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Morphological changes in human serum albumin in presence of 

cationic amphiphilic drugs  

Z. Yaseen,a† V. K. Aswal,b X. Zhou,d Kabir-ud-Din c and S. Haider d†  

Human serum albumin (HSA) is one of the most important carrier proteins present in the blood and can 
constitute more than half of serum proteins. It transports various biomolecules including hormones, fatty 
acids, ions, drugs and functions to regulate oncotic pressure in the plasma. Cationic amphiphillic drugs like 
amitriptyline hydrochloride, imipramine hydrochloride and promethazine hydrochloride bind to HSA and 
influences function by altering its conformation, as confirmed by Small-angle neutron scattering (SANS) data 
coupled to dynamic light scattering measurements (DLS). Protein unfolding was observed by SANS results 
through an increase in the value of the radius of gyration Rg. At higher drug concentrations, there was no 
change in the dimensions of the protein. However, the drugs formed free aggregates at higher 
concentrations without any growth in the drug micelles, which was confirmed by the appearance of second 
peak in DLS measurements. Molecular docking revealed that the morphology of hydrophobic moiety of the 
cationic amphiphilic drugs decides their binding fate with HSA, while trajectories from molecular dynamics 
simulations highlight structural disorder in the drug-HSA complex. 

Introduction  

Proteins are considered to be most important, abundant and 

versatile macromolecules, whose functions depends on its three 

dimensional structure1. Most drugs are small compounds that 

target and interact with proteins to induce perturbations in the 

protein function2. The binding of a drug to bio-molecules not only 

provides information regarding drug action (both toxic and 

therapeutic) but also sheds light on disposition and transport of 

drugs, which are regulated by various proteins such as human 

serum albumin (HSA). Detailed understanding of drug-protein 

binding is important from structural as well as dynamic point of 

views. Protein binding profiles of drugs are also useful in predicting 

potential side effects of the drugs. Thus, an understanding of the 

possible interactions between drug molecules and proteins is 

essential, in order to develop safe-engineered and biocompatible 

drug delivery 3-5. 

 

HSA is the major extracellular protein in blood plasma with a 

concentration of 40 mg ml-1. It has high affinity for a wide range of 

metabolites including drugs and transports various solutes into the 

blood stream. Thus, functioning to maintain the pH  

 

and oncotic pressure6. In this context, various researchers have 

attempted to utilize HSA as carrier to deliver various drugs to their 

specific target organs, in addition to their clinical usage in 

hypovolemic shock treatment7.  

   

 
 

Figure 1: Structure of human serum albumin (HSA) with docked 

drugs. The cationic drugs bind in an orientation very similar to 

diclofenac (PDB id 4Z69) in site 1 and diazepam (PDB id 2BXF) in site 

2. Detailed description of HSA-drug interactions in site 1/2 are 

illustrated in Supplementary figure S1. 
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HSA is a single non-glycosylated, 67kD polypeptide; in globular 

form, the protein is composed of three structurally similar domains 

(I-III), each consisting of two subdomains (A and B) and stabilized by 

17 disulfide bonds 7-13 (Figure 1). Several ion-pair interactions are 

also present at the interface region between domains 

(Supplementary figure S2). These ion-pair interactions and disulfide 

bridges impart rigidity to the structure, but at the same time, allow 

sufficient flexibility for the protein to undergo conformational 

changes based on the experimental conditions 14. The two major 

binding regions of HSA, namely drug sites 1 and 2, are located in 

subdomains IIA and IIIA, respectively 15 (Figure 1, Supplementary 

figure S2). Taking into account the wide range of effective 

concentrations of therapeutic drugs from μM to mM and high 

concentration of albumin, the free concentration for a therapeutic 

effect can be significantly reduced for drugs with high binding to 

plasma. It is of interest to characterize the structure of the 

complexes between serum albumins and drugs in order to find out 

the means by which clinical efficacy of drugs can be tuned. 

 

 
Figure 2: Chemical structures of cationic drugs imipramine 
hydrochloride (IMP), amitriptyline hydrochloride (AMT) and 
promethazine hydrochloride (PMT) used in this study. 
 

In the present study we have used small-angle neutron scattering 

data (SANS) coupled with dynamic light scattering (DLS) and 

molecular docking and simulations (MD) to explore the structural 

and dynamic interactions of HSA with three cationic amphiphilic 

drugs (amitriptyline hydrochloride (AMT), imipramine 

hydrochloride (IMP) and promethazine hydrochloride (PMT); Figure 

2). The group belonging to cationic amphiphilic drugs (CADs) is 

sizeable and includes many different therapeutic categories. Some 

of them are antidepressants, antiarrythmetic, antiginals, 

antibacterial, anoxeric, antipsychotic, and others 16. The three drugs 

used here represent an interesting variety of amphiphilic structures. 

At one extreme they resemble with typical surfactants as they have 

well defined cmc (critical micelle concentration); however, they 

form stacked type of aggregates, unlike that of surfactants, which 

mostly form spheroidal aggregates 17. The cmc values of AMT, IMP 

and PMT are 0.036, 0.040 and 0.045 M respectively 18. Earlier 

studies on surfactant–protein binding proposed formation of 

micelle-like aggregates which enclose the hydrophobic patches (of 

the surfactant) on the protein backbone and thus result in necklace-

bead structure of the protein-surfactant complex. In spite the fact 

that interactions between proteins and amphiphiles (especially 

surfactants) are well studied, the characterization of the complexes 

is still debated. At high surfactant concentrations, the proposed 

structures are: (a) “necklace and bead model” in which surfactant 

micelles are arranged along a polypeptide 19, (b) the rod-particle 

model where the amphiphile binding leads to expansion into a high 

aspect ratio prolate ellipsoidal 20, (c) flexible cylindrical micelle 

model where the protein molecule wraps around the surface of 

cylindrical micelles 21, and (d) a fractal arrangement of relatively 

small surfactant micelles bound to polypeptide chain, analogous to 

micellar model 22. Characterizing the complexes between protein 

and amphiphilic drugs (stacked type of aggregates) is of significance 

from a biomedical point of view. It is also pertinent to mention that 

small-angle neutron scattering characterization of amphiphilic drug-

protein complexes is sparsely reported in the literature. 

Results and discussion  

The SANS data for 1 wt % pure HSA and that of HSA incubated in 

the presence of the cationic drugs (from pre-micellar to post-

micellar region) are shown in Figure 3. The solid lines are fit to the 

SANS data using an ellipsoid model with the fitted parameters listed 

in Table 1. The data of pure HSA has been fitted to prolate 

ellipsoidal model and the fitting generated a value of semi major 

axis (a) = 70.1Å and that of semi minor axis (b=c) = 18.2Å, which are 

in good agreement with that of the reported values 23. SANS data 

show an increase in scattering cross-section with an increase in the 

drug concentration. 

 

As observed from Figure 3A, there is continuous increase in the 

scattering cross-section with an increase in drug concentration and 

the functionality of scattering pattern of drug-protein complexes is 

different from that of the protein. This change in scattering pattern 

at low-Q values can be interpreted in terms of the unfolding of 

protein. Figure 3B presents the scattering data as a Kratky plot 

representation (I(Q).(Q
2
) vs Q) of HSA(apo) and HSA-drug 

complexes. Evidently, the depicted data can be grouped into two 

sets, low concentration regime (25 mM and 50 mM) and high 

concentration regime (100 mM and 200 mM). The first data set 

corresponds to HSA(apo) at low drug concentrations where the 

scattering pattern is similar to that of free HSA at high-Q values. 

However, there is noticeable change at low-Q values, indicating 

formation of larger structures. Based on the knowledge of 

conventional surfactant binding to the protein molecules, we tried 

to fit the data by using the necklace model of protein-surfactant 

complexes that assumes micelle-like clusters of surfactants 

randomly distributed along the unfolded polypeptide chain, but 

failed completely. The data were then fitted by using random coil 

Gaussian conformation, which assumes drug molecules’ binding 

individually to the HSA, resulting in the opening of the globular 

protein structure into a random coil of the unfolded polypeptide 

chain, hence, leading to increase in the volume of the scattering 

particle. Data in Table 1 also suggest increase in radius of gyration 

(Rg) of the protein with increase in concentration of the drugs from 

25 mM to 50 mM.  In our earlier studies 24,25, we have reported that 

amphiphilic drug molecules (like AMT) form stacked type of micelles 

with aggregation number of 4-5 molecules, which is quite low in 
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comparison to that of conventional surfactants. The low 

aggregation number is due to the bulky hydrophobic backbone of 

drug molecules. Once the drug molecules bind to the HSA 

molecules, the hydrophobic backbone of drug molecules gets 

stabilized in hydrophobic pouches of the protein (not available for 

the aggregation). Hence, the drug molecules individually bind to the 

HSA, leading to unfolding of the polypeptide chain. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: (A) SANS data (B) Kratky plots and (C) Average 

hydrodynamic radii of 1wt% HSA(apo) and HSA-drug complexes. 

The rows correspond to (i) HSA-AMT (ii) HSA-PMT and (iii) HSA-IMP. 

 

Recently, Dey et al.26 reported that at high sodium salicylate and 

amphihphilic sodium deoxycholate concentration, the protein fibrils 

rearrange to random coil conformations (sodium deoxycholate also 

possesses a bulky hydrophobic backbone). Kiselev et al., have 

reported the size of HSA in 150mM NaCl to be ~27.4 ± 0.35 Å by 

SANS technique27.  The increase in Rg up to 52.88 ± 1 Å in presence 

of 25mM AMT (and similar changes with HSA-IMP and HSA-PMT 

systems, Table 1) indicates that the drug causes unfolding of the 

HSA molecule28. The drug molecules bind to the hydrophobic 

pockets of protein in between the sub-domains. Hence, the sub-

domains of protein start separating from each other after adding 

the drug, which leads to increase in the values of Rg.  

 

 

 

 

 

At higher drug concentrations (100 mM to 200 mM), the features of 

scattering profiles of HSA-drug complexes are very different from 

that of low drug concentrations. There is appearance of a 

correlation peak in SANS profiles of HSA-drug systems. This 

correlation peak is attributed to the presence of repulsive micellar 

aggregates, which are formed at the higher drug concentrations 

(the concentrations are well above the respective cmc values). 

Therefore, the SANS data at high drug concentrations were fitted as 

a sum of contributions from free micelles and HSA-drug complexes 
26. The fitted parameters are listed in Table 1. The analysis indicates 

that a high drug concentration does not appear to affect the HSA-
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drug complexes (as the excess drug remains in solution as free 

micelles without disrupting the HSA-drug complexes).  Levis et al.29 

studied the influence of pH on the complex forming behaviour of 

amphiphilic drug nortryptyline hydrochloride and HSA, where they 

have reported adsorption of the drug on the protein at low drug 

concentrations and formation of drug aggregates at higher drug 

concentrations. At > 100 mM drug concentration, the correlation 

peak becomes more prominent indicating the presence of higher 

repulsive intermicellar interactions between the positively charged 

drug micelles. It is found that at higher drug concentrations the Rg 

value of polypeptide chain and the micellar dimensions remain the 

same, however, there is increase in effective particle charge (Z). An 

increase in scattering intensity at higher drug concentrations is due 

to the increase in number of free micelles. 

 

HSA + Drug HSA-drug 
complex 
parameters 

Micellar parameters 

 Rg(Å) ± 1 a (Å) 
± 1  

b=c (Å) 
± 1 

Z 

25mM AMT 52.88 - - - 
50mM AMT 55.15 - - - 

100mM AMT 55.03 95.59 10.93 - 

200mM AMT 55.65 95.66 10.59 13.15 
25mM PMT 44.59 - - - 

50mM PMT 47.53 - - - 

100mM PMT 57.15 97.98 10.53 - 
200mM PMT 57.55 98.15 9.25 10.28 

25mM IMP 42.14 - - - 

50mM IMP 44.47 - - - 
100mM IMP 55.12 92.23 9.82 - 

200mM IMP 55.01 98.51 9.45 12.54 

 

Table 1: Fitted parameters, i.e., semimajor axis (a), semiminor axis 

(b,c), radius of gyration (Rg), and effective particle charge (Z) of 

SANS analysis of HSA with respect to the concentration  of drugs (in 

every system the HSA concentration was maintained constant at 1% 

w/v). 

 

At low concentrations of drug (25mM and 50mM) the radius of 

gyration of HSA in presence of AMT increases upto a larger extent 

than in comparison to that of IMP and PMT (Table 1).  The 

scattering profile in Kratky plot of HSA-AMT complex is higher than 

that of HSA-IMP and HSA-PMT complexes at low drug 

concentrations (Figure 3 B). These morphological changes of HSA in 

presence of AMT are attributed to the slightly large hydrophobic 

backbone of the AMT in comparison to that of IMP and PMT.  There 

is literature agreement that initially the interaction between ionic 

compound and protein is ionic, causes the protein to unfold and 

exposes more binding sites 30,31. The non-polar amino acid side 

chains of protein interact with hydrophobic backbone of small 

molecules 20. The hydrophobic interaction of protein and small 

molecules leads to conformational change even when the 

concentration of ligand is remarkably low 32.  Higher hydrophobicity 

of AMT is reflected by the low critical micelle concentration of AMT 

in comparison to that of PMT and IMP 18. HSA shows maximum 

structural change in presence of AMT upto 50mM concentration 

while as in case of PMT and IMP maximum changes occur up to 

100mM, which is also in accordance with high hydrophobic nature 

of AMT. 

 

We have also performed DLS measurements to analyze the 

existence of different species in solution and to obtain the size of 

the drug-protein complexes. Figure 3C shows the size distribution of 

HSA solution ([HSA] = 1% (w/v)) in the presence and absence of 

amphiphilic drugs. The figure collects the hydrodynamic radii of the 

HSA(apo) and HSA-drug complexes, taken from the position of the 

peaks of the intensity distribution function, at different drug 

concentrations. The distribution obtained for pure HSA(apo) (1wt 

%) solution shows one peak and hydrodynamic radius of 3.73 nm, 

which is in agreement with the literature value 33. HSA-drug 

complexes at 25 and 50 mM drug concentrations (below cmc) also 

show only one peak, though the intensity and broadening of the 

peak indicate complex formation between the drug and HSA. The 

magnitude of the change in the hydrodynamic radius of HSA is 

sufficient to account for appreciable unfolding in the protein 

molecule. At 100 mM drug concentration, there is appearance of 

another small peak, which may be assigned to the existence of free 

drug aggregates. With further increase in the drug concentration 

(200 mM), two peaks can be perfectly distinguished, one 

attributable to the HSA-drug complexes and the other to the 

micelle-like structures formed by the drugs. This is in accordance to 

our SANS data, wherein also we obtained increase in size of HSA-

drug complexes at small drug concentrations, and at higher 

concentrations, the occurrence of free drug micelles. The different 

values in the sizes of the complexes obtained using DLS and SANS 

are expected because DLS measures structures along with its 

hydration 23. 

 

In an earlier study it has been reported that the unfolding in bovine 

serum album protein is caused by micelle-like aggregation of 

surfactant molecules in the complex, but in lysozyme the unfolding 

is due to the individual binding of the same surfactant molecules; 

this leads to the evidence that the model which fits to the protein-

surfactant complex depends on the type of protein 34. However, 

from both the studies (SANS and DLS) of HSA-drug complexes, it can 

be concluded that the type of model fitting to protein-amphiphile 

complexes depends also on the structure of the amphiphile as well.  

 

In order to explore how AMT/PMT/IMP binds to HSA, molecular 

docking was performed. HSA has previously been co-crystallised 

with several ligands. It has been reported that AMT binds to both 

site 1 and 2 of HSA, while PMT only binds to site 1 and IMP shows a 

preference for site 2 35-37. Diclofenac is one of the drugs that closely 

resemble the cationic ligands binding in the small cavity in site 1, 

where AMT and PMT docked, in an orientation similar to diclofenac 

(Figure 1). Diazepam was used as the probe for site 2 and its 

common structure was used as a template to dock AMT and IMP. 

The calculated binding energies were similar in each site and ranged 
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between HSA-AMT (-15.6 kcal/mol) and HAS-PMT (-13.2 kcal/mol) 

in site 1, HSA-AMT (-7.3 kcal/mol) and HSA-IMP (-6.7 kcal/mol) in 

site 2. The negative interaction energies suggest that the 

interactions are spontaneous and the morphology of hydrophobic 

moiety of the cationic ligands decides their binding fate. The 

complexes were then subjected to molecular dynamics simulations 

in order to extract comprehensive details concerning structural 

perturbations induced by the binding of cationic ligands to HSA. 

Three sets of statistically independent simulations for the HSA(apo) 

and each HSA-drug complex were run to refine the structures and 

investigate the morphological changes, occurring upon 

AMT/PMT/IMP binding. In total, 15 MD simulations were run up to 

500 ns each for HSA(apo) and HSA-drug complexes. Here we report 

the average of the three simulations. 

 

Figure 4: Left column: Cα Root mean-squared deviation (RMSD 

(nm)), Middle column: Radius of gyration (RG (nm)) and Right 

column: Solvent accessible surface area (SASA (nm2)) of HSA(apo) 

(black) and in complex with AMT-site1 (red), PMT (green), AMT-

site2 (orange) and IMP (blue) calculated from the simulations. 

Three simulations (dashed lines) for each system were run and the 

average values of the three simulations have been plotted (solid 

line). 

 HSA 
(apo) 

HSA-
AMT 
(site 1) 

HSA-
PMT 
(site 1) 

HSA-
AMT 
(site 2) 

HSA-
IMP 
(site 2) 

RMSD 
(nm) 

0.39 
(0.04) 

0.43 
(0.04) 

0.40 
(0.04) 

0.27 
(0.01) 

0.25 
(0.02) 

Rg  
(nm) 

2.69 
(0.02) 

2.75 
(0.02) 

2.72 
(0.02) 

2.66 
(0.02) 

2.65 
(0.01) 

SASA 
(nm2) 

325.5 
(3.1) 

332.1 
(3.0) 

330.2 
(3.0) 

330.5 
(3.1) 

326.7 
(3.0) 

 

Table 2: Average RMSD, Rg and SASA values over the course of the 

final 100ns of the simulation run. The values have been averaged 

over 3 simulation runs. Standard deviation is tabulated in 

parenthesis. 

The stability of simulations was assessed by calculating the Cα root 

mean-squared deviation (RMSD). The radius of gyration (Rg) and 

solvent accessible surface (SASA) area was also monitored over the 

course of the simulation time to assess the tertiary structure of the 

systems. The values of RMSD, Rg and SASA for the final 100ns are 

tabulated in Table 2. The radius of gyration (Rg) measures the 

compactness of a protein structure. If a structure is folded, the Rg 

values will be stable over the course of the simulation. Native HSA 

maintains its tertiary structure during the simulation, although the 

cationic complexes stabilize at higher Rg values (Figure 4 middle 

column). The calculated solvent-accessible surface area (SASA) for 

the complexes is comparable or greater than that for native HSA 

indicating that the binding of cationic ligands increases the exposed 

areas (Figure 4 left column). AMT, when bound in site 1 displayed 

greatest RMSD, while the most compact structure based on Rg and 

SASA analysis was that of HSA(apo). A detailed view of 

conformational perturbation was also obtained by measuring the 

minimum distance of ion-pair interactions that exist at the interface 

between the subdomains (Supplementary figure S2B). A 

simultaneous, irreversible loss of multiple ion-pair interactions is an 

indicator of unidirectional conformational drift leading to a possible 

localized loss of secondary structure (Supplementary figure S3). We 

define these ion pair interactions collectively to be reflective of the 

core of the HSA structure. A total of ten ion pair interactions were 

monitored including R117-E520, R485-E383, R472-D494, R428-

D183, R410-E492, R348-E383, R10-D259, R209-E354, K432-E184 

and K432-D187. While these ion-pair interactions are reversibly 

maintained in the HSA(apo) simulations, the binding of cationic 

drugs has a noticeable destabilizing effect on most of them in the 

complex (Supplementary figure S2C). R485-E383 ion-pair 

interaction is however maintained in all systems, while R117-E520 

interaction is lost only when the drugs are bound in site 2. 

Furthermore, a comparison of the per-residue root mean squared 

deviation (Supplementary figure S4) highlights the conformational 

drift in the drug-HSA complexes. Greater root mean squared 

deviation of residues is observed in the core of the complexes, as 

when compared with the HSA(apo). The root mean squared 

fluctuation also confirms that the drugs, when bound in site 1 

exhibited pronounced structural effects on the protein than when 

bound in site 2 (Supplementary figure S5). The overall results are 

consistent with the experimental observation that binding of 

cationic ligands brings about a conformational change upon binding 

with HSA. 

Conclusions 

We have studied the effect of three cationic amphiphillic drugs 

(AMT/IMP/PMT) on conformation of human serum albumin (HSA). 

At low concentrations, the drug molecules get individually bound to 

HSA, and hence, the sub-domains of protein start separating from 

each other, resulting in increase in values of Rg (unfolding of 

polypeptide chain). With increase in drug concentration, there is no 

change in the dimensions of HSA-drug complexes. HSA in presence 
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of higher drug concentrations has protein-drug complex structure 

with free micelles of drugs, i.e., the HSA-drug complexes coexist 

with free drug micelles. Both SANS and DLS studies suggest that the 

protein gets unfolded in presence of the cationic amphiphillic drugs, 

and after saturation of protein, there is formation of free micelles 

of the drugs (Supplementary figure S6). Molecular docking reveals 

that the cavities in sub-domain IIA (site 1) and IIIA (Site 2) of HSA 

represent the preferred binding sites to the cationic amphiphilic 

drugs. Thus, the hydrophobic backbone of the amphiphilic 

molecules (viz., the cationic drugs in the present case) plays an 

important role in their binding with HSA. 

Experimental 

Materials and methods  

Amitrityline hydrochloride (AMT), promethazine hydrochloride 

(PMT), imipramine hydrochloride (IMP), and human serum albumin 

(HSA) were purchased from Sigma and used without further 

purification. Human serum albumin was essentially fatty acid free. 

All other reagents were of analytical grade. All the experiments 

were carried out in Tris hydrochloride buffer solution of pH=7.4. 

Small-angle neutron scattering (SANS) measurements 

Samples for SANS experiments were prepared by dissolving known 

amounts of HSA and HSA-drug mixtures in buffer solution of D2O. 

The use of D2O as a solvent (instead of H2O) provides good contrast 

for the hydrogenous protein in neutron experiments. SANS is a 

diffraction experiment, which involves scattering of a 

monochromatic beam of neutrons from the sample and measuring 

the scattered neutron intensity as a function of the scattering angle. 

The wave-vector transfer Q (= 4πsinθ/λ, where λ is the incident 

neutron wavelength and 2θ is the scattering angle) in these 

experiments is small, typically in the range of 10-3 to 1.0 Å. The 

wavelength of neutrons used for these experiments are usually 

4−10  Å. SANS experiments were carried out at Dhruva reactor, 

BARC, Mumbai, India 38. 

Data analysis 

SANS experiments measure the coherent differential scattering 

cross-section (dΣ/dΩ) as a function of wave-vector transfer Q. For a 

system of mono-dispersed particles, it is given by 39. 

 

d∑
dΩ
(Q) = NPVP

2(ρP − ρS )
2[< F(Q)2 > + < F(Q)>2 [SP (Q)−1]+ B  (1) 

 

where Vp is the volume of the particle, Pρ  and sρ  are, 

respectively, the scattering length densities of the particle and the 

solvent. Np is the number density of the particles. F(Q) is the single 

particle form factor and is decided by the shape and size of the 

particle. Sp(Q) is the interparticle structure factor, which depends 

on the spatial arrangement of particles and on the interparticle 

interactions. Interparticle interference effects are negligible in case 

of dilute solutions (i.e. Sp(Q)∼1). The scattered neutron intensity in 

the SANS experiment depends on the square of the difference 

between the average scattering length density of the particle and 

the average scattering length density of the solvent (i.e., ( Pρ -

sρ )2). This term is referred to as the contrast factor. The scattering 

length density is positive for deuterium and negative for hydrogen, 

which makes SANS ideal for studying the structural aspects of 

hydrogenous materials such as protein solutions. B is a constant 

term that represents the incoherent scattering background due to 

hydrogen in the sample. In case of charged colloidal systems, such 

as protein solutions, the SANS data show a correlation peak due to 

interparticle structure factor indicating the presence of significant 

interaction between the colloids. 

 

Modelling for HSA 

In case of protein solutions of low concentrations, Eq. (1) for such 

systems becomes 

 

d∑
dΩ
(Q) = NPVP

2 (ρP − ρS )
2 < F(Q)2 > +B    (2) 

 

The form factor for prolate ellipsoidal shape having semi-major and 

minor axes a and b=c can be given by 

             

< F(Q)2 >= F(Q,µ)dµ
0

1

∫










2

  (3) 

 

F(Q,µ) =
3(sin x − x cos x)

x3
   (4) 

 

x =Q[a2µ 2 +b2 (1− µ 2
)]
1/2    (5) 

 
where a and b represent the semi-major and the semi-minor axes 

of the ellipsoidal protein macromolecules, respectively, and µ is the 

cosine of the angle between the directions of a and the wave-

vector transfer Q. 

  

Modelling for HSA-drug conjugates 

The unfolding of protein in the presence of drugs is believed to be 

the opening of the globular protein structure into a random coil 

Gaussian conformation of the unfolded polypeptide chain. In this 

case, the scattering cross-section is given as 

 

d∑
dΩ
(Q) = Io Q

2Rg
2 −1+ exp(−Q2Rg

2 )  / QRg( )
4

  (6) 

 

where Rg is the radius of gyration of the unfolded protein 

polypeptide chain. 

 

The interparticle structure factor Sp(Q) for the charged micelles is 

calculated by Hayter and Penfold 40 analysis from the Ornstein-

Zernike equation under the rescaled mean spherical approximation 
41. The data has been analyzed by comparing the scattering from 

different models to the experimental data (instrumental corrections 
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were also made). The modeled scattering profiles were smeared by 

the appropriate resolution function to compare with the measured 

data. The fitted parameters in the analysis were optimized by 

means of nonlinear least-square fitting program 42, 43. 

 

Dynamic light scattering (DLS) 

Dynamic light scattering measurements were performed using a 

Laser-Spectroscatter 201 (RiNA GmbH, Berlin, Germany). In DLS 

measurements, a beam of laser is guided towards the sample under 

investigation, with a fixed detection arrangement of 90° to the 

center of the cell and the fluctuation in the intensity of the 

scattered light is measured. 

 

Molecular docking and simulations 

Structure of the HSA (PDB ID: 4Z69 and 2BXF) was downloaded 

from the protein data bank (http://www.rcsb.org./pdb). These 

structures were chosen because they are in complex with 

Diclofenac (4Z69, site 1) and Diazepam (2BXF, site 2), whose 

chemical skeleton resembles that of the studied cationic drugs. The 

HSA was prepared by removing diclofenac from the 4Z69 structure. 

The PDB files of drugs were downloaded from Drugbank (AMT 

DB00321; IMP D00458; PMT DB01069). The drugs were docked 

using the docking module in the ICM-Pro software 

(www.molsoft.com). Template-based docking protocol was used. 

The spatial orientation of the common substructure in the chemical 

skeletons of Diclofenac (site 1) and Diazepam (site 2) were selected 

as reference templates to dock the cationic drugs. Grid maps were 

generated around the templates, which defined a binding site 

encompassed in a grid of 30 x 30 x 30Å3. Docking was run with an 

effort of 5, storing all alternative conformations. A maximum of 25 

docked conformations were generated. The final conformation was 

chosen based on strongest interaction energy and the lowest rmsd 

values from the templates’ common substructure. Visualization of 

the docked poses was done by using Pymol 44 and ICM-Pro Molsoft 

molecular modelling package. Parameters for the drugs were 

generated using antechamber software45. The complexes were set 

up using xleap employing ff14sb forcefield46 for protein and GAFF 

for the drugs. The solvated systems were solvated using TIP3P 47 

water and the edge of the box was set to at least 1 nm from the 

closest solute atom. The system was neutralised using K+ and Cl- 

ions. The protocol was identical for all systems. Each system was 

minimized and relaxed under NPT conditions for 5ns at 1 atm. The 

temperature was ramped upto 298K using a timestep of 4 fs, rigid 

bonds, a cut-off of 0.9 nm and particle mesh ewalds summation 

switched on for long-range electrostatics. Only the solvent and ions 

were allowed to move during the equilibration. The heavy atoms of 

the protein and ligand atoms were constrained by a spring constant 

set at 1 kcal/mol/Å2. The production simulations were run using 

ACEMD 48 molecular dynamics engine in the NVT ensemble using a 

Langevin thermostat with a daming of 0.1 ps-1 and hydrogen mass 

repartitioning scheme to achieve time steps of 4fs 49. 3 sets of 

simulations were run for 500 ns, for each system starting from 

different velocities to improve the statistics. Average rmsd of the 3 

simulations was calculated and the individual simulation, closest to 

the average value, was chosen for further structural analysis. The 

rmsd values for each simulation are presented in Table S1. 
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