clearly shown, the model is 

flexible enough to capture the wide between-group variability, and the fitting is very satisfactory. In 

VWD patients, the accelerated proteolytic activity observed in 2B and 2A-II patients is apparent in 

Figure 1c (low VWF:CB levels as a result of a paucity of HMW multimers in the bloodstream). 

Vicenza type is characterised by a shorter half-life as a result of a faster elimination rate (VWF:Ag 

basal concentration is restored after 8 hours, VWF:CB after approximately 14 hours). 

The mean values of the PK parameters for normal subjects and VWD patients are listed in Table 2 

and Table 3, respectively. Figure 2 shows a graphical comparison between the estimated results for 

the different groups of subjects.  
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Normal subjects. The values of k1, ke and D (Table 2) were higher in the O than in the non-O blood 

group subjects, though the differences were only statistically significant for ke (p<0.0001) and D 

(p<0.005), and borderline significant for k1 (p=0.051). There was no difference in the k0 value 

between the blood groups (Table 2). These findings suggest that blood group affects all the 

pathways explored except for the VWF release rate, and has a more marked effect on VWF 

clearance, confirming a previous report of a shorter VWF survival in subjects with the O blood 

group (26). 

Type Vicenza VWD. All type Vicenza patients were carrying the p.R1205H mutation which, in all 

but two of them, was combined with the p.M740I variant. All the patients belonged to non-O blood 

groups except for the two carrying the p.R1205H mutation alone. All rate constants (k0, k1 and ke, 

shown in Figure 2) were higher than in the controls, irrespective of ABO blood group. The ke 

parameter showed the highest value (p<0.00001), which was one order of magnitude higher than in 

controls (8.18+/-1.72 × 10
-3

 vs 1.17+/-0.68 × 10
-3

, respectively) (Tables 2, 3); the increases in k0 

and k1 compared to controls were significant, but less pronounced (2.43-fold and 3.26-fold, 

respectively) than in ke (Figure 2). The D parameter was statistically lower in patients than in 

controls (p<0.005). The most accelerated VWF pathway after DDAVP challenge in type Vicenza 

VWD was therefore clearance (ke), though the other pathways were accelerated too, while the 

amount released (D) was lower. 

Type 2B VWD. k1 and ke were statistically greater in these patients than in controls (Figure 2). The 

most pronounced increase concerned k1, which was one order of magnitude higher than in controls 

(47.1 +/-67.9 × 10
-4

 vs 4.59 +/-6.40 × 10
-4

); the increase in ke was smaller (2.76-fold), but the 

difference was still statistically significant (Table 2-3); k0 was statistically lower; and D was 

indistinguishable from that of controls. According to our model, this implies a difference in the 

kinetics associated with VWF release in 2B subjects, where the same amount of VWF is released 

but over a longer time (a slower release rate). Clearly, the most accelerated pathway in this group 

concerns VWF proteolysis, with the pertinent k1 value 10.2 times higher than in normal subjects - a 
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finding consistent with the shortage of large VWF multimers in these patients. The post-

DDAVP proteolysis of type 2B VWF was associated with a drop in platelet count from a mean 

167+/-44.9x10
3
/µL before to 32+/-47x10

3
/µL 60 min after DDAVP. The platelet count recovered to 

near its pre-DDAVP value within 360 minutes  (131+/-48.0x10
3
/µL). 

Type 2A. Type 2A-I is the VWD 2A subtype involving a defective VWF synthesis and an impaired 

multimer organisation (35). In this form, the k0, k1 and D parameters tended to be lower than 

normal, though not to a statistically significant degree, whereas ke was indistinguishable from those 

of normal subjects. The one patient in our study with Type 2A-II - characterised by a mutation that 

makes VWF more sensitive to ADAMTS13 (36) – had a k1 value 9.2 times higher than in controls 

and similar to the absolute value seen in type 2B VWD. The PK parameters related to the VWF 

release rate (k0) or quantity (D) and clearance (ke) did not differ significantly from those of normal 

subjects. 

Multimer distribution. One important feature of the proposed mechanistic model is that it can be 

used to describe the multimer time courses in terms of UL+HMW and LMW species from variables 

x
UL+HMW 

and x
LMW

 (see eqs. 1-2 in Appendix A for further mathematical details). The results are 

given in Figure 3, where multimer patterns and mathematical simulations are compared in a 

representative healthy O subject (Figure 3a) and in patients with VWD types 2B (Figure 3b), 2A-II 

(Figure 3c) and Vicenza (Figure 3d). The relative amount of UL+HMW multimers can be 

calculated from the ratio VWF:CB/VWF:Ag = x
UL+HMW

/( x
UL+HMW

 + x
LMW

) in time.  In normal 

subjects (Figure 3a) HMW + UL multimers are released soon after DDAVP administration and the 

proteolytic reduction to LMW is relatively slow; the clearance mechanism is also slow (after 24h 

some amounts of UL and increased HMW multimers are still present). In type 2B (Figure 3b) and 

2A-II (Figure 3c) patients the proteolytic action is more evident and higher amounts of LMW 

multimers are present after DDAVP. After their DDAVP-induced release, UL and HMW multimers 

are removed so quickly from the circulation by the action of ADAMTS13 that they are never 

detectable, while LMW multimers gradually increase to very high levels.  
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In type Vicenza patients (Figure 3d) the model predicts a rapid disappearance of UL+HMW, just 2 

hours after DDAVP administration, and of all the multimeric species within 6 hours, as a result of 

the accelerated clearance; and there are moderate LMW levels, as in normal subjects. These results 

clearly show that the multimer profiles predicted by the model are consistent with those obtained by 

gel electrophoresis in the subjects studied. In this regard, VWF:CB and its associated VWF:CB 

ratio reveal all their utility in the detection of VWF multimers, and its large components in 

particular (37).  

 

DISCUSSION 

 

A simplified version of the mechanistic model described by Galvanin et al. (31) was used in the 

present study to explore the abnormal biochemical pathways characterising different types of VWD, 

quantifying such changes on the basis of the pertinent PK parameters. Using the VWF:Ag and 

VWF:CB measurements obtained over a period of 24 hours after a DDAVP challenge, the 

mathematical model enabled us to elucidate the different pathophysiological conditions contributing 

to circulating VWF levels and multimer patterns. Healthy subjects were classified by O and non-O 

blood group and compared with type Vicenza, type 2A and type 2B VWD patients. 

Three main PK parameters were studied: k0, which explores the pathway of VWF release from 

endothelial cells; k1, which elucidates the proteolytic conversion of large and ultra-large VWF 

multimers into LMW multimers; and ke, which represents the clearance of VWF from the 

circulation and consequently its plasma half-life. The amount of VWF released after DDAVP 

challenge was also measured with the D parameter.  

Judging from the results obtained with our model, ABO blood group mainly affects two pathways, 

i.e. VWF proteolysis and clearance, since the k1 and ke were greater for subjects in the O than in the 

non-O blood groups. These findings are consistent with previous reports of healthy subjects with 

the O blood group having a shorter VWF survival (26) and lower circulating levels than non-O 
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individuals (38), and a greater VWF susceptibility to ADAMTS13 (39). While the increase in ke 

was statistically significant, the increase in k1 closely approached the significance level (p=0.051). 

This nearly-significant difference in k1 suggests that the influence of ABO blood group on VWF 

proteolysis is weaker than on VWF survival (39). If its impact on proteolysis were stronger, we 

would find relatively fewer large VWF multimers in O than in non-O individuals, but this has never 

been reported. It should be emphasised, however, that we found a marked variability in our 

population of normal subjects (n=42): this is hardly surprising, but might have influenced our 

results. Unlike our group’s previous findings using a different PK model (26), the amount of VWF 

released after DDAVP challenge was significantly higher in O than in non-O individuals. If our 

present observation holds, we might surmise that more VWF is stored in the Weibel-Palade bodies 

of healthy individuals with the O blood group. It has been previously reported, on the other hand, 

that VWF platelet content (which mimics endothelial cell condition) does not differ between ABO 

groups (40). This goes to show that the contribution of ABO group in modulating circulating VWF 

in normal subjects is of interest not only per se, but also for its implication in the field of 

haemorrhagic and thrombotic disorders (41).  

Our model identified a high elimination rate (ke) in type Vicenza VWD, which was the highest 

among all the patients studied here. This is consistent with the finding that a shorter VWF half-life 

is responsible for the significant reduction in circulating VWF levels, despite a normal VWF 

synthesis (27). The p.R1205H mutation in the D3 domain of type Vicenza patients speeds up the 

clearance of VWF to such a degree that the circulating VWF levels are similar to those of severe 

type 1 VWD, i.e. often below 10 U/dL. Type Vicenza VWD often (but not always) features the 

presence of unusually large VWF multimers. This has been attributed by Gezsi et al (42) to a very 

short VWF half-life, which does not give ADAMTS13 time enough to cleave the ultra-large/large 

VWF multimers released by endothelial cells. Our findings confirm this hypothesis, since our 

patients’ rate of conversion from UL+HMW to LMW VWF multimers (expressed by the k1 

parameter) seemed to be higher than normal, but less so than the increase in the ke parameter. The 
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contribution of VWF proteolysis would therefore have less impact than that of its clearance, with 

ultra-large VWF multimers persisting as a consequence. Type Vicenza patients were also 

characterised by a higher rate of release, but lower amounts of VWF released (expressed by D) by 

comparison with controls. The first result is visually evident if we compare their times to peak 

concentrations of VWF:Ag (Figure 1b) and VWF:CB (Figure 1c) (about 0.5 h) with those obtained 

for the other groups of subjects (always about 2 h), and this finding has already been reported in the 

literature (27). The second result is novel and warrants further investigation. According to our 

mechanistic model, all the biochemical pathways explored by our mechanistic model, i.e. VWF 

release, proteolysis and clearance, in particular, appear to be accelerated in type Vicenza, 

confirming that the main pathological issue in this condition is a very short VWF half-life. An 

explanation for this picture might be that the intrinsic defect in type Vicenza VWD – the p.R1205H 

mutation – prompts a generalised acceleration of all the biochemical pathways, or else that a faster 

clearance influences the other pathways.  

In type 2B VWD patients, k1 and ke were both significantly higher than normal, the former more so 

than the latter (k1 was one order of magnitude higher than in controls), so the proteolytic pathway 

appears to be the prevalent one. This explains the lack of large VWF multimers in such patients. 

The increase in ke confirms the shorter VWF half-life reported in patients with type 2B VWD (28). 

An increased proteolysis and a decreased VWF survival both contribute to the type 2B VWD 

phenotype (28, 43), though this is particularly true in type 2B patients lacking in large VWF 

multimers (44). The two aspects may be dissociated, however, as seen in type 2B patients who still 

have large multimers, albeit with an apparently shorter VWF half-life (44). 

The picture in type 2A-II VWD patient, featuring a greater susceptibility of VWF to ADAMTS13 

(36) is similar to that seen in type 2B VWD, though the underlying mechanisms are different, i.e.: a 

VWF more susceptible to ADAMTS13 in type 2A-II, and a greater VWF affinity for the GPIb 

platelet receptor (which enhances proteolysis by ADAMTS13) in type 2B. In agreement with this 

picture, the only patient with type 2A-II VWD had a very high k1, similar to that of type 2B 
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patients. In the two type 2A-I VWD patients all PK parameters, except ke, tended to be lower than in 

healthy controls, but the difference was not statistically significant. This picture is in line with these 

patients’ defective VWF synthesis and multimerisation, as confirmed by their reduced plasma and 

platelet VWF levels, and shortage of large VWF multimers. 

Our results can be summarised as follows:  

i) the magnitude of the VWF release rate constant k0 significantly lower than normal in type 2B and 

2.43 higher in type Vicenza VWD, suggesting an accelerated VWF release pathway in this variant 

of the disease;  

ii) k1 (a measure of the proteolytic conversion of HMW to LMW multimers) was greater than 

normal in type 2B and type 2A-II (which explains the lack of large VWF multimers). It was also 

greater, though less markedly so, in type Vicenza patients; 

iii) ke (a measure of the VWF clearance rate) was very high in type Vicenza, consistently with the 

much reduced VWF half-life in this form of VWD; it was higher than normal in type 2B too 

(though to a lesser extent). 

Our findings suggest that each of the variants of VWD explored in this study coincides with a 

picture in which one pathway abnormality prevails over the other(s), thereby influencing the 

corresponding phenotype.  In type Vicenza it was the ke parameter associated with VWF clearance 

that we found much greater than normal, while the other parameters were relatively less markedly 

altered. In type 2A-II and type 2B it was the k1 parameter, a finding that explains the abnormal 

multimer pattern observed in these patients. In type 2A-I all parameters except ke were decreased. 

In conclusion, a new mechanistic model is proposed here for the quantitative description of the 

metabolic pathways related to VWF release, proteolysis and clearance from the bloodstream in 

different types of VWD and in healthy subjects. Our model proved capable of detecting the typical 

changes in VWF proteolysis and clearance in type 2B, type 2A-II and type Vicenza VWD. It also 

pointed to possible differences in VWF kinetics between normal subjects in the O and non-O blood 

groups. The model can be tailored to individual patients with VWD, enabling a quantitative 
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description of the time course of their VWF multimer distribution, and a consequently faster and 

more effective diagnosis of their disease. Our findings may also lay the foundations for a model-

based diagnostic procedure that uses a subject’s laboratory data to delineate an unknown 

pathophysiological condition. This would be especially useful in the case of type 1 VWD, the most 

common and also the most elusive form of VWD, that may stem from a reduced VWF synthesis, an 

abnormal proteolysis or an accelerated clearance, alone or in combination.  
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LEGENDS TO THE FIGURES 

 

Figure 1. Simplified model developed in this study. (a) Model structure; VWF:Ag and VWF:CB 

measurements are identified by dashed boxes; D = release of UL+HMW multimers after DDAVP 

administration (UL = ultra-large; HMW = high-molecular-weight; LMW = low-molecular-

weight). Time profiles after DDAVP challenge of (b) VWF:Ag  and (c) VWF:CB plasma 

concentrations for the average healthy O (HO) and non-O (HnonO) subjects and patient affected 

by 2A-I, 2A-II, 2B and Vicenza type VWD. Model results are shown by the lines, test samples are 
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indicated by squares. In the fitting procedure, measurements are assumed to be normally 

distributed with a standard deviation of 2 U/dL. 

Figure 2. Comparison between the estimated parameter values for healthy O (HO) and non-O 

(HnonO) subjects and patients affected by VWD (group Vicenza, 2B, 2A-I and 2A-II). Variability 

for each parameter in each group is given in terms of standard deviation through error bars.  

Asterisks indicate parameters significantly different from control group (p<0.01). No statistical test 

was applied to 2A-II VWD type. 

Figure 3. Multimer distribution in time following DDAVP challenge (left column) and as 

computed by the proposed model (right column) in terms of low-molecular-weight multimers 

(LMW, solid line) and ultra-large plus high-molecular-weight multimers (UL+HMW, dotted line); 

the experimental evaluation through gel electrophoresis images and the model predictions are 

shown for representative (a) healthy O subject; (b) type 2B patient; (c) type 2A-II patient and (d) 

type Vicenza patient. 
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Table 1. Main hemostatic and genetic findings observed in the VWD patients and normal subjects studied. 

Subjects (No) 
Age, years 

Range/Median 

Blood group 

O/nonO 

VWF:Ag 

U/dL 

VWF:CB 

U/dL 

VWF:RCo 

U/dL 

Platelet VWF 

U/dL 

FVIII:C 

U/dL 
Mutations 

Vicenza (9) 26-59/41 2/7 8.8±2.2 7.2±2.6 8.19±4.06 96.01±16.34 16.31±4.9 
p.R1205H 

p.M740I + p.R1205H  

2B (8)  36-65/39 5/3 41.3±9.5 8.9±4.2 22.0±7.3 119.6±24.1 52.4±8.6 

p.R1308C 

p.V1316M 

p.R1306W 

2A-I (2) 48-36/42 1/1 15.3±9.2 13.1±7.2 8.7±3.8 28.5±0.8 30.2±10.7 
p.R1374H 

p.L1446P 

2A-II (1) 56 0/1 41.8 5.8 6.4 86.2 57.3 p.L1562P 

Normals (42) 19-52/38 17/25 96.3±46.5 99.4±45.9 - - 101.2±40.8  

Normal range   60-160 65-150 60-130 70-140 60-160  
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Table 2. Mean PK and D values including statistics for model parameters obtained after parameter estimation for healthy O 

(HO), non-O (HnonO) and control (HO+HnonO) subjects; p-values for parameters significantly different for healthy 

subjects are indicated in boldface (p<0.01). 

PK 

parameter 

HO HnonO HO/HnonO 

p-values 

Control (HO+HnonO) 

mean SD mean SD mean SD 

k0 [h
-1
] 2.64E-02 8.72E-03 2.87E-02 8.04E-03 2.17E-01 2.74E-02 8.41E-03 

k1 [h
-1
] 6.25E-04 7.94E-04 2.37E-04 2.13E-04 1.43E-01 4.59E-04 6.40E-04 

ke [h
-1
] 1.52E-03 6.71E-04 7.04E-04 3.57E-04 2.32E-05 1.17E-03 6.88E-04 

D [U] 5.68E+02 1.54E+02 4.25E+02 1.01E+02 2.93E-03 5.07E+02 1.51E+02 
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Table 3. Estimated mean PK and D values including statistics obtained after parameter estimation for VWD patients (Vicenza, 2B, 2A-I, 

2A-II); standard deviation (SD) is indicated in parentheses; p-values for parameters significantly different from control group are 

indicated in boldface (p<0.01).  

PK 

param. 

Vicenza 2B 2A-I 2A-II 
Control 

(HO+HnonO) 

mean 

(SD) 
p-values 

mean 

(SD) 
p-values 

mean  

(SD) 
p-values 

mean 

(SD) 
p-values 

mean  

(SD) 

k0 [h-1] 

6.66E-02 

(3.60E-02) 

9.82 

E-03 

1.77E-02 

(7.02E-03) 

3.76 

E-03 

2.06E-02 

(0.67E-02) 

2.48 

E-01 

1.52E-02 

(-) 
- 

2.74E-02 

(8.41E-03) 

k1 [h-1] 

1.50E-03 

(2.99E-03) 

7.21 

E-01 

4.71E-03 

(6.79E-03) 

3.17 

E-03 

3.00E-04 

(4.23E-04) 

8.88 

E-01 

4.23E-03 

(-) 
- 

4.59E-04 

(6.40E-04) 

ke [h-1] 
8.18E-03 

(1.72E-03) 

3.20 

E-06 

3.23E-03 

(1.18E-03) 

6.09 

E-05 

1.77E-03 

(0.36E-03) 

1.21 

E-01 

1.26E-03 

(-) 
- 

1.17E-03 

(6.88E-04) 

D [U] 

2.71E+02 

(1.80E+02) 

1.93 

E-03 

5.97E+02 

(3.32E+02) 

9.68 

E-01 

3.53E+02 

(5.47E+01) 

7.59 

E-02 

6.49E+02 

(-) 
- 

5.07E+02 

(1.51E+02) 
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Bullet points 

 

What is known in this topic 

- Reduced VWF synthesis or survival, or increased proteolysis may contribute to VWD.  

- The diagnosis and characterization of VWD is often complicated, and not always successful. 

 

What this paper adds 

- A mechanistic model is proposed for exploring the release, proteolysis and elimination of VWF in 

patients with type 2A, 2B and type Vicenza VWD.  

- In each form of VWD, the abnormality of one pathway seems to prevail over the others, thus 

explaining the associated phenotype.  

- Our model might be helpful in the diagnosis of VWD, especially the more elusive forms.  
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