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Abstract The cold-dense plasma sheet (CDPS) plays an important role in the entry process of the solar
wind plasma into the magnetosphere. Investigating the seasonal variation of CDPS occurrences will help
us better understand the long-term variation of plasma exchange between the solar wind and
magnetosphere, but any seasonal variation of CDPS occurrences has not yet been reported in the literature.
In this paper, we investigate the seasonal variation of the occurrence rate of CDPS using Geotail data from
1996 to 2015 and find a semiannual variation of the CDPS occurrences. Given the higher probability of solar
wind entry under stronger northward interplanetary magnetic field (IMF) conditions, 20 years of IMF data
(1996–2015) are used to investigate the seasonal variation of IMF Bz under northward IMF conditions. We find
a semiannual variation of IMF Bz, which is consistent with the Russell-McPherron (R-M) effect. We therefore
suggest that the semiannual variation of CDPS may be related to the R-M effect.

1. Introduction

The formation of the cold-dense plasma sheet (CDPS) is considered a representative signature of solar wind
entry under northward interplanetary magnetic field (IMF) conditions seen in the magnetosphere (e.g.,
Fujimoto et al., 1996; Stenuit et al., 2002; Terasawa et al., 1997; Wing & Newell, 2002). CDPS is generally charac-
terized by high density (n > 1 cm�3) and low temperature (T < 2 keV) with a low ion bulk flow speed
(|Vx| < 100 km/s) (e.g., Baumjohann et al., 1989; Fujimoto et al., 1996, 2002; Li et al., 2005; Wing, Johnson, &
Fujimoto, 2006). Observations have shown that a cold-dense plasma sheet forms after a long duration of north-
ward IMF (e.g., Terasawa et al., 1997; Wing et al., 2005). A cold and dense plasma sheet can also be considered
as a precondition for the strong ring current that forms during geomagnetic storms (Thomsen et al., 2003;
Lavraud, Thomsen, Borovsky, et al., 2006; Chen et al., 2007) and also affects magnetosphere-ionosphere cou-
pling (e.g., Gkioulidou et al., 2009). The magnetospheric flank regions are believed to be the source region of
the CDPS. Plasmas with low temperature and high density in the flank region are source components of
CDPS, provided by the solar wind entry during the northward IMF period. Double-lobe reconnection
(Crooker, 1992; Fuselier et al. 2002; Lavraud, Thomsen, Lefebvre, et al., 2006; Le et al., 1996; Li et al., 2008;
Onsager et al., 2001; Sandholt et al., 1999; Song & Russell, 1992; Shi et al., 2009, 2013) could be an important
mechanism to transport cold and dense plasma from solar wind to the magnetosphere. Lavraud et al. (2005)
found evidence of double-lobe reconnection at high latitudes. Shi et al. (2013) found a new region of solar wind
plasma entry into the magnetosphere, in the lobes tailward of the cusp, and lobe reconnection was suggested
to be the most probable mechanism of the entry. Based on OpenGGCMMHD simulations, Li et al. (2005) simu-
lated the process of cold-dense plasma sheet transport from the solar wind into the magnetosphere through
dual-lobe reconnection. The Kelvin-Helmholtz (K-H) instability in the magnetospheric flank regions is another
mechanism for solar wind entry under northward IMF conditions (e.g., Fairfield et al., 2000; Fujimoto, Tonooka,
& Mukai, 2003; Hasegawa et al., 2004, 2009; Miura, 1987). Other mechanisms such as impulsive penetration
(e.g., Echim & Lemaire, 2002) and gradient drift (e.g., Olson & Pfitzer, 1985; Zhou et al., 2007) may also play a
role in the plasma interchange between the solar wind and magnetosphere under northward IMF conditions.

Previous works mainly focus on the formation and transport mechanisms of CDPS (e.g., Fujimoto, Mukai, &
Kokubun, 2002; Nishino et al., 2007a, 2007b, Nishino, Fujimoto, Ueno, et al., 2007, Nishino, Fujimoto, Ueno,
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Mukai, et al., 2007; Wang et al., 2014; Wing et al., 2006). However, the seasonal variation of the CDPS occur-
rence has not been studied. Through the investigation of seasonal variation of the CDPS occurrence, we gain
a basic understanding of the seasonal variation of the mass interchange rate between the solar wind and
magnetosphere during quiet times.

Since the CDPS particle source has been considered to be from the solar wind, the variation of solar wind
conditions should control the variation of CDPS occurrence. The semiannual variation of geomagnetic activ-
ity has been reported for over a hundred years (Sabine, 1851). Several hypotheses were proposed to explain
this variation, such as the axial hypothesis (Cortie, 1912; Svalgaard, 1977), the equinoctial hypothesis (Bartels,
1932; Cliver et al., 2002, 2000; McIntosh, 1959) and the Russell-McPherron (R-M) effect (Russell & McPherron,
1973). The axial hypothesis attributes the semiannual variation to the variation of the Earth’s heliographic lati-
tude. During March and September the heliographic latitude of Earth approaches the range of values where
sunspots appear frequently and the average solar wind velocity is higher (Hundhausen et al., 1971). The equi-
noctial hypothesis considers the φ angle between the Earth-Sun line and the dipole axis of the Earth as the
key parameter that affects the field configuration in the Chapman-Ferraro current plane (Crooker & Siscoe,
1986). This suppresses the transfer of energy and further influences the coupling efficiency between solar
wind and magnetosphere. The R-M effect proposes that the θ angle is a key parameter, which is defined
as the angle between Y axis in geocentric solar equatorial (GSE) coordinate and Z axis in geocentric solar
magnetospheric (GSM) coordinates, when examining components of the IMF. According to the R-M effect,
the instantaneous IMF-ZGSM component increases in association with a decrease of the angle θ, whose range
is smaller than 90°. Theminimum of θ appears at spring and fall equinoxes. Themaximum of angle θ is seen at
summer and winter solstices, when the GSE By projection effect minimizes and the magnitude of GSM Bz
reaches its maximum. Previous studies on R-M effect focused on understanding the role of R-M effect for
southward IMF conditions (e.g., O’Brien & McPherron, 2002; Russell & McPherron, 1973; Siscoe & Crooker,
1996; Zhao & Zong, 2012) and for the dipole effect under various IMF orientations (Nowada et al., 2009;
Russell, Wang, & Raeder, 2003), while no attempts have been made under northward IMF. However, several
works have suggested the higher occurrence of solar wind entry with stronger northward IMF (Lavraud,
Thomsen, Lefebvre, et al., 2006; Lin et al., 2014; Zhou et al., 2007). Therefore, in this paper, we investigate
the seasonal variation of CDPS occurrences and the possible role that the R-M effect plays in the seasonal
variation of northward IMF, and then build a possible link between the R-M effect and the CDPS occurrences.

2. Observations
2.1. Data Set

The CDPS events are identified by use of the magnetic field (MGF) experiment data (Kokubun et al., 1994) and
the ion moment data in EA modes from the Low-Energy Particle (LEP) experiment with a covered energy
range of 60 eV–40 keV (Mukai et al., 1994) and Comprehensive Plasma Instrumentation (CPI) onboard
Geotail, with a covered energy range of 1.3 eV–48.2 keV (Frank et al., 1994) from 1996 to 2015. All the results
are presented in GSM coordinates.

To investigate the seasonal variation of the northward IMF, IMF data with 1 h time resolution between 1996
and 2015 are used from the OMNI database. The OMNI 1 min resolution data are also used when we calculate
the magnetopause location using the Shue et al. (1998) model.

2.2. Cold-Dense Plasma Sheet Observation

All our cases were found in the magnetosphere with the range of XGSM < �10 RE. To avoid the crossing
events of the magnetosheath and low-latitude boundary layer, we only consider the plasma sheet (PS) and
cold-dense plasma sheet (CDPS) events, whose radial distance is 3 RE away from the magnetopause location.
The magnetopause location is calculated by Shue et al. (1998) model.

The satellite’s traversal of the PS is defined by a sign change of the Bx_GSM component. The background flow
velocity (|Vx|), in the 5 min interval around the time when the spacecraft crosses the center of plasma sheet,
should be slower than 100 km/s to avoid the contamination of the magnetosheath. To avoid counting multi-
ple times on the same plasma sheet caused by the flappingmotion of magnetotail, and considering the time-
scale of PS andmagnetotail flappingmotions, multiple PS crossing points are counted as a single event, if the
time interval between two crossings is shorter than 10 min (Sharma et al., 2008). The start time and end time
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of a single event are determined by the time of the first and last PS crossing points of the PS event. The CDPS
events are defined as those PS events that have high ion densities (Nion > 1 cc�1) and low ion temperatures
(Tion < 2 keV) (Fujimoto et al., 1996, 2002), and these two criteria were used for both LEP and CPI data. The
plasma parameters data are taken from the LEP instrument when the events are observed by both LEP
and CPI. We have not examined the consistency of the two kinds of data. However, for the events that
were observed by both instruments, the ion density is close to each other, and the temperature observed
by CPI is higher than the LEP value.

Based on the criteria of the PS and CDPS crossings, we identified 636 CDPS events out of 3,770 plasma sheet
crossing events. The occurrence rate of CDPS on the duskside is 15.29% and 18.20% on the dawnside, in
which the occurrence rate is calculated only using the events on the corresponding side of magnetosphere.
The locations of the PS (blue dots) and the CDPS crossing events (red dots), projected onto the GSM X-Y
plane, are shown in Figure 1 (see Figure S1 in the supporting information for the detailed ion density and
temperature of the PS and CDPS events, and the plasma Beta for PS events can be found in Figure S2).
Wing & Newell, (2002) showed the projected spatial distribution of ion density and temperature of the plasma
sheet from observations in the ionosphere and found a clear dawn-dusk asymmetry in both ion density and
ion temperature in the inner magnetosphere. We also investigate the spatial distribution of ion density and
temperature based on in situ observations. The spatial distribution of ion number density and temperature of

Figure 1. The position of CDPS events (red dots) and PS events (blue dots). The horizontal axis is position of these events in XGSM direction, (a) the Y axis is the posi-
tion in YGSM direction, and (b) the Y axis is the radial distance to themagnetopause. Spatial distribution of (c) ion number density of all plasma sheet crossings events,
(d) ion temperature of all plasma sheet crossings events, (e) ion number density of plasma sheet but not cold-dense plasma sheet crossing events, and (f) ion
temperature of plasma sheet but not cold-dense plasma sheet crossing events. All observational event points are averaged over 2 RE × 2 RE bins. Some regions are
left blank because of insufficient data points.
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PS events projected onto the GSM X-Y plane using average values in each 2 RE × 2 RE bin are shown in
Figures 1c and 1d, respectively. Figures 1e and 1f also show the spatial distribution of ion number density
and ion temperature for PS events. Note that CDPS events are excluded from the PS events used to
calculate the average values shown in Figures 1e and 1f. There is a clear dawn-dusk asymmetry of average
ion density for PS events shown in Figure 1c; however, the difference in average ion temperature for

Figure 2. (a) The occurrence rate of CDPS in every month. (b) The number of CDPS events versus the duration of the northward IMF before the observation of CDPS
events. (c) The occurrence rate of CDPS in every month that is calculated only using the events with the long period (more than 2 h) of northward IMF before CDPS
observation. The CDPS/PS event number in every month is shown at the bottom of Figures 2a and 2c.
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plasma sheet crossing events in both flanks is not significant, as seen in Figure 1d. The dawn-dusk asymmetry
of ion density is not seen in Figure 1e, which indicates that this asymmetry is brought by the CDPS events. The
spatial distribution of the ion temperature with or without CDPS is quite similar shown in Figures 1d and 1f,
and there is no significant dawn-dusk asymmetry. The number of CDPS/PS events in every month is given in
Figure 2a. To examine the seasonal variation of the CDPS occurrence rate, we divided the number of CDPS
events in every month by counting the monthly total number of PS events. The result is given in Figure 2a
with error bars. The error bar is calculated using the propagation of error analysis and shows below,

ΔN0 ¼ N0

ffiffiffi
n

p
n

�
ffiffiffiffi
N

p

N

� �
(1)

where n is the number of CDPS events and N is the number of PS events in every month. It seems likely that
the CDPS occurrence has a semiannual variation with peaks at March and September and valleys at January
and July. Borovsky, Thomsen, and Elphic (1998) reported that it took ~4 h for the solar wind plasma to reach
the nightside plasma sheet at geosynchronous orbit. Since the CDPS events we found are outside of geosyn-
chronous orbit, here we investigate the solar wind conditions during a 4 h interval preceding the start of
these events. We find that 87 CDPS events are excluded due to the lack of data in this 4 h interval, which
leaves 549 events remaining. Figure 2b shows the distribution of the CDPS events as a function of the dura-
tion of northward IMF prior to the CDPS event start time. The IMF data are shifted to the CDPS position; the
time shift is calculated by X/Vsw, where X is the upstream distance of the spacecraft which monitored the IMF
and Vsw is the measured solar wind speed. The duration in Figure 2b is the sum of the northward IMF periods
of time during 4 h before CDPS events. More than 85% (469 out of 549) of the CDPS events experienced at
least 2 h of northward IMF within the previous 4 h. This is consistent with previous observations (e.g.,
Terasawa et al., 1997; Wing et al., 2005). Using these 85% of the CDPS events with at least 2 h of northward
IMF prior to the CDPS event and the PS events shown in Figure 2a, we recalculated the CDPS occurrence rate,
as shown in Figure 2c. The tendency that CDPS occurrences increased during March and September/October
and dropped during January and July remains clear. We also found that most of the CDPS events in our study
are during quiet times (Kp < 3 and AE < 150 nT; see Figure S2); therefore, the semiannual variation of CDPS
occurrence should not be related to solar wind entry under southward IMF conditions prior to the
identified events.

2.3. Observation of the Northward IMF Variations

It is suggested that the formation of cold-dense plasma sheet requires a long duration of northward IMF (e.g.,
Terasawa et al., 1997; Wing et al., 2005). Here we use the OMNI 1 h resolution data from 1996 to 2015 to inves-
tigate the seasonal variation of the magnitude of the northward IMF (GSM Bz > 0) conditions.

Figure 3 shows the seasonal (horizontal axis) and diurnal (vertical axis) variations of northward IMF data cal-
culated on a grid of 24 × 24 bins (with 1 h × 15.25 days for a single bin) and smoothed by a 3 × 3 average. We
only use solar wind data during northward IMF periods to calculate the result shown in Figure 3. Figures 3a
shows the color contour maps for the probabilities of IMF Bz component larger than 2 nT, and Figure 3b
shows the average values of IMF Bz. There are three main assumptions in the R-M effect: (i) the direction of
IMF is always along the Parker spiral and its magnitude is constant; (ii) the possibility of meeting southward
or northward IMF is equal; and (iii) the northward IMF has no effect on the geomagnetic activity. The R-M
effect is put forward to explain the semiannual variation of geomagnetic activities after the solar wind entry
under the southward IMF, such as geomagnetic storms and substorms, but the increased magnitude of Bz
caused by the projection of GSE By could also be expected under northward IMF. The first and second hypoth-
eses are used in this paper. Figure 3c shows the semiannual and diurnal variations of the angle θ under north-
ward IMF conditions, which is the controlling parameter of the R-M effect. Figure 3d shows the semiannual
and diurnal variations of the angle φ, which is considered as the key parameter of the equinoctial hypothesis.
The peaks of the northward IMF probability are seen between 21:00 UT and 02:00 UT at spring equinox and
around 10:00 UT at fall equinox. The valleys of the northward IMF probability existed at summer and winter
solstices, and the θ angle reaches a minimum at the same time. The φ angle reaches a minimum at summer
and winter solstices, but there is no clear peak or valley of IMF Bz at this time shown in Figures 3a and 3b. The
correlation coefficients between Figures 3a and 3b and the two hypotheses shown in Figures 3c and 3d are
given in Table 1. The correlation coefficients between the IMF Bz and the R-M effect are much higher than
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Figure 3. Seasonal and diurnal variations of northward IMF: (a) probability of IMF GSM Bz > 2 nT and (b) the mean value of IMF Bz. The theoretical calculation of
Russell-McPherron effect and the equinoctial hypothesis: (c) seasonal and diurnal variations of θ angle between Z axis in GSM coordinate system and Y axis in
GSE coordinate system, (d) seasonal and diurnal variations of φ angle between Earth-Sun line and the dipole axis of the Earth, and (e) the schematic diagram of θ
angle for R-M effect and φ angle for equinotical hypothesis.
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those calculated between the IMF Bz and equinoctial hypothesis.
Therefore, we suggest that the R-M effect is a more probable hypoth-
esis to explain the seasonal and diurnal northward IMF variations
shown in Figure 3 than the equinoctial hypothesis. According to the
diurnal variation of the IMF Bz shown in Figures 3a–3c, the period of
high probability of the higher northward IMF should be larger in
March and September, and therefore, it is likely that there will be long
periods of northward IMF during the 2 months. Since the formation of

CDPS is related to the long duration of periods of northward IMF and the increased positive Bzmagnitude, we
consider that the semiannual variation of CDPS occurrence is also related to R-M effect.

3. Summary and Discussion

In this paper, we have performed a statistical analysis of the occurrence of the CDPS and themagnitude of the
northward IMF Bz. We find 636 CDPS events and 3,770 PS events, and the CDPS occurrence on the dawnside is
slightly higher than that on the duskside, but the difference is not significant. Based on direct in situ observa-
tions, a clear dawn-dusk asymmetry of ion density within CDPS events is shown and this dawn-dusk asymme-
try is not reflected in spatial distribution of ion temperatures. This indicates that the transport of CDPS events
from the flanks to the central magnetotail is more efficient on the dawnside, which confirms previous works
from indirect observations (e.g., Wing et al., 2005; Wing & Newell, 2002). Most of the CDPS events that we
observed are during geomagnetic quiet times (Kp < 3, AE < 150 nT; see Figure S2) and experience a long
duration of northward IMF prior to the event. The occurrence rate of CDPS shows a semiannual variation.
This variation of CDPS occurrence is still clear using a subset of CDPS events with long intervals of northward
IMF. Using the OMNI data set, we investigate the seasonal and diurnal variations of the magnitude of the IMF
Bz under northward IMF conditions. The magnitude of IMF Bz peaks at spring and fall equinoxes and reaches
the minimum at summer and winter solstices. The seasonal and diurnal variations of IMF Bz are more consis-
tent with the R-M effect than the equinoctial hypothesis.

The equinoctial hypothesis could also affect the CDPS occurrence by affecting the threshold of shear flow
velocity (Boller & Stolov, 1970) and lead to a semiannual variation of CDPS occurrences. If the equinoctial
hypothesis is more important, the dawn-dusk asymmetry of CDPS occurrence could be expected due to
the dawn-dusk asymmetry of K-H instability (e.g., Nykyri, 2013). However, the difference between the dusk-
side and dawnside in our CDPS occurrence is not so significant, and both K-H instability and the high-latitude
reconnection are easier to occur when the magnitude of IMF Bz is larger during northward IMF intervals. The
long duration of northward IMF, which is often observed before the CDPS events, appears to bemore likely to
occur in March and September than in June and December. The axial hypothesis suggests that the variation
of the average solar wind velocity is a key factor in the semiannual variation of geomagnetic activity during
active times, but the CDPS events we observed are during quiet times, and not related to the solar wind entry
under southward IMF conditions. We therefore suggest that both the equinoctial hypothesis and the R-M
effect create better conditions than axial hypothesis for solar wind entry under northward IMF conditions
in March and September. Of these two alternatives, our statistical study of IMF Bz occurrence probability is
consistent with the R-M effect, and clearly inconsistent with the equinoctial hypothesis. As a result, the cold
and dense plasma sheet should be easier to form, which explains the higher occurrence rate of CDPS
observed during spring and fall equinoxes. The CDPS is a critical component of storm time ring current
dynamics (Chen et al., 2007; Lavraud, Thomsen, Borovsky, et al., 2006; Thomsen et al., 2003) and
magnetosphere-ionosphere coupling (e.g., Gkioulidou et al., 2009). Here we show that the CDPS has a seaso-
nal dependence, which in turn will be reflected in both the formation and generation of the ring current and
more generally, magnetosphere-ionosphere coupling.
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